RUN: T6BF	MOSIS	WAFER ACCER	PTANCE TES	TS VENDOR:	AMTS	Each wafer fabrication run has its own code; this run is designated "T6BF"				
TECHNOLOGY: SCN	15 RUN TY	RUN TYPE: SKD FEATURE SIZE: 1.6 micro				FEATURE SIZE is the minimum gate length; 1.6µm for this process				
INTRODUCTION: This report contains the lot average results obtained from measurements of MOSIS test structures on each wa this fabrication lot. SPICE parameters obtained from measurements on a selected wafer are also attached.						TECHNOLOGY and RUN TYPE are more specific; these codes indicate added features in the process (for example, linear capacitors and BJTs)				
COMMENTS: SCNA16_AMIS	S									
TRANSISTOR PARAMETER	S W/L	N-CHANNEL P	-CHANNEL	UNITS	Vth is the thres the process de	shold voltage; MINIMUM refers to the smallest geometry devices allowed by sign rules. For logic applications, often only minimum size devices are used.				
MINIMUM	4.0/1.6	0.57	0 07	wolta						
VCII		0.57	-0.97	VOILS	Idss is the curr	ent per unit width with maximum voltage (in the case of this process, 5V)				
SHORT	20.0/1.6	102	70		applied for V _{GS}	Expressing current this way allows the designer to rapidly determine				
IUSS Vth		183	-72	uA/um volts	required device	e size for a given current. For example, if 2mA of drive current is required for				
Vpt		10.0	-10.0	volts	a P-channel MOSFET when the gate is fully turned on, the width should be					
					2mA / (86µA	$M/\mu m$) = 23.3 μm				
						the infestion voltage vitrior the SHORT device is uniferent than the				
					Vpt is the punc	the second-order effect that SPICE needs to keep track of.				
WIDE	20 0/1 6									
Ids0	20.071.0	< 2.5	< 2.5	pA/um	This is the leak switch design, partially discha	kage current per unit width when V _{GS} =0. An important parameter for analog especially in sample-and-hold circuits when the hold capacitor can be arged by the leakage current of a MOSFET which should be "off".				
LARGE	50/50				r					
Vth	50,50	0.58	-0.88	volts	Again, note that	at the threshold voltage is affected by device geometry.				
Vjbkd		16.6	-14.5	volts	Vjbkd is the br	eakdown voltage of the active-substrate pn junction;				
Ijlk		<50.0	<50.0	pA NAO E	ljlk is the rever	se bias leakage current of the junction.				
Gallula		0.02	0.47	V 0.5	Gamma is the affected by the	body-effect parameter, which expresses how the threshold voltage is source-substrate reverse bias voltage.				
K' (Uo*Cox/2)		35.7	-12.0	uA/V^2	K' is the transc	conductance parameter used in some expressions of the square law				
Low-field Mobility		632.73	212.68	cm^2/V*s	$I_D = \frac{\mu C_{OX}}{\underbrace{\frac{2}{K'}}}$	$= \frac{W}{L} \left(V_{GS} - V_{TH} \right)^2$				
					Low-field mobi	lity is the value of μ for E fields below the velocity saturation limited region.				

COMMENTS: Poly bias va bias use th SPICE model	ries with o le appropria card. Design Teo	lesign techn tte value fo chnology	nology. To or the para	account for ma ameter XL in yc XL (um)	*K 11 "Poly bias" allows the software which writes the mask specification file to make the mask dimension larger or smaller than what is drawn in the layout software. This can account for the over- or under-etching of the polysilicon. Here "ambda" refers to the unit spatial dimension of the layout software used to
	SCN (lambo	la=0.8)		0.00	design the masks (not the channel length modulation λ). See Razavi ch. 17 and Johns & Martin sec. 2.3 for more information.
POLY2 TRANSISTORS	W/L	N-CHANNEL	P-CHANNEL	UNITS	In this technology, transistors can also be fabricated using a second polysilicon layer for the
MINIMUM Vth	4.8/3.2	0.86	-1.14	volts	MOSFETs have a thicker gate oxide.
SHORT Vth	9.6/3.2	0.86	-1.09	volts	
LARGE Vth	28.8/28.	0.87	-1.08	volts	
K' (Uo*Cox/2)		21.5	-6.8	uA/V^2	
FOX TRANSISTORS Vth	GATE Poly	N+ACTIVE >15.0	P+ACTIVE <-15.0	UNITS volts	This is for a MOSFET which uses the field oxide as the gate oxide. We don't want this to function as a MOSFET (if it did, unrelated active areas could be shorted together). In this case, the field implant worked, because the threshold voltage is ~15V. Since this process is

intended for 5V systems, the FOX transistor will never be on.

2

BIPOLAR PARAMETERS		NPN	UNITS
2X1 Beta V_early Vce,sat	2X1	129 43.7 	volts volts
2X2 Beta V_early Vce,sat	2X2	131 43.7	volts volts
2X4 Beta V_early Vce,sat	2X4	131 43.4 	volts volts
2X8 Beta V_early Vce,sat BVceo BVcbo BVebo	2X8	130 43.2 18.9 30.2 8.0	volts volts volts volts volts

This process technology includes layers that allow fabrication of NPN bipolar transistors. It turns out that these BJTs have reasonably good DC performance, but not very good high frequency performance. Usually these devices would be used in a circuit such as the bandgap voltage reference which makes use of the exponential voltage-current behavior of the BJT in developing a temperature-stable DC reference voltage.

PROCESS PARAMETERS	N+	P+	POLY	POLY2	PBASE	M1	M2	UNITS
Sheet Resistance	52.2	75.6	25.0	22.3	2257.5	0.05	0.03	ohms/sq
Contact Resistance	54.5	41.1	25.4	17.0			0.05	ohms
Gate Oxide Thickness	306							angstrom
PROCESS PARAMETERS	N_W		UNITS					
Sheet Resistance	1714		ohms/sq					
Contact Resistance			ohms					

Contact resistance: This is the resistance of one contact between METAL1 and the layer indicated. For example, one contact between the heavily doped N-type source or drain region of a MOSFET (N+) and the first layer of metal (M1) has a resistance of 54.5 Ω - not negligible! When it is necessary to lower resistance, many contacts are made in parallel to give a lower total resistance.

Gate Oxide Thickness: This is the oxide thickness tox used to determine the gate capacitance per unit area. Check by comparing to the gate oxide capacitance per unit area:

 $\frac{\varepsilon_{OX}}{t_{OX}} = \frac{K_{OX}\varepsilon_O}{t_{OX}} = \frac{3.9(8.85E - 12 F/m)}{306E - 10 m} = 1.13E - 3 F/m^2$ Which agrees pretty well with the 1128aF/um² for POLY-to-N+ shown below

CAPACITANCE PARAMETERS Area (substrate) Area (N+active) Area (P+active) Area (poly) Area (poly2) Area (metal1)	N+ 291	P+ 302	POLY 36 1128 1110	POLY2 37 730 723 592	M1 21 50 46 46	M2 13 26 23 23 38	N_W 129	UNITS aF/um^2 aF/um^2 aF/um^2 aF/um^2 aF/um^2 aF/um^2
Fringe (substrate) Fringe (poly) Fringe (metal1)	79	160	150		31 58	27 44 55		aF/um aF/um aF/um
Overlap (N+active) Overlap (P+active)			173 231					aF/um aF/um

Sheet resistance: These are the numbers to use when determining the physical dimensions of a resistor to achieve a certain value of resistance. The layers are:

- N+ Heavily doped region of N-type diffusion used for source, drain of N-channel MOSFETs
- P+ Heavily doped region of P-type diffusion used for source, drain of P-channel MOSFETs
- POLY Polysilicon metal used for gates of MOSFETs
- POLY2 A second layer of polysilicon which can also be used for MOSFET gates (Also, POLY and POLY2 can be used with thin oxide between to make a linear capacitor (See capacitance parameters below)
- PBASE A moderately doped region of P-type diffusion used as the base for NPN bipolar transistors
- M1 First layer of aluminum metallization; much lower sheet resistance than polysilicon or diffusion
- M2 Second layer of metallization; lowest sheet resistance since thickness of M2 is greater than thickness of M1
- N_W Lightly doped region of N-type diffusion used as a well (sort of a "local substrate") used for P-channel MOSFETs

These are parallel-plate capacitance (per unit area) between the layers indicated. For example, a capacitor using M1 and M2 as the plates will have a capacitance of $38aF/\mu m^2$ (atto is 1E-18) per micron squared. A capacitor $100\mu m \times 100\mu m$ has an area of $1E+4\mu m^2$, so the capacitance would be 380E-15 F, or 0.38pF.

Fringe and overlap capacitances are edge effects, and therefore are given per unit length. The 100um x 100um capacitor mentioned in the example above would have a perimeter of 400um. The fringe capacitance from M1 to M2 is $55aF/\mu$ m. Thus the capacitance due to the fringing field would be $(400\mu$ m) $(55aF/\mu$ m)=22 E-15 F = 22fF. Total for the 100um x 100um capacitor will be the sum of contributions from parallel plate + fringing: 0.38pF + 22fF = 0.402pF.

CIRCUIT PARAMETERS Inverters Vinv Vol (100 uA) Voh (100 uA) Vinv Gain	K 1.0 1.5 2.0 2.0 2.0 2.0	1.80 2.11 0.44 4.33 2.31 -15.06	UNITS volts volts volts volts volts	This data describes performance of CMOS logic inverters. "K" is the size ratio between the P-channel and N-channel MOSFETs in the CMOS inverter. For example, for the case K=1.5, the PMOS device in the inverter has a width 1.5X the NMOS width. Vinv is the logic threshold of the inverter. Vol and Voh are the output voltages the inverter output can maintain while sourcing (Voh) or sinking (Vol) the indicated current of 100μ A. Gain is the slope of the Vout vs. Vin transfer characteristic of the inverter at its switching threshold. Although it might seem irrelevant to worry about an "analog" concept like gain in a digital system, it is actually very important that the gain magnitude be greater than unity: if the gain is less than one, logic swings become smaller and smaller as a logic signal propagates through a sequence of gates, until the logic swing is too small to switch a gate at all.
Ring Oscillator Freq. DIV64 (31-stg,5.0V) Ring Oscillator Power DIV64 (31-stg,5.0V)		37.70 1.60	MHz uW/MHz/gate	A ring oscillator is made up of a chain of inverters with a net signal inversion from input to output (enforced in this case by using an odd number of inverters). When the output of the chain is tied back to the input, this completes a ring, and a signal edge will propagate around the ring, forming an oscillator. The oscillation frequency is $f_{OSC} = \frac{1}{2 \cdot N \cdot t_{PD}}$ where N is the number of stages in the ring and t _{PD} is the propagation delay of the inverter. Thus measuring the ring oscillator frequency is an easy way to determine the propagation delay of the logic inverter; in this case with an oscillator frequency of fosc = 37.7 MHz it is

$$t_{PD} = \frac{1}{2 \cdot N \cdot f_{OSC}} = \frac{1}{2 \cdot 31 \cdot (37.7E + 6 Hz)} = 428 \ ps$$

The ring oscillator power measurement can be used to estimate the power consumed by a digital circuit given the number of gates and the switching frequency.

T6BF SPICE LEVEL3 parameters are available for classroom instructional purposes but not for actual IC design work.

*	DATE:	Jaı	n 12/07								
*	LOT: T	6B1	7	WAF:	61	102					
*	* Temperature parameters=Default										
.1	MODEL C	MOS	SN NMOS (LEVEL	=	3		
+	тох	=	3.06E-8	NSUB	=	9.34116E15	GAMMA	=	0.7671649		
+	PHI	=	0.9554462	VTO	=	0.6111337	DELTA	=	0.7532645		
+	UO	=	541.3782915	ETA	=	6.06068E-4	THETA	=	0.070589		
+	KP	=	7.399509E-5	VMAX	=	2.102169E5	KAPPA	=	0.5		
+	RSH	=	23.7230709	NFS	=	6.009445E11	TPG	=	1		
+	XJ	=	3E-7	LD	=	8.616976E-15	WD	=	6.516763E-7		
+	CGDO	=	1.73E-10	CGSO	=	1.73E-10	CGBO	=	1E-10		
+	CJ	=	2.872743E-4	PB	=	0.838875	MJ	=	0.5		
+	CJSW	=	1.238328E-10	MJSW	=	0.05)				
*											
.1	MODEL C	MOS	SP PMOS (LEVEL	=	3		
+	тох	=	3.06E-8	NSUB	=	1E17	GAMMA	=	0.4950231		
+	PHI	=	0.7	VTO	=	-0.889286	DELTA	=	0.2719659		
+	UO	=	100	ETA	=	9.990442E-5	THETA	=	0.1262713		
+	KP	=	2.524773E-5	VMAX	=	1.930155E5	KAPPA	=	90		
+	RSH	=	0.2004376	NFS	=	5.850358E11	TPG	=	-1		
+	XJ	=	2E-7	LD	=	1.001708E-14	WD	=	9.821909E-7		
+	CGDO	=	2.31E-10	CGSO	=	2.31E-10	CGBO	=	1E-10		
+	CJ	=	2.993018E-4	PB	=	0.8	MJ	=	0.4481429		
+	CJSW	=	1.609243E-10	MJSW	=	0.1174914)				
*											

These are the SPICE parameters that would be used for simulating the MOSFET using the Level 3 model. Note that you are cautioned not to use these parameters for actual IC design work! The more accurate, but more complicated, Level 49 BSIM3 model parameters are given on the next two pages.

To simulate using the parameters you extract in the studio labs for the MC14007 MOSFET, you will use a (much simpler) set of model parameters based on the parameters extracted from your lab measurements.

SPICE 3f5 Level 8, Star-HSPICE Level 49, UTMOST Level 8

* DATE: J	Jai	n 12/07						
* LOT: TO	бBI	?	WAF:	61	L02			
* Tempera	atı	ire parameters=I	Default					
.MODEL CN	405	SN NMOS (LEVEL	=	49
+VERSION	=	3.1	TNOM	=	27	тох	=	3.06E-8
+XJ	=	3E-7	NCH	=	7.5E16	VTH0	=	0.5467907
+K1	=	0.9040053	К2	=	-0.0667247	К3	=	3.2074393
+КЗВ	=	-2.4863898	W0	=	1.726569E-6	NLX	=	2.003139E-8
+DVT0W	=	0	DVT1W	=	0	DVT2W	=	0
+DVT0	=	0.5616596	DVT1	=	0.5961287	DVT2	=	-0.5
+U0	=	659.1539164	UA	=	1.571393E-9	UB	=	6.331182E-19
+UC	=	1.327941E-11	VSAT	=	9.85294E4	A0	=	0.5995609
+AGS	=	0.1306233	в0	=	2.470264E-6	В1	=	5E-6
+KETA	=	-0.0107507	A1	=	0	A2	=	1
+RDSW	=	3E3	PRWG	=	-0.0293948	PRWB	=	-0.0296004
+WR	=	1	WINT	=	6.909849E-7	LINT	=	2.918303E-7
+XL	=	0	XW	=	0	DWG	=	-1.088946E-8
+DWB	=	2.842396E-8	VOFF	=	-0.0700562	NFACTOR	=	0.4708962
+CIT	=	0	CDSC	=	8.279564E-8	CDSCD	=	1.482736E-6
+CDSCB	=	3.869072E-5	ETA0	=	0.0110351	ETAB	=	0.0262778
+DSUB	=	0.2442264	PCLM	=	0.2186109	PDIBLC1	=	0.0110461
+PDIBLC2	=	3.644817E-3	PDIBLCB	=	-0.1	DROUT	=	0.0795384
+PSCBE1	=	2.153596E9	PSCBE2	=	5.005E-10	PVAG	=	0.2222499
+DELTA	=	0.01	RSH	=	52.2	MOBMOD	=	1
+PRT	=	0	UTE	=	-1.5	KT1	=	-0.11
+KT1L	=	0	KT2	=	0.022	UA1	=	4.31E-9
+UB1	=	-7.61E-18	UC1	=	-5.6E-11	AT	=	3.3E4
+WL	=	0	WLN	=	1	WW	=	0
+WWN	=	1	WWL	=	0	LL	=	0
+LLN	=	1	LW	=	0	LWN	=	1
+LWL	=	0	CAPMOD	=	2	XPART	=	0.5
+CGDO	=	1.73E-10	CGSO	=	1.73E-10	CGBO	=	2E-9
+CJ	=	2.767682E-4	PB	=	0.99	MJ	=	0.5559833
+CJSW	=	1.417238E-10	PBSW	=	0.9889456	MJSW	=	0.1
+CJSWG	=	6.4E-11	PBSWG	=	0.9889456	MJSWG	=	0.1
+CF	=	0)					
*								

7

.MODEL CI	408	SP PMOS (LEVEL	=	49
+VERSION	=	3.1	TNOM	=	27	TOX	=	3.06E-8
+XJ	=	3E-7	NCH	=	2.4E16	VTH0	=	-0.8476404
+K1	=	0.4513608	К2	=	2.379699E-5	К3	=	13.3278347
+K3B	=	-2.2238332	W0	=	9.577236E-7	NLX	=	4.909017E-7
+DVT0W	=	0	DVT1W	=	0	DVT2W	=	0
+DVT0	=	0.7546343	DVT1	=	0.4613224	DVT2	=	-0.179467
+U0	=	236.8923827	UA	=	3.833306E-9	UB	=	1.487688E-21
+UC	=	-1.08562E-10	VSAT	=	1.842738E5	A0	=	0.3536635
+AGS	=	0.2659996	в0	=	1.980132E-6	В1	=	5E-6
+KETA	=	0.0303949	A1	=	0	A2	=	0.364
+RDSW	=	3E3	PRWG	=	0.0725853	PRWB	=	-0.1860065
+WR	=	1	WINT	=	7.565065E-7	LINT	=	1.422522E-7
+XL	=	0	XW	=	0	DWG	=	-2.13917E-8
+DWB	=	3.857544E-8	VOFF	=	-0.0877184	NFACTOR	=	0.2508342
+CIT	=	0	CDSC	=	2.924806E-5	CDSCD	=	1.497572E-4
+CDSCB	=	1.091488E-4	ETA0	=	0.20103	ETAB	=	-0.0129682
+DSUB	=	0.2873	PCLM	=	6.403032E-10	PDIBLC1	=	7.477411E-4
+PDIBLC2	=	3.271335E-3	PDIBLCB	=	-1E-3	DROUT	=	1E-3
+PSCBE1	=	3.515038E9	PSCBE2	=	5.273648E-10	PVAG	=	14.985
+DELTA	=	0.01	RSH	=	75.6	MOBMOD	=	1
+PRT	=	0	UTE	=	-1.5	KT1	=	-0.11
+KT1L	=	0	KT2	=	0.022	UA1	=	4.31E-9
+UB1	=	-7.61E-18	UC1	=	-5.6E-11	AT	=	3.3E4
+WL	=	0	WLN	=	1	WW	=	0
+WWN	=	1	WWL	=	0	LL	=	0
+LLN	=	1	LW	=	0	LWN	=	1
+LWL	=	0	CAPMOD	=	2	XPART	=	0.5
+CGDO	=	2.31E-10	CGSO	=	2.31E-10	CGBO	=	2E-9
+CJ	=	2.995053E-4	PB	=	0.8	MJ	=	0.4487006
+CJSW	=	1.586304E-10	PBSW	=	0.8971831	MJSW	=	0.1136092
+CJSWG	=	3.9E-11	PBSWG	=	0.8971831	MJSWG	=	0.1136092
+CF	=	0)					
*								