MA535 ALGEBRA W. J. Martin September 22, 2015

The Subgroup Lattice

Posets

A partially ordered set is an ordered pair (\mathcal{P}, \preceq) where \mathcal{P} is a set and \preceq is a binary relation on \mathcal{P} which is

- reflexive: for all $a \in \mathcal{P}$, $a \leq a$
- antisymmetric: for all $a, b \in \mathcal{P}$, if $a \leq b$ and $b \leq a$, then a = b, and
- transitive: for all $a, b, c \in \mathcal{P}$, if $a \leq b$ and $b \leq c$, then $a \leq c$.

Instead of writing out "partially ordered sets", we usually just call these "posets". Naturally, the notation $a \prec b$ means $a \leq b$ but $a \neq b$.

If G is any set and \mathcal{H} is any collection of subsets of G, these can be partially ordered by inclusion. I.e., In this case (\mathcal{H}, \subseteq) is a partial order relation.

We are interested in the poset of all subgroups of a group G. The example handed out in class depicts this poset for the symmetry group of a hexagon, D_{12} .

LATTICES

A lattice¹ is a special kind of poset. A *lattice* is a partially ordered set in which every two elements have a well-defined *meet* and a well-defined *join*. Let (\mathcal{P}, \preceq) be a poset. For $a, b, c \in \mathcal{P}$, we say c is a *meet* for a and b (and we write $c = a \land b$) if

- $c \leq a$ and $c \leq b$, and
- for all $x \in \mathcal{P}$, if $x \leq a$ and $x \leq b$, then $x \leq c$

(So we view c as the "greatest lower bound" of a and b.) Familiar examples include set intersections and greatest common divisors. It is an easy exercise to show that, if a meet for a and b exists, then it is unique; so $a \wedge b$ is well-defined.

On the other hand, for $a, b, c \in \mathcal{P}$, we say c is a *join* for a and b (and we write $c = a \vee b$) if

- $a \prec c$ and $b \prec c$, and
- for all $x \in \mathcal{P}$, if $a \leq x$ and $b \leq x$, then $c \leq x$

¹Beware! The term "lattice" is used in mathematics for two completely different concepts.

This is viewed as a "least upper bound" and we have familiar examples of union and l.c.m.; if $a \lor b$ exists, then it is uniquely determined.

THE SUBGROUP LATTICE

The subgroups of a group G form a lattice because, for any two subgroups H and K of G, $H \cap K$ is a subgroup (and therefore gives us the meet) and $\langle H, K \rangle$, the smallest subgroup containing both H and K acts as a join (though not as elegantly defined as we might hope it to be).

THE HASSE DIAGRAM

This usually only makes sense when G is finite, but we depict a poset (\mathcal{P}, \preceq) on a piece of paper by writing down the elements of \mathcal{P} from "smallest" to "biggest"; i.e., if $a \prec b$, we try to draw b higher up on the page than a. We use "edges" (line segments or arcs) to indicate the relation \prec . Rather than clutter up the page with all possible ordered pairs in \preceq , we only draw the *covering relation*: we say b covers a if $a \prec b$ and, for all $c \in \mathcal{P}$, if $a \preceq c \preceq b$, then either c = a or c = b. (Obviously, this makes perfect sense for the integers under their natural total order, but the cover relation is empty for the rationals or reals under <.)

Our $Hasse\ diagram\ draws$ an edge from a to b whenever b covers a. An example is attached.