A Tale of Two Design Theories

William J. Martin

Department of Mathematical Sciences
and
Department of Computer Science
Worcester Polytechnic Institute

The Hobart Fest
University of Wyoming
May 24, 2016
Without knowing the initial state of the system, send a sequence of instructions to move to State 1.
A Tale of Two Design Theories

It was the best of designs, it was the worst of designs . . .
Block Designs

Statisticians introduced balanced incomplete block designs as lists of \(k\)-elements subsets (the experiments) of a set of size \(n\) (the treatments) such that every pair of elements are tested together exactly \(\mu\) times. (Sorry, I need \(\lambda\) for something else.)

If one’s goal is to minimize the number of experiments, then \(\mu = 1\) is the best we can do. Projective planes give interesting examples with \(\mu = 1\).
The Fano Plane

The Fano plane can be constructed from the quadratic residues $\mathcal{D} = \{1, 2, 4\}$ in \mathbb{Z}_7 by viewing lines (or “blocks”) as all possible cyclic shifts $x + \mathcal{D} \subseteq \mathbb{Z}_7$ for $x \in \mathbb{Z}_7$.

124 235 346 450 561 602 013
By the same token, we can obtain a design from the quadratic residues modulo 11; but here any two distinct points lie in two common blocks and any two blocks have exactly two points in common.

Some people call these *biplanes* it is very frustrating that we know only 17 non-trivial examples.
Balanced Incomplete Block Designs

More generally, a $2-(n, k, \mu)$ design is a collection \mathcal{B} of k-element subsets of $[n] = \{1, \ldots, n\}$ such that any two points $x, y \in [n]$ occur together in exactly μ blocks.
A 3-Design

The codewords of the extended binary Hamming code

\[
C = \begin{bmatrix}
0 & 0 & 0 & 1 & 1 & 1 & 1 & 0 \\
0 & 1 & 1 & 0 & 0 & 1 & 1 & 0 \\
1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 \\
0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 \\
\end{bmatrix}
\]

give us a design

\[
\mathcal{D} = \{4567, 2367, 2345, 1357, 1346, 1245, 1247, 1238, 1458, 1678, 2468, 2578, 3678, 3568\}
\]
in which every triple appears exactly once!
t-Designs

In 1959, Haim Hanani defined *t-designs*.

A *t-(n, k, μ)* design is a collection \mathcal{D} of k-element subsets of $[n] = \{1, \ldots, n\}$ having the property that every t-element subset $T \subset [n]$ is contained in exactly $μ$ blocks from \mathcal{D}.
In 1959, Haim Hanani defined t-designs.

A $t-(n, k, \mu)$ design is a collection \mathcal{D} of k-element subsets of $[n] = \{1, \ldots, n\}$ having the property that every t-element subset $T \subset [n]$ is contained in exactly μ blocks from \mathcal{D}.

Now statisticians fall asleep.
In 1959, Haim Hanani defined *t*-designs.

A *t-(n, k, µ)* design is a collection \(\mathcal{D} \) of \(k \)-element subsets of \([n] = \{1, \ldots, n\}\) having the property that every \(t \)-element subset \(T \subset [n] \) is contained in exactly \(µ \) blocks from \(\mathcal{D} \).

Now statisticians fall asleep.

But finite group theorists get excited.
Can we use groups?

Let G be any t-transitive (or t-homogeneous) permutation group on $[n]$. For $k > t$, let \mathcal{D} be any orbit of G on k-subsets. Then \mathcal{D} is a $t-(n, k, \mu)$ design.

So if there exist t-transitive groups for all t, then there exist t-designs for all t.

5-Designs from Beautiful Groups

But the Classification of Finite Simple Groups tells us that, apart from the symmetric and alternating groups, there are no t-transitive groups for $t > 5$.

For $t = 5$, two Mathieu groups are t-transitive, but that’s all we get; these give us 5-$(24,8,1)$ and 5-$(12,6,1)$ designs (and other designs with $\mu > 1$).
Theorem (Assmus&Mattson,1969)

Let C be a binary linear $[n, k, d]$-code with weights $0, w_1 = d, w_2, \ldots, w_s$. Let $0, w'_1, w'_2, \ldots, w'_s$ be the weights of the dual code C^\perp. Let t be the greatest integer with $t < d$ such that

$$\#\{i : 0 < w'_i \leq n-t\} \leq d-t \quad \text{or} \quad \#\{i : 0 < w_i \leq n-t\} \leq w'_1-t.$$

Then the codewords of any weight w_i in C form a t-design.

Question: Do there exist non-trivial codes with $w'_1 > s + 5$?
Steiner Systems

A design with $\mu = 1$ is as small as possible; these are called *Steiner systems*.

Until recently, no non-trivial Steiner systems with $t > 5$ were known and, for $t = 5$, the only known examples had $k = 6$ and $n \in \{12, 24, 48, 72, 84, 108, 132\}$.
They exist! They exist!

Today, we require D contains no repeated blocks.

In 1987, Luc Teirlinck proved that non-trivial t-designs exist for all values of t. But these designs have astronomically large μ values.

In the 1990s, various people used basis reduction (LLL) to piece together orbits of nice groups ($PSL_2(q)$ acting on the projective line seemed to be fruitful) and obtain t-designs with $t = 6, 7, 8, 9$ and μ not “too bad” (2-,3-,4-digit numbers).
Keevash’s Theorem

In January 2014, Peter Keevash (now at Oxford) proved that Steiner systems exist for all values of t. (In fact, once you take divisibility into account, only finitely many n are bad for a given t and k). This answers a question of Plücker from 1835.
Incidence Matrices

We want to look at these objects from a linear-algebraic viewpoint.

Our matrices are functions on Cartesian products:

\[\mathcal{W} : \binom{n}{k} \times \binom{n}{t} \to \mathbb{C} \]
Incidence Matrix of k-Sets versus t-Sets

The *incidence matrix* ("Wilson matrix", "Riemann matrix") $W_{k,t} = W(n)$ has rows indexed by $([n]_k)$ and columns indexed by $([n]_t)$ and entries

$$ (W_{k,t})_{a,b} = \begin{cases} 1 & b \subseteq a; \\ 0 & \text{otherwise.} \end{cases} $$
Incidence Matrices

Some properties of the incidence matrices:

\[W_{k,t} W_{t,s} = \binom{k-s}{t-s} W_{k,s} \]

so \(\text{colsp } W_{k,t} \) contains \(\text{colsp } W_{k,t-1} \). And since

\[
W^{(n)}_{k,t} = \begin{bmatrix}
W^{(n-1)}_{k-1,t-1} & W^{(n-1)}_{k-1,t} \\
0 & W^{(n-1)}_{k,t}
\end{bmatrix}
\]

\(W_{k,t} \) has full column rank for \(t \leq k \leq n/2 \).
The Johnson Association Scheme

Now fix \(n \). We consider the algebra generated by the matrices

\[
C_t = W_{k,t} W_{k,t}^T
\]

We have

\[
C_r C_s = \sum_{t=0}^{\min(r,s)} \binom{k-t}{r-t} \binom{k-t}{s-t} \binom{v-r-s}{v-k-t} C_t
\]

so that \(\text{span}_\mathbb{C}\{C_0, \ldots, C_t\} \) is closed under matrix multiplication for \(0 \leq t \leq k \).
The Johnson Graph

Consider the graph $J(n, k)$ with vertex set $\binom{[n]}{k}$ and adjacency rule

\[|a \cap b| = k - 1 \]

This graph $J(n, k)$ is called the *Johnson graph*. It’s eigenvalues are $(k - j)(n - k - j) - j$ for $0 \leq j \leq k$.

I should note that these graphs play a special role in Babai’s new quasipolynomial time algorithm for graph isomorphism.
Example: $J(5, 2)$

For 2-subsets of $[5] = \{1, 2, 3, 4, 5\}$ we get the Johnson graph and its familiar complement:
The Johnson Scheme

Two vertices \(a\) and \(b\) are at distance \(i\) in the Johnson graph \(J(n,k)\) if

\[|a \cap b| = k - i\]

Denote the adjacency matrix of this graph by \(A_i\).
Bose-Mesner Algebra

One easily checks that

$$C_t = \sum_{i=0}^{t} \binom{t}{i} A_{k-i}$$

So the algebra \mathbb{A} generated by C_0, \ldots, C_k is also closed under entrywise \textit{(Schur)} multiplication.

Also, $I \in \mathbb{A}$ and $J \in \mathbb{A}$ where $J = \sum_i A_i$ is the all-ones matrix.

A transpose-closed vector space of matrices closed under both ordinary and Schur multiplication and containing the identities for both is called a \textit{Bose-Mesner algebra}.
Bose-Mesner Algebra

A transpose-closed vector space of matrices closed under both ordinary and Schur multiplication and containing the identities for both is called a *Bose-Mesner algebra*.

These are equivalent to *association schemes* (Bose/Mesner, 1959). Here’s a definition in the symmetric case:

We have a finite set X together with a partition $\mathcal{R} = \{ R_0, \ldots, R_d \}$ of $X \times X$ into symmetric relations satisfying

- R_0 is the identity relation on X
- there exist *intersection numbers* p_{ij}^h such that, whenever $(a, b) \in R_h$,

$$ \# \{ c \in X \mid (a, c) \in R_i, \ (c, b) \in R_j \} = p_{ij}^h $$
Bases for the Bose-Mesner Algebra

In general, we let A_i denote the adjacency matrix of the graph (X, R_i). Then

$$A_i A_j = \sum_{h=0}^{d} p_{ij}^h A_h ,$$

$$\mathbb{A} = \text{span}_\mathbb{R}\{A_0, \ldots, A_d\}$$

is closed under both ordinary and Schur multiplication and contains both I and J.

So \mathbb{A} admits a basis of mutually orthogonal idempotents $\{E_0, \ldots, E_d\}$

$$E_i E_j = \delta_{i,j} E_i$$

with $E_0 + E_1 + \cdots + E_d = I$. Without loss, $E_0 = \frac{1}{|X|} J$.
Three Bases

In the case of the Johnson scheme, the algebra A has a useful third basis $\{C_t\}_{t=0}^k$.

\[
C_t = \sum_{i=0}^{t} \binom{i}{t} A_{k-i}, \quad A_i = \sum_{j=0}^{k} H_i(j) E_j, \quad E_j = \sum_{t=0}^{j} \varrho_j(t) C_t
\]

where

\[
H_i(j) = \sum_{\ell=0}^{i} (-1)^{\ell} \binom{j}{\ell} \binom{k-j}{i-\ell} \binom{n-k-j}{i-\ell}
\]

is the dual Hahn polynomial.
Designs as 01-Vectors

Now let $\mathcal{D} \subseteq \binom{[n]}{k}$ be encoded as a 01-vector of length, x say, $\binom{n}{k}$. Then \mathcal{D} is a t-design

\triangleright if and only if

This leads us to a powerful linear programming bound for designs (and codes).

William J. Martin

A Tale of Two Design Theories
Designs as 01-Vectors

Now let $\mathcal{D} \subseteq \binom{[n]}{k}$ be encoded as a 01-vector of length, x say, $\binom{n}{k}$. Then \mathcal{D} is a t-design

- if and only if $x^\top W_{k,t} = \mu \mathbf{1}$ for some constant μ
- if and only if $x^\top C_j$ is a constant vector for $0 \leq j \leq t$
- if and only if $x^\top E_j = 0$ for $0 < j \leq t$. This leads us to a powerful linear programming bound for designs (and codes).
Designs as 01-Vectors

Now let $\mathcal{D} \subseteq \binom{[n]}{k}$ be encoded as a 01-vector of length, x say, $\binom{n}{k}$. Then \mathcal{D} is a t-design

- if and only if $x^\top W_{k,t} = \mu \mathbf{1}$ for some constant μ
- if and only if $x^\top W_{k,j}$ is a constant vector for $0 \leq j \leq t$
- if and only if $x^\top E_{j} = 0$ for $0 < j \leq t$.

This leads us to a powerful linear programming bound for designs (and codes).
Now let $\mathcal{D} \subseteq \binom{[n]}{k}$ be encoded as a 01-vector of length, x say, $\binom{n}{k}$. Then \mathcal{D} is a t-design if and only if $x^\top W_{k,t} = \mu \mathbf{1}$ for some constant μ.

- if and only if $x^\top W_{k,j}$ is a constant vector for $0 \leq j \leq t$
- if and only if $x^\top C_j$ is a constant vector for $0 \leq j \leq t$
- if and only if $x^\top E_j = 0$ for $0 < j \leq t$.

This leads us to a powerful linear programming bound for designs (and codes).
Designs as 01-Vectors

Now let $\mathcal{D} \subseteq \binom{[n]}{k}$ be encoded as a 01-vector of length, x say, $\binom{n}{k}$. Then \mathcal{D} is a t-design

- if and only if $x^\top W_{k,t} = \mu 1$ for some constant μ
- if and only if $x^\top W_{k,j}$ is a constant vector for $0 \leq j \leq t$
- if and only if $x^\top C_j$ is a constant vector for $0 \leq j \leq t$
- if and only if $x^\top E_j = 0$ for $0 < j \leq t$.

This leads us to a powerful linear programming bound for designs (and codes).
Now let $\mathcal{D} \subseteq \binom{[n]}{k}$ be encoded as a 01-vector of length, x say, $\binom{n}{k}$. Then \mathcal{D} is a t-design ▶ if and only if $x^\top W_{k,t} = \mu \mathbf{1}$ for some constant μ
▶ if and only if $x^\top W_{k,j}$ is a constant vector for $0 \leq j \leq t$
▶ if and only if $x^\top C_j$ is a constant vector for $0 \leq j \leq t$
▶ if and only if $x^\top E_j = 0$ for $0 < j \leq t$.

This leads us to a powerful *linear programming bound* for designs (and codes).
Posets

For any subset $S \subseteq [n]$ of size $s \leq k$, we identify S with the 01-vector which is the corresponding column of $W_{k,s}$. The map

$$S \mapsto |S|$$

from the Boolean lattice to the chain captures the decomposition of $\text{colsp} \ W_{k,t}$ into eigenspaces

$$V_0 + V_1 + \cdots + V_t$$

for the Johnson graph
Posets

For \(n = 3, k = 2 \) (ignore top element \(\{x, y, z\} \)), we have an order-preserving map

\[
\begin{array}{cccc}
\{1, 2\} & \{1, 3\} & \{2, 3\} & V_2 \\
\{1\} & \{2\} & \{3\} & V_1 \\
\emptyset & \text{} & \text{} & V_0
\end{array}
\]
Figure 1. Subset D is a poset T-design if and only if $f|_T = \lambda \circ \text{eig}$ for some function λ.

William J. Martin
A Tale of Two Design Theories
The Association Scheme of \mathfrak{S}_n

From a matrix theory viewpoint, this is just the center of the group algebra, in the right regular representation.

- An association scheme is a highly regular edge decomposition of the complete graph.
- Our graphs will have one vertex for each $\sigma \in \mathfrak{S}_n$.
- We have one graph for each conjugacy class C_λ.
- $\sigma \sim \tau$ in graph G_λ iff $\sigma^{-1}\tau \in C_\lambda$.
- The vector space spanned by these $p(n)$ matrices is closed under both ordinary and entrywise multiplication (Bose-Mesner algebra).

Recall

$$p(n) = [x^n] \prod_{k=1}^{\infty} \frac{1}{1 - x^k}$$
The Association Scheme of S_3
The Association Scheme of \mathcal{S}_3

$$A_0 = \begin{bmatrix}
1 & 0 & 0 & | & 0 & 0 & 0 \\
0 & 1 & 0 & | & 0 & 0 & 0 \\
0 & 0 & 1 & | & 0 & 0 & 0 \\
0 & 0 & 0 & | & 1 & 0 & 0 \\
0 & 0 & 0 & | & 0 & 1 & 0 \\
0 & 0 & 0 & | & 0 & 0 & 1
\end{bmatrix},$$

$$A_1 = \begin{bmatrix}
0 & 0 & 0 & | & 1 & 1 & 1 \\
0 & 0 & 0 & | & 1 & 1 & 1 \\
0 & 0 & 0 & | & 1 & 1 & 1 \\
1 & 1 & 1 & | & 0 & 0 & 0 \\
1 & 1 & 1 & | & 0 & 0 & 0 \\
1 & 1 & 1 & | & 0 & 0 & 0
\end{bmatrix}, \quad A_2 = \begin{bmatrix}
0 & 1 & 1 & | & 0 & 0 & 0 \\
1 & 0 & 1 & | & 0 & 0 & 0 \\
1 & 1 & 0 & | & 0 & 0 & 0 \\
0 & 0 & 0 & | & 1 & 1 & 0 \\
0 & 0 & 0 & | & 1 & 0 & 1 \\
0 & 0 & 0 & | & 1 & 1 & 0
\end{bmatrix}.$$
Latin Squares

\[
\begin{array}{cccccc}
6 & 1 & 2 & 3 & 4 & 5 \\
1 & 6 & 3 & 4 & 5 & 2 \\
2 & 4 & 6 & 5 & 1 & 3 \\
3 & 5 & 1 & 2 & 6 & 4 \\
4 & 2 & 5 & 1 & 3 & 6 \\
5 & 3 & 4 & 6 & 2 & 1 \\
\end{array}
\]

We will view this as a design consisting of six permutations

\((123456), (26), (1542)(36), (13)(2465), (14)(35), (164325)\)
Transitive Set of Permutations

What special property does this set of permutations enjoy? It is transitive in the sense that, for every i and j there is a (unique, in fact) permutation in the design that maps i to j.
Every Cayley table for a group achieves this. But some groups act on sets t-transitively for $t > 1$.

A group G acts t-transitively on set Ω if, for any distinct x_1, \ldots, x_t and any distinct $y_1, \ldots y_t$ from Ω, there exists a $g \in G$ mapping each x_i to the corresponding y_i.

In fact, if such g exists for all choices of the x_i and y_i, then the number of such g is independent of the x_i and y_i.
A group G acts \textit{t-homogeneously} on set Ω if, for any distinct x_1, \ldots, x_t and any distinct y_1, \ldots, y_t from Ω, there exists a $g \in G$ mapping the set $\{x_1, \ldots, x_t\}$ to the set $\{y_1, \ldots, y_t\}$.
Transitivity versus Homogeneity

Let’s always assume \(t < (n - 1)/2 \).

- **Obvious:** \(t \)-transitive implies \(t \)-homogeneous
- **Obvious:** \(t \)-transitive implies \((t - 1)\)-transitive
- **Not-so-Obvious:** \(t \)-homogeneous implies \((t - 1)\)-homogeneous
- **Livingstone-Wagner Theorem (1965):** The number of orbits of \(G \) on \((t - 1)\)-sets cannot exceed the number of orbits of \(G \) on \(t \)-sets
- the \(t \)-homogeneous groups which are not \(t \)-transitive were characterized by Kantor (1968, 1972)
There is a natural common generalization of these two ideas. Let $\lambda = (\lambda_1, \ldots, \lambda_k)$ be a partition of n. A group $G \leq S_n$ is λ-transitive if for every two ordered set partitions

$$P = (P_1, \ldots, P_k), \quad Q = (Q_1, \ldots, Q_k)$$

with $|P_i| = |Q_i| = \lambda_i$ for all i, there is a $g \in G$ mapping each P_i setwise to each Q_i.

For hooks, this specializes to t-transitive groups; for $\lambda = (n - t, t)$, these specialize to t-homogeneous groups.
λ-Transitive Sets of Permutations

But our latin square is not a group — it’s a set of permutations which is λ-transitive for λ = (n − 1, 1).
λ-Transitive Sets of Permutations

A partition $P = (P_1, \ldots, P_k)$ of $[n]$ has shape $\lambda = (\lambda_1, \ldots, \lambda_k)$ if $|P_i| = \lambda_i$ for all i. A set $\mathcal{D} \subseteq \mathfrak{S}_n$ is λ-transitive if there exists a constant μ such that, for any set partitions P and Q of shape λ, \mathcal{D} contains exactly μ permutations mapping P_i to Q_i (setwise) for each $1 \leq i \leq k$.
Examples

The alternating group is \((2, 1, \ldots, 1)\)-transitive.

Other than symmetric and alternating groups, \(\lambda\)-transitive subgroups of \(\mathfrak{S}_n\) all have \(\lambda_1 \geq n - 5\).

But \(\lambda\)-transitive sets with \(|\mathcal{D}| \ll n!\) exist for \(n\) sufficiently large (here we fix \(\lambda_2, \ldots, \lambda_k\)). We don’t know much about small \(\mu\).

Question: Do \(\lambda\)-transitive subsets of \(\mathfrak{S}_n\) with \(\mu = 1\) exist for \(n\) sufficiently large?
Young Subgroups and their Cosets

A Young subgroup of \mathfrak{S}_n is a subgroup of the form

$$Y(P) = \{ \sigma \in \mathfrak{S}_n \mid \sigma P_i = P_i \ \forall i \}$$

where $P = (P_1, \ldots, P_k)$ is any partition of $[n]$.

Lemma: A subset $\mathcal{D} \subseteq \mathfrak{S}_n$ is a λ-transitive set of permutations if and only if $|\mathcal{D} \cap \tau Y(P)|$ is constant for all cosets $\tau Y(P)$ of all Young subgroups of shape λ.
Incidence Matrix of Cosets of Young Subgroups

For $\lambda \vdash n$, the incidence matrix W_λ has rows indexed by \mathfrak{S}_n and columns indexed by all cosets of all Young subgroups of shape λ with entries

$$(W_\lambda)_{\tau, C} = \begin{cases} 1 & \tau \in C; \\ 0 & \text{otherwise.} \end{cases}$$
The Eigenspaces of \mathfrak{S}_n (as an association scheme)

Like all (commutative) Bose-Mesner algebras, the Bose-Mesner of the symmetric group is diagonalizable. There is one maximal common eigenspace V_β of the A_α for each partition $\beta \vdash n$; its dimension is f^2_β where f_β is the number of standard Young tableaux of shape β and can be computed, e.g., using the hook length formula.
Now we use dominance order: for partitions λ, μ of n, write $\lambda \trianglelefteq \mu$ if, for all j $\lambda_1 + \cdots + \lambda_j \leq \mu_1 + \cdots + \mu_j$. (Set $\mu_j = 0$ for larger j.)
Dominance Order, \(n = 3, 4, 5 \)
Dominance Order, $n = 6, 7$
Telescoping Sums of Eigenspaces

Using Young’s Rule and Frobenius reciprocity, we can show that

\[V_\mu \subseteq \text{colsp } W_\mu \subseteq \bigoplus_{\lambda \unlhd \mu} V_\lambda \]

This gives us a third basis for the Bose-Mesner algebra of \(\mathcal{S}_n \): for \(\mu \vdash n \), define \(C_\mu = W_\mu W_\mu^\top \). Then

\[C_\mu = \sum_\lambda q_{\mu,\lambda} E_\lambda \]

with \(q_{\mu,\lambda} = 0 \) unless \(\lambda \unlhd \mu \).

It follows that \(D \subseteq \mathcal{S}_n \) with characteristic vector \(x \) of length \(n! \) is \(\lambda \)-transitive set of permutations if and only if

\[x^\top E_\mu = 0 \]

for all \(1^n \neq \mu \unlhd \lambda \).
Mapping Cosets of Young Subgroups to Their Shapes

So we have an order-preserving map

\[\text{sh} : \mathcal{P} \rightarrow \mathcal{E} \]

which captures the “lower triangular” nature of the change-of-basis matrix.

Figure 1. Subset D is a poset \mathcal{T}-design if and only if $f|_{\mathcal{T}} = \lambda \circ \text{eig}$ for some function λ.
In a recent paper (J. Algebra 2016), André, Araújo and Cameron generalized this idea a bit more. They studied \(\lambda \)-homogeneous groups, allowing the \(g \in G \) to permute the various \(P_i \): Let \(\lambda = (\lambda_1, \ldots, \lambda_k) \) be a partition of \(n \). A group \(G \leq S_n \) is \(\lambda \)-homogeneous if for every two unordered set partitions

\[
P = (P_1, \ldots, P_k), \quad Q = (Q_1, \ldots, Q_k)
\]

of shape \(\lambda \), there is a \(g \in G \) such that

\[
(gP_1, \ldots, gP_k) = Q.
\]
λ-Homogeneous Groups

André et al. classify those permutation groups which are λ-homogeneous but not λ-transitive. Setting aside symmetric and alternating groups, and those classified by Kantor, the shapes that arise are

\[(3, 3), (5, 5), (3, 2, 1, \ldots, 1), (2, 2, 1, \ldots, 1)\]

with \(n \in \{9, 11, 12, 23, 24\}\).
Transformation Semigroups

Denote by \mathcal{T}_n the full transformation semigroup consisting of all functions from $[n]$ to itself.

For a function $a : [n] \to [n]$ denote by $\ker(a)$ the partition of $[n]$ into preimages of the elements of the range of a.

Theorem (André et al.): For $a \in \mathcal{T}_n \setminus \mathfrak{S}_n$,

$$\langle a, \mathfrak{S}_n \rangle = \{ b \in \mathcal{T}_n \mid (\exists \tau \in \mathfrak{S}_n)(\tau \ker(a) \subseteq \ker(b)) \}.$$
A Group Can Synchronize a Function

We say $G \leq \mathfrak{S}_n$ synchronizes $a \in \mathcal{T}_n \setminus \mathfrak{S}_n$ if $\langle a, G \rangle$ contains a constant function. (This happens iff $S = \langle a, G \rangle \setminus G$ is generated by its idempotents. Many equivalent statements.)

Theorem (André et al.): Let $a \in \mathcal{T}_n \setminus \mathfrak{S}_n$ and $G \leq \mathfrak{S}_n$,

$$\langle a, G \rangle \setminus G = \langle a, \mathfrak{S}_n \rangle \setminus \mathfrak{S}_n$$

iff

- G is k-homogeneous where a has image of size k, and
- G is λ-homogeneous where $\ker(a)$ has shape λ.

William J. Martin
A Tale of Two Design Theories
Synchronizing Automata

Using these tools, André et al. gave the following characterization of pairs \((a, G)\) for which

\[\langle a, G \rangle \setminus G = \langle a, S_n \rangle \setminus S_n . \]

Let \(r \) be the rank (image size) of \(a \).

Except for \(G = S_n, A_n \) and \(n \in \{5, 6, 9\} \), we have

- \(r = 1 \) and \(G \) is transitive
- \(r > n/2 \), \(G \) is \((n - r)\)-homogeneous and \(\lambda = (n - r + 1, 1, \ldots, 1) \)
- \(r = n - 2 \), \(G \) is 4-transitive and \(\lambda = (2, 2, 1, \ldots, 1) \)
- \(r = n - 3 \), \(G \) is 5-transitive and \(\lambda = (3, 2, 1, \ldots, 1) \)
- \(\lambda = (n - t, \lambda_2, \ldots, \lambda_r) \), \(G \) is \(t \)-homogeneous \((t < n/2)\) and some extra conditions.
Černý Conjecture

We are given generators for a semigroup contained in T_n and ask if the semigroup contains a constant function.

Conjecture (J. Černý, 1964): If a constant function exists, then it is a word of length at most $(n - 1)^2$ in the generators of the semigroup.
The Solution to the Puzzle

Shortest synchronizing word: \(a\ a\ h\ g\ a\ g\ a\)
The End

Thank you.