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An Application of the Fundamental Theorem of Algebra
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The Fundamental Theorem of Algebra is important throughout mathematics. Here are
two equivalent statements of this theorem.

Theorem 1 (Fundamental Theorem of Algebra, Building Block). Every non-constant poly-
nomial with complex coefficients has a complex root.

Theorem 2 (Fundamental Theorem of Algebra, Factorization). A non-zero polynomial of
degree n with complex coefficients has exactly n complex roots, counting multiplicities.

Let C[z] denote the ring of polynomials with complex coefficients. Each element f(z) ∈
C[z] has the form

f(z) = anz
n + an−1z

n−1 + · · ·+ a1z + a0

for some complex numbers a0, a1, . . . , an. Provided an 6= 0, we say f(z) has degree n. We
say f(z) is a monic polynomial if an = 1 (the leading coefficient is equal to one).

The first version of the FTA states that, if f(z) ∈ C[z] has degree n ≥ 1, then there is
some complex number c ∈ C such that

f(c) = anc
n + an−1c

n−1 + · · ·+ a1c+ a0 = 0.

By the Factor Theorem, this tells us that the polynomial z−c divides f(z). So there is some
monic polynomial g(z) such that

f(z) = an(x− c)g(z).

Since C is an integral domain (in fact, it’s a field), we know that g(z) has degree n − 1.
Applying the Principle of Mathematical Induction, we may assume that g(z) has exactly
n− 1 complex roots. So the “building block” version of the FTA gives us the factorization
version of the FTA:

For any polynomial f(z) = anz
n + an−1z

n−1 + · · · + a1z + a0 with complex
coefficients, with n ≥ 0 and an 6= 0, there exist n complex numbers

r1, r2, . . . , rn

not necessarily distinct, such that f(z) factors into irreducibles as

f(z) = an(z − r1)(z − r2) · · · (z − rn).

The Fundamental Theorem of Algebra quickly implies (and it is essentially equivalent to)
the following useful theorem about polynomials with real coefficients. The ring R[x] consists
of all polynomials with real coefficients, that is, all

f(x) = anx
n + an−1x

n−1 + · · ·+ a1x+ a0
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where n ≥ 0 and all ai are real numbers.
Quadratic polynomials f(x) = ax2 + bx + c fall into two classes: those with real roots1

(which happens when b2 − 4ac ≥ 0) and those with no real roots (which happens when
b2 − 4ac < 0). These latter type are called “irreducible quadratics”.

Theorem 3 (Fundamental Theorem of Algebra, Real Coefficients). Every nonzero polyno-
mial with real coefficients factors uniquely into linear polynomials and irreducible quadratics.

Let’s unwrap this and spell out exactly what it tells us.
If f(x) = anx

n + an−1x
n−1 + · · ·+ a1x+ a0 with n ≥ 0 and an 6= 0, then there are unique

(up to ordering) monic polynomials `1(x) = x − r1, `2(x) = x − r2, . . . `s(x) = x − rs, and
q1(x) = x2 + b1x+ c1, q2(x) = x2 + b2x+ c2, . . . qt(x) = x2 + btx+ ct with each b2j − 4cj < 0
(and, comparing degrees, s+ 2t = n) such that

f(x) = an(x− r1)(x− r2) · · · (x− rs)(x2 + b1x+ c1)(x
2 + b2x+ c2) · · · (x2 + btx+ ct).

We then see that this polynomial has exactly s real roots (namely, r1, r2, . . . , rs) and 2t
complex roots that are not real:

−b1
2

+
i

2

√
4c1 − b21,

−b1
2
− i

2

√
4c1 − b21, . . . ,

−bt
2

+
i

2

√
4ct − b2t ,

−bt
2
− i

2

√
4ct − b2t .

To prove this result using the FTA, we observe that complex conjugation (sending z =
a + bi to z̄ = a− bi) is a ring isomorphism (one-to-one and onto) from the field of complex
numbers to itself:

z + w = z̄ + w̄, z · w = z̄ · w̄,

with z̄ = z if and only if z is a real number.
Suppose that f(x) = anx

n+an−1x
n−1+· · ·+a1x+a0 is a polynomial with real coefficients

and suppose that the complex number z is a root of f . Then

0 = f(z) = anz
n + an−1z

n−1 + · · ·+ a1z + a0

and, applying complex conjugation to both sides,

0 = 0̄ = anzn + an−1zn−1 + · · ·+ a1z + a0 = anz̄
n + an−1z̄

n−1 + · · ·+ a1z̄ + a0

showing that z̄ is also a root of f(x). So the non-real roots of f(x) come in conjugate pairs.
It is important to remember that, for any complex number z, both z + z̄ and z · z̄ are

real numbers. (Please check this.) So the polynomial (x− z)(x− z̄) has the form x2 + bx+ c
where b and c are real numbers.

What does this achieve for us? We are assuming that f(x) has real coefficients. We apply
the Fundamental Theorem of Algebra to express f(x) = anx

n + · · ·+ a1x+ a0 as

f(x) = an(x− r1)(x− r2) · · · (x− rn)

1Note that the quadratic f(x) = ax2 + bx + c has a double root (or repeated root) precisely when
b2 − 4ac = 0.
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where r1, . . . , rn are the n complex roots of f . We can re-order these so that the real roots
come first: say r1, . . . , rs are real numbers and all the rest are non-real complex numbers. We
just learned that these come in conjugate pairs. So n− s is even and we can re-order terms
so that rs+2 is the conjugate of rs+1 and rs+4 is the conjugate of rs+3 and so on. But then
each pair of linear factors (x− rs+j−1)(x− rs+j) where j is even expands into an irreducible
quadratic polynomial with real coefficients: since rs+j−1 = r̄s+j, we have

(x− rs+j−1)(x− rs+j) = x2 − (rs+j + r̄s+j)x+ rs+j r̄s+j.

This is the origin of the irreducible quadratic factors in the “real” version of the FTA.

1 Partial Fractions Expansion

The ring of rational functions contains all ratios of two polynomials in x{
f(x)

g(x)

∣∣∣∣ f(x), g(x) ∈ R[x], g(x) not the zero polynomial

}
is a commutative ring with operations

f(x)

g(x)
+
h(x)

k(x)
=
f(x)k(x) + h(x)g(x)

g(x)k(x)
and

f(x)

g(x)
· h(x)

k(x)
=
f(x)h(x)

g(x)k(x)
.

But this happens to be a field! Every non-zero element has an inverse. Let’s check. Suppose
r is a rational function which is not the zero element. Then r takes the form f(x)

g(x)
for some

polynomials f(x) and g(x) and r being non-zero means that f(x) is not the zero polynomial.

So the ratio g(x)
f(x)

is also a rational function and it is easy to check that this is the inverse of
f(x)
g(x)

.
Since 1 is a non-zero polynomial, we see that every polynomial is a rational function:

write f(x) as f(x)
1

. (In fact, the identity element 1 for this field is technically written 1
1
.) By

long division (the Division Algorithm for polynomials), we can express any rational function
f(x)/g(x) in the form q(x) + r(x)/g(x) where the degree of r is less than the degree of g.
For there is a unique quotient q(x) and a unique remainder r(x) such that

• f(x) = g(x)q(x) + r(x)

• either r(x) is the zero polynomial or deg r < deg g

What we are after is a way to reverse the common denominator approach to adding
fractions. We can all easily compute

3

7
+

2

5
=

29

35

but how do we find small integers a and b such that

17

33
=
a

3
+

b

11
?
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Do we even know that such a and b exist? We can multiply both sides by 33 to get

17 = 11a+ 3b.

Since 11 and 3 are relatively prime, we can find integers x and y such that

11x+ 3y = 1.

For example x = −1, y = 4 works. We can then multiply both sides of this equation by 17
to find

17 = 11(−17) + 3(68)

but the expansion
17

33
= −17

3
+

68

11

doesn’t seem like much of a simplification! We’d rather have 17
33

= 1
3

+ 2
11

. [I’ll leave this
mystery to you to resolve.]

We want to do the same thing for polynomials: “undo” the common denominator calcu-
lation. For instance, while we all can compute

3

x+ 5
− 2

x− 5
=

x− 25

x2 − 25

we must solve a system of linear equations to discover that

12

x2 − x− 2
=

4

x− 2
− 4

x+ 1
.

Example: Find real numbers A and B such that

4x+ 1

x2 − 3x− 10
=

A

x+ 2
+

B

x− 5
.

Solution: Multiply both sides by x2 − 3x− 10 = (x+ 2)(x− 5) to find

4x+ 1 = (A+B)x+ (2B − 5A).

In order for these polynomials to be equal, all corresponding coefficients must be equal. So
we obtain the linear system

A+B = 4, 2B − 5A = 1

which we quickly solve to find A = 1, B = 3. �

The fact that this can always be achieved follows from the following lemmas. Comparing
to our handling of mixed numbers, the first lemma is analogous to saying that, if m and n
are integers with 0 ≤ n < 7 which satisfy

5
2

7
= m+

n

7
,

then m = 5 and n = 2.
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Lemma 1. If f1, g1, h1, f2, g2, h2 are all polynomials with deg g1 < deg h1 and deg g2 < deg h2
and the equation

f1(x) +
g1(x)

h1(x)
= f2(x) +

g2(x)

h2(x)

holds, then f1(x) = f2(x) and h2(x)g1(x) = h1(x)g2(x).

Proof: Omitted. �

Lemma 2. If f(x) and g(x) are polynomials with greatest common divisor d(x), then there
exist polynomials s(x) and t(x) satisfying the equation

f(x) · s(x) + g(x) · t(x) = d(x).

In particular, polynomials f and g have no common factor (i.e., the two polynomials are
relatively prime) if and only if there exist polynomials s(x) and t(x) satisfying the equation
f(x) · s(x) + g(x) · t(x) = 1.

Proof: This follows from the Extended Euclidean Algorithm much in the same way as the
analogous theorem for integers. �

Lemma 3. Suppose we are given a rational function f(x)/g(x) where deg f < deg g. If g(x)
factors as g(x) = p(x) · q(x) where polynomials p(x) and q(x) are relatively prime, then there
exist polynomials s(x) and t(x) such that

• f(x)

g(x)
=
s(x)

p(x)
+
t(x)

q(x)

• deg s < deg p and deg t < deg q.

Proof: Since p(x) and q(x) have gcd equal to 1, there are polynomials S(x) and T (x) such
that S(x)q(x) + T (x)p(x) = 1. Multiplying both sides by the rational function f(x)/g(x),
we get

S(x)f(x)

p(x)
+
T (x)f(x)

q(x)
=
f(x)

g(x)
(1)

since g(x) = p(x) · q(x). Now it may be that one of the two rational functions on the left has
a numerator with higher degree than its denominator. If degS + deg f ≥ deg p, then write

S(x)f(x) = p(x)u(x) + r(x)

where deg r < deg p; otherwise, take u(x) = 0 and r(x) = S(x)f(x). Likewise, write

T (x)f(x) = q(x)w(x) + v(x)

for some unique quotient w(x) (possibly zero) and some remainder v(x) with deg v < deg q.
Then Equation (1) can be written

u(x) +
r(x)

p(x)
+ w(x) +

v(x)

q(x)
=
f(x)

g(x)
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and by Lemma 1, we have u(x)+w(x) is the zero polynomial since deg f < deg g. Eliminating
these two terms gives us the desired decomposition. �

(You might now wish to go back to the equation 17
33

= −17
3

+ 68
11

and see how this idea
allows us to simplify it to 17

33
= 1

3
+ 2

11
.

Lemma 4. Consider rational functions where the denominator is expressible as some irre-
ducible polynomial in R[x] to some power.

(a) If deg f(x) < k and c ∈ R, then there exist unique real numbers ak, ak−1, . . . , a1 such
that

f(x)

(x− c)k
=

ak
(x− c)k

+
ak−1

(x− c)k−1
+ · · ·+ a2

(x− c)2
+

ak
x− c

.

(b) If deg f(x) < 2k and b, c ∈ R with b2 − 4c < 0, then there exist unique real numbers
Ak, Ak−1, . . . , A1 and Bk, Bk−1, . . . , B1 such that

f(x)

(x2 + bx+ c)k
=

Akx+Bk

(x2 + bx+ c)k
+

Ak−1x+Bk−1

(x2 + bx+ c)k−1
+ · · ·+ A1x+B1

x2 + bx+ c
.

Proof: Repeatedly apply the Division Algorithm (long division) for polynomials: in case (a),

f(x) = (x− c)fk(x) + ak

so that
f(x)

(x− c)k
=

ak
(x− c)k

+
fk(x)

(x− c)k−1

and write fk(x) = (x− c)fk−1(x) + ak−1 so that fk(x)
(x−c)k−1 = ak−1

(x−c)k−1 + fk−1(x)

(x−c)k−2 and so on. �

Theorem 4. Let f(x)/g(x) be any rational function which is a quotient of polynomials with
real coefficients. Factor g(x) as

g(x) = bn(x− r1)k1(x− r2)k2 · · · (x− rs)ks(x2 + b1x+ c1)
`1(x2 + b2x+ c2)

`2 · · · (x2 + btx+ ct)
`t .

Then there exists a unique polynomial H(x) and unique real numbers

Ak1,1, Ak1−1,1, . . . , A1,1, Ak2,2, . . . , A1,2, . . . , Aks,s, . . . , A1,s,

B`1,1, B`1−1,1, . . . , B1,1, B`2,2, . . . , B1,2, . . . , B`t,t, . . . , B1,t,

C`1,1, C`1−1,1, . . . , C1,1, C`2,2, . . . , C1,2, . . . , C`t,t, . . . , C1,t,

such that

f(x)

g(x)
= H(x) +

Ak1,1
(x− r1)k1

+
Ak1−1,1

(x− r1)k1−1
+ · · ·+ A1,1

x− r1
+

Ak2,2
(x− r2)k2

+ · · ·+ A1,2

x− r2
+ · · ·

+
Aks,s

(x− rs)ks
+ · · ·+ A1,s

x− rs
+

B`1,1x+ C`1,1
(x2 + b1x+ c1)`1

+
B`1−1,1x+ C`1−1,1

(x2 + b1x+ c1)`1−1
+ · · ·+ B1,1x+ C1,1

x2 + b1x+ c1

+
B`2,2x+ C`2,2

(x2 + b2x+ c2)`2
+ · · ·+ B1,2x+ C1,2

x2 + b2x+ c2
+ · · ·+ B`t,tx+ C`t,t

(x2 + btx+ ct)`t
+ · · ·+ B1,tx+ C1,t

(x2 + btx+ ct
.
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Proof: This horrendous expression is obtained by applying the previous lemmas. First, if the
degree of f(x) is larger or equal to the degree of g(x), then we apply the Division Algorithm
to get the quotient H(x) and a remainder of degree less than deg g. So, for the remainder
of this proof, we assume the numerator has smaller degree than the denominator.

Whenever g(x) factors, we can either break it up into relatively prime polynomials and
apply Lemma 3 to write the fraction f(x)/g(x) as a sum of two fractions (rational functions)
whose denominators have smaller degrees OR we have only repeated factors: g(x) = p(x)k

for some polynomial p(x) and some integer k ≥ 1. We only get stuck here when p(x) is
irreducible in the ring R[x]. By the FTA, we know that p(x) is either a linear polynomial
x− r or an irreducible quadratic polynomial x2 + bx + c with b2 − 4c < 0. In this case, we
apply Lemma 4 to decompose f(x)/(p(x))k into a sum of terms A/(x− r)j (if p(x) = x− r)
or (Bx+C)/(x2+bx+c)j (if p(x) is quadratic. This eventually produces the partial fractions
expansion promised by the theorem. �

Of course, the general expression is horrendous, so we should see examples to understand
all the notation.

Suppose f(x) = x6 − 3x4 + 8x3 + x and g(x) = x(x− 5)3(x2 + x+ 1)2. Then there exist
unique real numbers

A1,1, A3,2, A2,2, A1,2, B2,1, C2,1, B1,1, C1,1

such that

x6 − 3x4 + 8x3 + x

x(x− 5)3(x2 + x+ 1)2
=
A1,1

x
+

A3,2

(x− 5)3
+

A2,2

(x− 5)2
+

A1,2

x− 5
+
B2,1x+ C2,1

(x2 + x+ 1)2
+
B1,1x+ C1,1

x2 + x+ 1
.

In order to find these numbers, we multiply through both sides by g(x) to remove all de-
nominators and then collect like terms. Matching coefficients of the polynomial on the left
to coefficients of the polynomial on the right, term by term, we obtain a system of linear
equations which we then solve for the Ai,j, Bi,j and Ci,j.

The ten exercises for Homework 5 are on the next page.

7



Exercises

1. RSA encryption is based on algebra in the ring Zn where n = pq is a product of two
large distinct primes p and q. Security is compromised if p and/or q is leaked. So
our hope for security rests on the assumption that factoring the integer n is very hard.
The proof that decryption works depends on the integer φ(n) where φ is Euler’s totient
function.
(a) Show how to compute φ(n) using n, p and q.
(b) Using the quadratic formula, show how to compute p and q if given n and φ(n).

2. Factor f(x) = x4 + 81 into irreducibles over R.

3. If z is the complex number given by z = Reiθ where R > 0 and θ are real numbers,
what is the equivalent expression for the complex number zn where n is a positive
integer? What about

√
z?

4. Write 1
x−2
− 3

x−3
+ 2

x−4
as a rational function f(x)/g(x).

5. Compute the partial fractions expansion of the rational function (x2−7)/(x2−7x+10)
and note that, in this case the polynomial H(x) is not zero.

6. Compute the partial fractions expansion of the rational function (x2 + 2x)/(x3 − 1).

7. Compute the partial fractions expansion of (x4 − x+ 1)/[x2(x2 + 1)2]. Be careful!

8. Derive the quadratic formula by solving each of the following quadratic equations for
x.

(a) ax2 = n

(b) x2 + 2kx+ k2 = n

(c) a(x+ k)2 = n

(d) (x+ b
2a

)2 = b2−4ac
4a2

9. Write down the first five rows of Pascal’s Triangle and, beside this, write down the
expansion of the polynomials (x+ y)1, (x+ y)2, (x+ y)3 and (x+ y)4.

10. Let f(x) = xn and let a be a real number. Show that

f(x+ a)− f(a) = x ·
[
nxn−1 +

(
n

2

)
xn−2 + · · ·+

(
n

n− 1

)]
.

You may use the Binomial Theorem in your derivation without proving it.
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