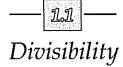
"Elementary Number Theory" by James Strayer PWS Publica 1994

Divisibility and Factorization

lementary number theory is the study of the divisibility properties of the integers. Inasmuch as these divisibility properties form the basis for the study of more advanced topics in number theory, they can be thought of as forming the foundation for the entire area of number theory. It is both beautiful and appropriate that such a pure area of mathematics is derived from such a simple source. In addition, the main topics of this chapter are quite old, dating back to the Alexandrian Greek period of mathematics, which began approximately 300 B.C. In fact, most of the ideas discussed here appear in Euclid's Elements.

In this chapter, we develop the concept of divisibility and the related concept of factorization, which culminate in an extremely important property of the integers appropriately named the Fundamental Theorem of Arithmetic. In addition, we will encounter and highlight certain proof strategies that are used again and again in elementary number theory. These strategies form some of the important "tools of the trade" of the number theorist.



The fundamental relation connecting one integer to another is the notion of divisibility. In terms of long division, the divisibility relation means "divides evenly with zero remainder." Hence, the integer 3 divides the integer 6 since 3 divides evenly into 6 (two times) with zero remainder. Similarly, the integer 3 does not divide the integer 5, since 3 does not divide evenly into 5; 3 divides into 5 with a quotient of 1 and a remainder of 2. We now make the divisibility relation more mathematically precise.

Biography

Euclid of Alexandria (365?-275? B.C.)

Little is known of Euclid's life. The exact dates of his birth and death (as well as his birthplace and nationality) are unknown. Euclid is remembered mainly for his monumental work, entitled Elements, which was essentially a compilation of the mathematics of the classical Greek period that preceded him. This massive work comprised 13 books and contained 465 propositions. Elements emphasized the discipline of mathematics as a deductive science based on explicit axioms and, as such, has influenced the course of mathematics as has no other work. While much of Elements was devoted to geometry, Books VII–IX as well as portions of Book X were devoted to the theory of numbers. It is Euclid's proof of the infinitude of the prime numbers that is still used today. In addition, Euclid studied the division algorithm (culminating in the so-called Euclidean algorithm for the computation of greatest common divisors), perfect numbers, and Pythagorean triples. (All of the number-theoretic topics above will be discussed in this book.)

Definition 1: Let $a, b \in \mathbb{Z}$. Then a divides b, denoted $a \mid b$, if there exists $c \in \mathbb{Z}$ such that b = ac. If $a \mid b$, then a is said to be a divisor or factor of b. The notation $a \nmid b$ means that a does not divide b.

Example 1:

- (a) $3 \mid 6$ since there exists $c \in \mathbb{Z}$ such that 6 = 3c. Here, c = 2. Hence 3 is a divisor of 6.
- (b) $3 \nmid 5$ since there does not exist $c \in \mathbb{Z}$ such that 5 = 3c. Note that c would have to be $\frac{5}{3}$ here and $\frac{5}{3} \notin \mathbb{Z}$. Hence 3 is not a divisor of 5.

- (c) $3 \mid -6$ since there exists $c \in \mathbb{Z}$ such that -6 = 3c. Here, c = -2. Hence 3 is a divisor of -6. In fact, it is easily seen that $\pm 3 \mid \pm 6$.
- (d) If $a \in \mathbb{Z}$, then $a \mid 0$ since there exists $c \in \mathbb{Z}$ such that 0 = ac. Here, c = 0. In other words, any integer divides 0.
- (e) If $a \in \mathbb{Z}$ and $0 \mid a$, then there exists $c \in \mathbb{Z}$ such that a = 0c if and only if a = 0. In other words, the only integer having zero as a divisor is zero.

We now make two remarks concerning the notation $a \mid b$. First of all, $a \mid b$ does not have the same meaning as either of the notations a/b and b/a. Note that $a \mid b$ is a statement about the relationship between two integers: It says that a divides into b evenly with no remainder. The notations a/b and b/a are interpreted, respectively, as a + b and b + a and, as such, are rational numbers. In other words, $a \mid b$ is a statement about numbers while a/b and b/a are numbers. Note, however, that $a \mid b$ does imply that a divides b exactly b/a times provided that $a \neq 0$.

The restriction that a not be zero in the implication above brings us to our second remark. You may feel uncomfortable about allowing zero as a divisor in (e) of Example 1 above. The phrase "division by zero is undefined" has probably been ingrained in your mind through constant repetition by many of your mathematics teachers. We say that $0 \mid 0$ here only because it is consistent with our definition of divisibility; it should not be interpreted as implying that 0 divides 0 exactly 0/0 times. The form 0/0 is said to be indeterminate: It has no meaning. The difference between the notation $0 \mid 0$ and 0/0 is hence clear—the former notation has meaning (albeit minimal and only as a consequence of our definition), and the latter notation does not have meaning. We urge the reader to pause and carefully consider the remarks above before continuing.

The divisibility relation enjoys the following two properties, which are recorded as propositions.

Proposition 1.1: Let $a, b, c \in \mathbb{Z}$. If $a \mid b$ and $b \mid c$, then $a \mid c$.

Proof: Since $a \mid b$ and $b \mid c$, there exist $e, f \in \mathbb{Z}$ such that b = ae and c = bf.

$$c = bf = (ae)f = a(ef)$$

and $a \mid c$.

Before continuing, note that we have just proven that the divisibility relation is transitive. If the word *transitive* is unfamiliar to you, see Appendix B [in particular, Example 3(b)] for a further discussion of relations and their properties.

Proposition 1.2: Let $a, b, c, m, n \in \mathbb{Z}$. If $c \mid a$ and $c \mid b$, then $c \mid ma + nb$

Proof: Since $c \mid a$ and $c \mid b$, there exist $e, f \in \mathbb{Z}$ such that a = ce and b = ce. Then

$$ma + nb = mce + ncf = c(me + nf)$$

and $c \mid ma + nb$.

A special case of Proposition 1.2 is important enough to be highlighted separately. We first give a special name to the expression ma + nb.

Definition 2: The expression ma + nb in Proposition 1.2 is said to be an integral linear combination of a and b.

Proposition 1.2 says that an integer dividing each of two integers also divides any integral linear combination of those integers. This fact is extremely valuable in establishing theoretical results. Consider the special case where m = n = 1. We obtain the fact that, if an integer divides each of two integers, then it divides the sum of the integers. The case where m = 1 and n = -1 similarly yields the fact that, if an integer divides each of two integers, then it divides the difference of the two integers. We will use these facts repeatedly in this book, and you will find them particularly useful in several theoretical exercises.

We now introduce a function with the set of real numbers \mathbf{R} as its domain and the set of integers \mathbf{Z} as its range. This function will be used shortly to prove the major result on divisibility; it will also be useful in Chapters 4 and 7.

Definition 3: Let $x \in \mathbb{R}$. The greatest integer function of x, denoted [x], is the greatest integer less than or equal to x.

The existence of a greatest integer less than or equal to a given real number follows from the well-ordering property of the integers discussed in the Introduction.

Example 2:

- (a) If $a \in \mathbb{Z}$, then [a] = a since the greatest integer less than or equal to any integer is the integer itself. It is easily seen that the converse of this statement is also true, namely that, if [a] = a for some $a \in \mathbb{R}$, then $a \in \mathbb{Z}$.
- (b) Since the greatest integer less than or equal to $\frac{5}{3}$ is 1, we have $\left[\frac{5}{3}\right] = 1$.
- (c) Since the greatest integer less than or equal to π is 3, we have $[\pi] = 3$.
- (d) Since the greatest integer less than or equal to $-\frac{5}{3}$ is -2, we have $\left[-\frac{5}{3}\right] = -2$.
- (e) Since the greatest integer less than or equal to $-\pi$ is -4, we have $[-\pi] = -4$.

The following lemma is basically an immediate consequence of the definition of the greatest integer function, but a short proof is nonetheless provided for your inspection.

Lemma 1.3: Let $x \in \mathbb{R}$. Then $x - 1 < [x] \le x$.

Proof: Since the greatest integer function of x is less than or equal to x, the second inequality is clear. For the first inequality, assume, by way of contradiction, that $x - 1 \ge [x]$. Then $[x] + 1 \le x$ and

$$[x] < [x] + 1 \le x$$

 $\begin{array}{c}
1 \leftarrow \text{Quotient} \\
\text{Divisor} \rightarrow 3 \mid 5 \leftarrow \text{Dividend} \\
-\frac{3}{2} \leftarrow \text{Remainder}
\end{array}$

---- Figure 1.1 ----

Since [x] + 1 is an integer, this contradicts the fact that [x] is the greatest integer less than or equal to x. Hence x - 1 < [x].

When one integer (the divisor) is divided into another integer (the dividend) to obtain an integer quotient, an integer remainder is obtained. For example, the long division for 3 divided into 5 (shown in Figure 1.1) can be expressed more compactly via the equation

$$5 = 3 \cdot 1 + 2$$

or by the phrase "the dividend is equal to the divisor times the quotient plus the remainder." Note that the remainder is strictly less than the divisor. If the divisor in such a long division of integers is positive, the fact above is true in general as the following theorem illustrates.

Theorem 1.4: (The Division Algorithm) Let $a, b \in \mathbb{Z}$ with b > 0. Then there exist unique $q, r \in \mathbb{Z}$ such that

$$a = bq + r$$
, $0 \le r < b$

(Note that q stands for quotient and r stands for remainder.)

Proof: Let $q = \begin{bmatrix} a \\ b \end{bmatrix}$ and $r = a - b \begin{bmatrix} a \\ b \end{bmatrix}$. Then a = bq + r is easily checked It remains to show that $0 \le r < b$. By Lemma 1.3, we have that

$$\frac{a}{b} - 1 < \left[\frac{a}{b}\right] \le \frac{a}{b}$$

Multiplying all terms of this inequality by -b, we obtain

$$b - a > -b \left[\frac{a}{b} \right] \ge -a$$

Reversing the inequality and adding a to all terms gives

$$0 \le a - b \left[\frac{a}{b} \right] < b$$

which is precisely $0 \le r < b$ as desired; so, q and r as defined above have the desired properties. It remains to show the uniqueness of q and r. Assume that

$$a = bq_1 + r_1, \qquad 0 \le r_1 < b$$

anc

$$a = bq_2 + r_2, \qquad 0 \le r_2 < b$$

We must show that $q_1 = q_2$ and $r_1 = r_2$. We have

$$0 = a - a = bq_1 + r_1 - (bq_2 + r_2) = b(q_1 - q_2) + (r_1 - r_2)$$

which implies that

$$r_2 - r_1 = b(q_1 - q_2) (1)$$

along with $b \mid r_2 - r_1$, we have $r_2 - r_1 = 0$ or $r_1 = r_2$. Now (1) becomes Hence, $b \mid r_2 - r_1$. Now $0 \le r_1 < b$ and $0 \le r_2 < b$ imply $-b < r_2 - r_1 < b$;

$$0=b(q_1-q_2)$$

Since $b \neq 0$, we have that $q_1 - q_2 = 0$ or $q_1 = q_2$ as desired

necessary and sufficient condition in Theorem 1.4 for the remainder in a division of integers to be zero is that the divisor evenly divide the dividend Note that r = 0 in the division algorithm if and only if $b \mid a$. Equivalently, a

obtained by using the equations defining q and r in the first statement of the compute q and r on a standard calculator.) We illustrate with an example. proof of the algorithm. (In fact, one would use precisely these equations to Given $a, b \in \mathbb{Z}$ with b > 0, the q and r of the division algorithm may be

Example 3:

By the proof of Theorem 1.4, we have Find q and r as in the division algorithm if a = -5 and b 11

$$q = \left[\frac{a}{b}\right] = \left[\frac{-5}{3}\right] = -2$$

and

$$= a - b \left[\frac{a}{b} \right] = -5 - 3(-2) = 1$$

Please check for yourself that a = bq + r and $0 \le r < b$

since $-\frac{5}{3} = -1 - \frac{2}{3}$. Although q = -1 and r = -2 satisfy a = bq + r, the negative divisors are investigated in Exercise 15. desired conditions hold. More generalized versions of Theorem 1.4 that allow condition that $0 \le r < b$ in Theorem 1.4 is no longer true. Hence, division in Example 3 above), many students will respond "-1 with a remainder of -2" the context of the division algorithm must be performed carefully so that both A remark is in order here. When asked, "What is -5 divided by 3?" (as in

which you are probably already familiar. We conclude this section with a definition and an example of concepts with

be odd if $2 \nmid n$. **Definition 4:** Let $n \in \mathbb{Z}$. Then n is said to be even if $2 \mid n$ and n is said to

Example 4.

The set of even integers is given by $\{..., -6, -4, -2, 0, 2, 4, 6, ...\}$; the set of odd integers is given by $\{..., -7, -5, -3, -1, 1, 3, 5, 7, ...\}$.

useful throughout this book; solving this exercise is greatly encouraged. Exercise 11 establishes important facts about even and odd integers that will be

Exercise Set 1.1

- Prove or disprove each statement below.

- (a) 6 | 42 (b) 4 | 50 (c) 16 | 0 (d) 0 | 15 (e) 14 | 997157 (f) 17 | 998189 2. Find integers a, b, and c such that a | bc but a \(\dagger b \) and a \(\dagger c. \)
- Find the unique integers q and r guaranteed by the division algorithm (Theorem 1.4) with each dividend and divisor below.
- (a) a = 47, b = 6(b) a = 281, b = 13
- (c) a = 343, b = 49(d) a = -105, b = 10
- (e) a = -469, b = 31
- (f) a = -500, b = 28
- (5) Prove or disprove the following statements. **4.** If $a, b \in \mathbb{Z}$, find a necessary and sufficient condition that $a \mid b$ and $b \mid a$.
- (a) If a, b, c, and d are integers such that $a \mid b$ and $c \mid d$, then $a+c\mid b+d$.
- (b) If a, b, c, and d are integers such that $a \mid b$ and $c \mid d$, then $ac \mid bd$. (c) If a, b, and c are integers such that $a \nmid b$ and $b \nmid c$, then $a \nmid c$.
- (6) (a) Let $a, b, c \in \mathbb{Z}$ with $c \neq 0$. Prove that $a \mid b$ if and only if $ac \mid bc$.
- (b) Provide a counterexample to show why the statement of part (a) does not hold if c = 0.
- f(a) Let $a, b \in \mathbb{Z}$ with $a \mid b$. Prove that $a^n \mid b^n$ for every positive integer n.
- (8) Let $n \in \mathbb{Z}$ with n > 0. Prove that $n \mid (n+1)^n 1$.
- a positive integer and use the factorization $a^{md} 1 = (a^m 1) \times (a^{m(d-1)} + a^{m(d-2)} + \cdots + a^m + 1).]$ 10. (a) Let $n \in \mathbb{Z}$. Prove that $3 \mid n^3 n$.

 (b) Let $n \in \mathbb{Z}$. Prove that $5 \mid n^5 n$. 9. Let a, m and n be positive integers with a > 1. Prove that $a^m - 1 \mid a^n - 1$ if and only if $m \mid n$. [Hint: For the "if" direction, write n = md with d
- (c) Let $n \in \mathbb{Z}$. Is it true that $4 \mid n^4 n$? Provide a counterexample. proof or
- (11) (a) Let $n \in \mathbb{Z}$. Prove that n is an even integer if and only if n = 2m with
- (b) Let $n \in \mathbb{Z}$. Prove that n is an odd integer if and only if n = 2m + 1
- (c) Prove that the sum and product of two even integers are even.(d) Prove that the sum of two odd integers is even and that their product is

10

(e) Prove that the sum of an even integer and an odd integer is odd and that their product is even.

12. Prove that the square of any odd integer is expressible in the form 8n + 1

Prove that the fourth power of any odd integer is expressible in the form 16n + 1 with $n \in \mathbb{Z}$.

(a) Let x be a positive real number and let d be a positive integer. Prove divisible by d is $\left[\frac{x}{d}\right]$. that the number of positive integers less than or equal to x that are

3 Find the number of positive integers not exceeding 500 that are divisible by 3.

3 Find the number of positive integers between 200 and 500 that are divisible by 3.

they are more general than Theorem 1.4.] algorithm (Theorem 1.4). Both versions allow negative divisors; as such [The following exercise presents two alternate versions of the division

(a) Let a and b be nonzero integers. Prove that there exist unique $q, r \in \mathbf{Z}$

$$a = bq + r, \qquad 0 \le r < |b|$$

(b) Find the unique q and r guaranteed by the division algorithm of part (a) above with a = 47 and b = -6

0 Let a and b be nonzero integers. Prove that there exist unique $q, r \in \mathbb{Z}$

$$a = bq + r, \qquad -\frac{|b|}{2} < r \le \frac{|b|}{2}$$

This algorithm is called the absolute least remainder algorithm

(d) Find the unique q and r guaranteed by the division algorithm of part (c) above with a = 47 and b = -6.

Prime Numbers

the integer itself. Those positive integers having no other positive divisors (and so exactly two positive divisors) are of crucial importance in number theory and are introduced now. Every integer greater than one has at least two positive divisors, namely, 1 and

Definition 5: Let $p \in \mathbb{Z}$ with p > 1. Then p is said to be prime if the only positive divisors of p are 1 and p. If $n \in \mathbb{Z}$, n > 1, and n is not prime, then n is said to be composite.

The reason for disallowing 1 as a prime number is investigated in Exercise 66 Note that the positive integer 1 is neither prime nor composite by definition.

Example 5:

except the integer 2 are odd and hence the integer 2 is the only even prime The prime numbers between 2 and 50 inclusive are 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, and 47. Exercise 22 shows that all prime numbers

question arises. Are there finitely many or infinitely many prime numbers? ultimately provide the answer to this question. We first prove a preliminary Before reading further, formulate your own conjecture; Theorem 1.6 will Having introduced the concept of a prime number, a most fundamental

Lemma 1.5: Every integer greater than 1 has a prime divisor

n is the least such integer. Now $n \mid n$; since n has no prime divisor, n is not say n, has no prime divisor. By the well-ordering property, we may assume that than 1 has a prime divisor. prime divisor, say p, so that $p \mid a$. But $a \mid n$ so we have that $p \mid n$ by Proposition n = ab, 1 < a < n, and 1 < b < n. Since 1 < a < n, we have that a has a prime. So n is composite and consequently there exist $a, b \in \mathbb{Z}$ such that 1.1 from which n has a prime divisor, a contradiction. So every integer greater Proof: Assume, by way of contradiction, that some integer greater than 1,

We may now answer our motivating question posed prior to Lemma 1.5. This result appears as Proposition 20 in Book IX of Euclid's *Elements*; study the proof carefully because it is a vivid illustration of great mathematical

Theorem 1.6: (Euclid) There are infinitely many prime numbers

i = 1, 2, ..., n. Then $p \mid N - p_1 p_2 \cdots p_n$ (by Proposition 1.2), which implies Now N has a prime divisor, say p, by Lemma 1.5. So $p = p_i$ for some i, prime numbers, say p_1, p_2, \dots, p_n . Consider the number $N = p_1 p_2 \cdots p_n + 1$. that $p \mid 1$, a contradiction. Hence, there are infinitely many prime numbers. Proof: Assume, by way of contradiction, that there are only finitely many

contradiction. You will find similar constructions useful throughout this book. it is precisely consideration of this number that eventually results in the desired The point of ingenuity in the proof above is the construction of the number N;

finding these numbers? The following proposition is useful in this regard. Given that there are infinitely many prime numbers, how can we go about

Proposition 1.7: Let n be a composite number. Then n has a prime divisor p with $p \leq \sqrt{n}$.

 $a \leq \sqrt{n}$. (If $a > \sqrt{n}$, we have = ab, 1 < a < n, 1 < b < n, and, without loss of generality, $a \le b$. Now **Proof:** Since n is a composite number, there exist $a, b \in \mathbb{Z}$ such that

$$n = ab > \sqrt{n}\sqrt{n} = n$$

which is impossible.) By Lemma 1.5, we have that a has a prime divisor, say p, so that $p \mid a$. But $a \mid n$, so we have that $p \mid n$ by Proposition 1.1. Furthermore, $p \le a \le \sqrt{n}$; p is the desired prime divisor of n.

Proposition 1.7 yields a method for finding all prime numbers less than or equal to a specified integer n > 1 by producing a criterion satisfied by all composite numbers. If an integer greater than one fails to satisfy this criterion, then the integer cannot be composite and so is prime. This method is called the sieve of Eratosthenes and is one of several "sieve methods." We illustrate the sieve of Eratosthenes with an example.

Example 6:

Suppose that we wish to find all prime numbers less than or equal to 50. By Proposition 1.7, any composite number less than or equal to 50 must have a prime divisor less than or equal to $\sqrt{50} \approx 7.07$. The prime numbers less than or equal to 7.07 are 2, 3, 5, and 7. Hence, from a list of the integers from 2 to 50, we delete all multiples of 2, all multiples of 3, all multiples of 5, and all multiples of 7 (not including 2, 3, 5, and 7 themselves). Note that all such multiples are clearly composite.

Any number remaining in the list is not divisible by 2, 3, 5, or 7 and, by Proposition 1.7, cannot be composite. So the numbers remaining in the list above are prime (compare these numbers with those in Example 5); the composite numbers have been "sieved out" of the list.

In addition to finding prime numbers, Proposition 1.7 can be used to determine an algorithm for testing whether a given positive integer n > 1 is prime or composite. One checks whether n is divisible by any prime number p with $p \le \sqrt{n}$. If it is divisible, then n is composite; if not, then n is prime. Such an algorithm is an example of a primality test. Note that this particular primality test is highly inefficient since it requires testing a given integer for divisibility by all prime numbers less than or equal to the square root of the integer. More useful primality testing algorithms exist—unfortunately, they require more number theory than we have developed at the present time. Two such primality tests are discussed in Section 8.3. The largest prime number known at this writing was discovered in 1992: $2^{756839} - 1$. We will return to this prime number later. In addition, the primality or compositeness of any given integer between 101 and 9999 inclusive may be deduced using the grid inside the cover of this book; instructions for using this grid may be found in Table 1 of Appendix E.

Biography

Eratosthenes of Cyrene (276-194 B.C.)

Eratosthenes, a contemporary of Archimedes, is perhaps best remembered as the chief librarian at the University of Alexandria in ancient Egypt. Born in Cyrene on the southern coast of the Mediterranean Sea, he was gifted not only as a mathematician, but also as a philosopher, astronomer, poet, historian, and athlete. There is much speculation as to his nickname of "Beta." One theory offers that the nickname originated from the fact that he stood at least second in each of the branches of knowledge of his day. In 240 B.C., Eratosthenes made what was perhaps his most significant scientific contribution when he measured the circumference of the earth using a simple application of Euclidean geometry. His primary contribution to number theory is his famous sieve for finding prime numbers as discussed in the text.

How are prime numbers distributed among the positive integers? A solution of Exercise 17 suggests that the prime numbers are distributed more sparsely as you progress through larger and larger positive integers. The proposition below shows more precisely that there exist arbitrarily long sequences of consecutive positive integers containing no prime numbers. Equivalently, there exist arbitrarily large gaps between prime numbers.

Proposition 1.8: For any positive integer n, there are at least n consecutive composite positive integers.

Proof: Given the positive integer n, consider the n consecutive positive integers

$$(n+1)! + 2, (n+1)! + 3, ..., (n+1)! + n + 1$$

Let i be a positive integer such that $2 \le i \le n+1$. Since $i \mid (n+1)!$ and $i \mid i$, we have

$$i \mid (n+1)! + i, \quad 2 \le i \le n+1$$

by Proposition 1.2. So each of the n consecutive positive integers above is composite.

Example 7:

By the proof of Proposition 1.8 above, a sequence of eight consecutive composite positive integers is given by 9! + 2, 9! + 3,..., 9! + 9 or,

of eight consecutive composite positive integers is given by the sequence equivalently, 362882, 362883,..., 362889. Note that there is no guarantee that the sequence of integers produced by the proof of Proposition 1.8 will 114, 115, 116, 117, 118, 119, 120, and 121. be the least such occurrence of integers. For example, the least occurrence

are 2 and 3. How many pairs of prime numbers differ by two as in 3 and 5, 5 and 7, 11 and 13, and so on? Such pairs of prime numbers are said to be twin primes. Unfortunately, the answer to this question is unknown. The operative conjecture asserts the existence of infinitely many twin primes, as stated below Since 2 is the only even prime number, the only consecutive prime numbers

numbers p for which p + 2 is also a prime number. Conjecture 1: (Twin Prime Conjecture) There are infinitely many prime

1990 by B. Parady, J. Smith, and S. Zarantonello. The largest known pair of twin primes is $1706595 \cdot 2^{11235} \pm 1$, discovered in

x gets large. We first define a function that counts prime numbers. proofs were produced by J. Hadamard and C. J. de la Vallée Poussin. The Carl Friedrich Gauss but resisted proof until 1896 when two independent called the Prime Number Theorem. This theorem was conjectured in 1793 by less than or equal to a given positive real number x. The estimate improves as Prime Number Theorem gives an estimate of the number of prime numbers The most famous result concerning the distribution of prime numbers is

Definition 6: Let $x \in \mathbb{R}$ with x > 0. Then $\pi(x)$ is the function defined by

$$\pi(x) = |\{p: p \text{ prime}; 1$$

number of prime numbers less than or equal to x. the cardinality of the set. So, if x is a positive real number, then $\pi(x)$ is the In this book, vertical bars enclosing a set (as in Definition 6 above) will denote

Example 8:

equal to 50 is 15. So $\pi(50) = 15$. From Example 5, we have that the number of prime numbers less than or

We may now state the Prime Number Theorem.

Theorem 1.9: (Prime Number Theorem)
$$\lim_{x\to\infty} \frac{\pi(x) \ln x}{x} = 1$$
.

to 1. This is equivalent to saying that the quantity $\pi(x)$ may be approximated by $\frac{x}{\ln x}$. In other words, $\frac{x}{\ln x}$ is an estimate for $\pi(x)$ for large x. Table 1.1 gives a The Prime Number Theorem says that, for large x, the quantity $\frac{\pi(x)\ln x}{x}$ is close

Table 1.1 -

> +	$\pi(x)$	$\frac{x}{\ln x}$	$\frac{\pi(x)\ln x}{x}$
10^{3}	168	144.8	1.161
104	1229	1085.7	1.132
10 ⁵	9592	8685.9	1.104
10^{6}	78498	72382.4	1.084
10^{7}	664579	620420.7	1.071
10^8	5761455	5428681.0	1.061

ratio $\frac{\pi(x)\ln x}{x}$ gets closer and closer to 1 as $x \to \infty$. comparison of $\pi(x)$ and $\frac{1}{\ln x}$ for increasingly larger values of x. Note how the

mathematical community; although lengthy and considerably more intricate ledge of calculus. The elementary proof may be found in Hardy and Wright than the original proof, the new one is accessible to anyone with a knowdiscussion of this analytic proof may be found in Apostol (1976). In 1949, complex analysis, which is beyond the scope of this book. A complete Prime Number Theorem. This new proof was termed "elementary" by the Atle Selberg and Paul Erdös discovered a surprising new proof of the The most direct proof of the Prime Number Theorem requires considerable

great Leonhard Euler. expressible in certain forms. One of the most famous unsolved problems in all of number theory was conjectured by Christian Goldbach in a letter to the Many unsolved problems in number theory deal with integers that are

be expressed as the sum of two (not necessarily distinct) prime numbers. Conjecture 2: (Goldbach, 1742) Every even integer greater than 2 can

to be known, appropriately enough) has been verified for all even integers less than $2 \cdot 10^{10}$. By experimentation with small even integers, the interested 6 = 3 + 3, and 8 = 3 + 5. Goldbach's Conjecture (as Conjecture 2 has come G. H. Hardy and J. E. Littlewood.) However, a proof that at least one such representations has been predicted in a formula by English mathematicians two prime numbers may not be unique. (In fact, the number of such reader can discover that the representation of an even integer as the sum of As three quick illustrations of such expressions, consider 4 = 2 + 2, representation exists for every even integer greater than 2 remains elusive.

concerning prime numbers expressible in certain forms and a related helpful remark for the exercises. The first form is named after a French monk, Father Marin Mersenne (1588-1648). We conclude this section with a discussion of three unsolved problems

prime is said to be a Mersenne prime **Definition 7:** Any prime number expressible in the form $2^p - 1$ with p

Example 9:

2047 = (23)(89) is *not* a Mersenne prime. The first five Mersenne primes are 3 (= $2^2 - 1$), 7 (= $2^3 - 1$), 31 (= $2^5 - 1$), 127 (= $2^7 - 1$), and 8191 (= $2^{13} - 1$). Note that $2^{11} - 1$ =

2110503 - 1, was discovered three years after the larger 30th known Mersenne p < 257. Work completed in 1947 revealed that Mersenne made five mistakes: 67, 127, and 257 and a composite number for all other prime numbers p with claimed that $2^p - 1$ was a prime number for p equal to 2, 3, 5, 7, 13, 17, 19, 31, there are infinitely many Mersenne primes, and so we state the following by known Mersenne primes. In any event, most mathematicians believe that prime, $2^{216091} - 1$. It may be that other Mersenne primes lie in the gaps formed discovered in increasing order. For example, the 31st known Mersenne prime, known prime number!) Curiously enough, the Mersenne primes have not been (The observant reader will recall that this Mersenne prime is also the largest D. Slowinski and P. Gage; it is 2⁷⁵⁶⁸³⁹ - 1, a number containing 227832 digits. in Mersenne's list). There are currently 32 known Mersenne primes. The Mersenne's list) and is a composite number for p equal to 67 and 257 (included $2^{p}-1$ is a prime number for p equal to 61, 89, and 107 (not included in largest known Mersenne prime is of vintage 1992 and was discovered by In 1644, Mersenne authored Cogitata Physica-Mathematica in which he

* David Slowins Ki & Paul Gaze January 4 1994: 2 - 1 is prime (Newsleter 007)

Conjecture 3: There are infinitely many Mersenne primes. Upf T Muth

The second form for prime numbers is named after French mathematician

 $n \in \mathbb{Z}$ and $n \ge 0$ is said to be a Fermat prime. Definition 8: Any prime number expressible in the form $2^{2^n} + 1$ with

Example 10:

The first five Fermat primes are $3 (= 2^{2^0} + 1)$, $5 (2^{2^1} + 1)$, $17 (= 2^{2^2} + 1)$, $257 (= 2^{2^3} + 1)$, and $65537 (= 2^{2^4} + 1)$.

with $n \in \mathbb{Z}$ and $n \ge 0$ is prime. The conjecture was disproved in 1732 by Euler, who proved that $641 \mid 2^{2^s} + 1$ and hence $2^{2^s} + 1$ is *not* a Fermat prime. Fermat conjectured in 1640 that any number expressible in the form $2^{2''} + 1$

(4) at Cray Research Central Computing Facility. Used a Cray 90 Lucas-Lehmer prinality lest ran in 25,924 CPU seconds.

3006

E.F ones)

given in Example 10 above. Many mathematicians believe that there are no Fermat primes other than these five; thus the following conjecture. Currently, only five Fermat primes are known, namely those prime numbers

Conjecture 4: There are exactly five Fermat primes

conjecture below was made in 1922 by Hardy and Littlewood: numbers that are expressible as one more than a perfect square. The The final form for prime numbers that we examine here are those prime

form $n^2 + 1$ where n is a positive integer. Conjecture 5: There are infinitely many prime numbers expressible in the

If you are interested, there are several examples of primes of the form in Conjecture 5.

sible in the form $n^2 - 1$ where n is a positive integer. This conjecture, number when substituted in the desired form, while n = 2 does. Now note that however, is easily seen to be false. Note first that n = 1 does not give a prime tempting to conjecture that there are infinitely many prime numbers expres-We make one final remark here. In view of Conjecture 5 above, it may be

$$n^2 - 1 = (n - 1)(n + 1)$$

n=2. Something as simple as factoring expressions can be a powerful tool in number theory (see also Exercise 9 of Section 1). Remember this tool! Inasmuch as the product (n-1)(n+1) gives a nontrivial factorization of n^2-1 if n>2, we have the fact that n^2-1 is a prime number if and only if

Exercise Set 1.2

- 16. Determine whether the following positive integers are prime or composite by using the primality test motivated by Proposition 1.7
- (a) 127
- (b) 129(c) 131

- (d) 133 (e) 137 (f) 139
- (17) Use the sieve of Eratosthenes to find all prime numbers less than 200.
- (a) Find 13 consecutive composite positive integers.
- (b) Find the least occurrence of 13 consecutive composite positive integers (Hint: Use Table 3 in Appendix E.)
- 19. Find all twin primes less than 200.
- $\sqrt{20}$. (a) Find $\pi(10)$, $\pi(100)$, and $\pi(200)$.
- (b) Compute $\frac{\pi(x)\ln x}{x}$ for x = 10, x = 100, and x = 200 and compare the obtained values with those in Table 1.1.
- (21) Verify Goldbach's Conjecture (Conjecture 2) for the following even (a) 30 (b) 98 integers. now known (M.-Mgg and topelager nes) Largest is 232,582,657 1 bond in Update (Dec. 2007): 44 Mersenne Prime

(c) 114 (d) 222

Prove that 2 is the only even prime number.

Prove or disprove the following conjecture, which is similar to Conjecture

and p + 4 are also prime numbers. Conjecture: There are infinitely many prime numbers p for which p+2

(24) Prove that every integer greater than 11 can be expressed as the sum of two composite numbers.

25. (a) Prove that all odd prime numbers can be expressed as the difference of squares of two successive integers.

Prove that no prime number can be expressed as the difference of two in the final paragraph of this section.) fourth powers of integers. (Hint: Use the factorization tool discussed

Prove or disprove the following statements.

(a) If p is a prime number, then $2^p - 1$ is a prime number.

(b) If $2^p - 1$ is a prime number, then p is a prime number. (Hint Consider the contrapositive of the statement.

27. Let a and n be positive integers. Prove that, if $a^n - 1$ is a prime number, numbers of the form $a^n - 1$ are Mersenne primes. then a=2 and n is a prime number. Conclude that the only prime

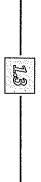
28. Let a and n be positive integers with a > 1. Prove that, if $a^n + 1$ is a prime number, then a is even and n is a power of 2.

(3) 29. Let n be a positive integer with $n \ne 1$. Prove that, if $n^2 + 1$ is a prime Prove or disprove the following conjecture, which is similar to Conjecture number, then $n^2 + 1$ is expressible in the form 4k + 1 with $k \in \mathbb{Z}$.

form $n^3 + 1$ where n is a positive integer. Conjecture: There are infinitely many prime numbers expressible in the

(37). Prove or disprove the following conjecture.

Conjecture: If n is a positive integer, then $n^2 - n + 41$ is a prime number.



Greatest Common Divisors

element of S. Note that such an element is necessarily positive. divide both a and b. The set S is necessarily nonempty (since $\pm 1 \in S$) and finite Given two integers a and b, not both zero, consider the set S of integers that least one of a and b is nonzero). So it makes sense to speak of the greatest (since zero is the only integer that has an infinite number of divisors and at

such that $d \mid a$ and $d \mid b$: If (a, b) = 1, then a and b are said to be relatively common divisor of a and b, denoted (a, b), is the greatest positive integer d **Definition 9:** Let $a, b \in \mathbb{Z}$ with a and b not both zero. The greatest

> (a, b) = d, then Note that (0,0) is undefined. (Why?) Furthermore, it is easy to see that if

$$(-a, b) = (a, -b) = (-a, -b) = d$$

common divisor of two nonnegative integers. So, in Example 11, we restrict our discussion to the computation of the greatest

Example 11:

So the greatest common divisor of 24 and 60 is 12, which is denoted ± 60 . The common divisors of 24 and 60 are ± 1 , ± 2 , ± 3 , ± 4 , ± 6 , and ± 12 . divisors of 60 are ± 1 , ± 2 , ± 3 , ± 4 , ± 5 , ± 6 , ± 10 , ± 12 , ± 15 , ± 20 , ± 30 , and (24,60) = 12.(a) The divisors of 24 are ± 1 , ± 2 , ± 3 , ± 4 , ± 6 , ± 8 , ± 12 , and ± 24 . The

 $a \neq 0$, we have (a, 0) = |a|. of 24 and 0 is 24, which is denoted (24,0) = 24. In general, if $a \in \mathbb{Z}$ with are precisely the divisors of 24; from (a) above, the greatest common divisor (b) Every integer is a divisor of zero. So the common divisors of 24 and 0

and 35 is 1, which is denoted (24,35) = 1. In other words, 24 and 35 are common divisors of 24 and 35 are ±1. So the greatest common divisor of 24 relatively prime. (c) The divisors of 35 are ± 1 , ± 5 , ± 7 , and ± 35 . From (a) above, the

extremely effective theoretical tool. At this point, it may be particularly One crucial fact to remember when solving theoretical problems involving greatest common divisors is that (a, b) = d implies $d \mid a$ and $d \mid b$; this observation in conjunction with Definition 1 or Proposition 1.2 or both is an instructive to attempt the solution of Exercises 36 and 38 with the above facts

recorded as propositions. We now prove two properties of greatest common divisors, which are

(C.10) Let $a, b \in \mathbb{Z}$ with (a, b) = d. Then (a/d, b/d) = 1.

consequently, we have $d'd \mid a$ and $d'd \mid b$. This implies that d'd is a common $e, f \in \mathbb{Z}$ such that a/d = d'e and b/d = d'f. So a = d'de and b = d'df. have d'=1, from which comes the desired result. divisor of a and b and, since d is the greatest common divisor of a and b, we **Proof:** Let (a/d, b/d) = d'. Then d' | a/d and d' | b/d so there exist

Proposition 1.11: Let $a, b \in \mathbb{Z}$ with a and b not both zero. Then

$$(a, b) = \min \{ ma + nb : m, n \in \mathbb{Z}, ma + nb > 0 \}$$

integral linear combination of the integers. divisor of two integers is the least positive number that is expressible as maximum element of a set.) So Proposition 1.11 says that the greatest common (Similarly, the set-theoretic function "max," to be used later, produces the The set-theoretic function "min" produces the minimum element of a set

 $nb > 0\} \neq \emptyset$ since, without loss of generality, $a \neq 0$ and then either exists by the well-ordering property; let 1a + 0b > 0 or -1a + 0b > 0. So $\min\{ma + nb : m, n \in \mathbb{Z}, ma + nb > 0\}$ Proof:(of Proposition 1.11) Note that $\{ma + nb : m, n \in \mathbb{Z}, ma + nb :$

$$d = \min \{ ma + nb : m, n \in \mathbb{Z}, ma + nb > 0 \} = m'a + n'b$$

We first show that $d \mid a$ and $d \mid b$. By the division algorithm, there exist $q, r \in \mathbb{Z}$

$$a = dq + r$$
, $0 \le r < d$

$$a - dq = a - (m'a + n'b)q = (1 - qm')a - qn'b$$

 $0 \le r < d$ and d is the minimum positive integral linear combination of a and and we have that r is an integral linear combination of a and b. Since $c \mid m'a + n'b = d$ by Proposition 1.2, from which $c \le d$. and b. Let c be any common divisor of a and b so that $c \mid a$ and $c \mid b$. Then Similarly, $d \mid b$. It remains to show that d is the greatest common divisor of ab, we have r=0, from which a=dq+r implies that a=dq. So $d\mid a$

expressed as an integral linear combination of a and b. In fact, the converse of establishing theoretical results. the greatest common divisor. (Do this!) This fact is also frequently useful in two integers is not only less than the greatest common divisor but also divides further that Proposition 1.11 may be used to show that a common divisor of an integral linear combination of these integers in forthcoming chapters. Note will use the tool of expressing the greatest common divisor of two integers as combination of two integers a and b, then (a, b) = 1. (Why is this true?) We this fact is true if d = 1, namely, that if 1 is expressible as an integral linear with greatest common divisors, namely, that (a, b) = d implies that d may be Proposition 1.11 above gives another important theoretical tool when dealing

The concept of greatest common divisor can be extended to more than two

greatest integer d such that $d \mid a_i, i = 1, 2, ..., n$. If $(a_1, a_2, ..., a_n) = 1$, then greatest common divisor of a_1, a_2, \ldots, a_n , denoted (a_1, a_2, \ldots, a_n) , is the $i \neq j$, then a_1, a_2, \ldots, a_n are said to be pairwise relatively prime a_1, a_2, \ldots, a_n are said to be relatively prime. If $(a_i, a_j) = 1$ for all pairs i, j with **Definition 10:** Let $a_1, a_2, \ldots, a_n \in \mathbb{Z}$ with a_1, a_2, \ldots, a_n not all zero. The

Example 12.

of 60 are ± 1 , ± 2 , ± 3 , ± 4 , ± 5 , ± 6 , ± 10 , ± 12 , ± 15 , ± 20 , ± 30 , and ± 60 . The The divisors of 24 are ± 1 , ± 2 , ± 3 , ± 4 , ± 6 , ± 8 , ± 12 , and ± 24 . The divisors divisors of 30 are ± 1 , ± 2 , ± 3 , ± 5 , ± 6 , ± 10 , ± 15 , and ± 30 . The common divisor of 24, 60, and 30 is 6, which is denoted (24, 60, 30) = 6. An alternate divisors of 24, 60, and 30 are ± 1 , ± 2 , ± 3 , and ± 6 . So the greatest common integers is investigated in Exercise 51. method for computing the greatest common divisor of more than two

> 13 illustrates. relatively prime integers are necessarily pairwise relatively prime as Example Pairwise relatively prime integers are relatively prime; it is not the case that

Example 13:

49 are not pairwise relatively prime. prime. Since $(24,60) = 12 \neq 1$ by Example 11(a), we have that 24, 60, and Since (24, 60, 49) = 1 (verify this!), we have that 24, 60, and 49 are relatively

Exercise Set 1.3

3 2. Find the greatest common divisors below

- (21, 28) 7
- (32, 56) 8
- (0, 113) 113 (58, 63) 1
- (111, 129) 3
- (120, 165) 15
- Let $a \in \mathbb{Z}$ with a > 0. Find the greatest common divisors below
- \widehat{s} (a, a^n) where n is a positive integer
- 3 (a, a + 1)
- 0 (a, a + 2)
- (d) (3a + 5, 7a + 12)
- Find the greatest common divisors below.
- (a) (18, 36, 63) (b) (30, 42, 70)
- (0, 51, 0)
- (35, 55, 77)
- (36, 42, 54, 78)
- (35, 63, 70, 98)
- 35. that no two of the integers are relatively prime when taken separately. Find four integers that are relatively prime (when taken together) but such
- 36. (a) Do there exist integers x and y such that x + y = 100 and (x, y) = 8? Why or why not?
- (b) Prove that there exist infinitely many pairs of integers x and y such that x + y = 87 and (x, y) = 3.
- $\sqrt{37}$. Let $a, b \in \mathbb{Z}$ with a and b not both zero and let c be a nonzero integer. Prove that (ca, cb) = |c|(a, b).
- (8) either 1 or 2. Let a and b be relatively prime integers. Prove that (a + b, a - b)*b*) is
- $\sqrt{39}$. Let a and b be relatively prime integers. Find all values of (a + 2b, 2a + b).
- (10) Let $a, b \in \mathbb{Z}$ with (a, 4) = 2 and (b, 4) = 2. Find (a + b, 4) and prove that Let $a, b, c \in \mathbb{Z}$ with (a, b) = 1 and $c \mid a + b$. Prove that (a, c) = 1 and your answer is correct.
- (b,c)=1.
- (a) Let $a, b, c \in \mathbb{Z}$ with (a, b) = (a, c) = 1. Prove that (a, bc) = 1

23

(b) Let $a, b_1, b_2, \ldots, b_n \in \mathbb{Z}$ with $(a, b_1) = (a, b_2) = \cdots = (a, b_n) = 1$.

$$(a,b_1b_2\cdots b_n)=1$$

(a) Let $a, b, c \in \mathbb{Z}$ with (a, b) = 1. Prove that if $a \mid c$ and $b \mid c$, then $ab \mid c$. (b) Provide a counterexample to show why the statement of part (a) does not hold if $(a, b) \neq 1$.

Let $a, a_2, \ldots, a_n, c \in \mathbb{Z}$ with a_1, a_2, \ldots, a_n pairwise relatively prime. Prove that if $a_i \mid c$ for each i, then $a_1 a_2 \cdots a_n \mid c$.

f 44. (a) Let $a, b, c \in \mathbb{Z}$ with (a, b) = 1 and $a \mid bc$. Prove that $a \mid c$.

Provide a counterexample to show why the statement of part (a) does not hold if $(a, b) \neq 1$.

45. Let a, b, c, and d be positive integers. If $b \neq d$ and (a, b) = (c, d) = 1, prove that $\frac{a}{b} + \frac{c}{d} \notin \mathbf{Z}$.

146 $\frac{a}{b} + \frac{c}{d} = \frac{a + c}{b + d}$. Find all solutions of this equation. Let a, b, c, and d be integers with b and d positive and (a, b) = (c, d) = 1. A mistake often made when first encountering fractions is to assume that

47 (a) Let $a, b \in \mathbb{Z}$ and let m be a nonnegative integer. Prove that (a, b) = 1if and only if $(a^m, b) = 1$.

(b) Let $a, b \in \mathbb{Z}$ and let m and n be nonnegative integers. Prove that (a, b) = 1 if and only if $(a^m, b^n) = 1$.

48. Let $a, b \in \mathbb{Z}$. Prove that (a, b) = 1 if and only if (a + b, ab) = 1.

y 49. Prove that in any eight composite positive integers not exceeding 360, at least two are not relatively prime.

 $\sqrt{50}$. Prove that every integer greater than 6 can be expressed as the sum of two relatively prime integers greater than 1.

 (S_1) Let $a_1, a_2, \ldots, a_n \in \mathbb{Z}$ with $a_1 \neq 0$. Prove that

$$(a_1, a_2, a_3, \ldots, a_n) = ((a_1, a_2), a_3, \ldots, a_n)$$

greatest common divisor of each set of integers in Exercise 34. divisor of more than two integers.) Use this method to compute the (This method can be used generally to compute the greatest common

52. Let $a_1, a_2, \ldots, a_n \in \mathbb{Z}$ with $a_1 \neq 0$ and let c be a nonzero integer. Prove

$$(ca_1, ca_2, ca_3, \ldots, ca_n) = |c| (a_1, a_2, a_3, \ldots, a_n).$$

53 Let $n \in \mathbb{Z}$. Prove that the integers 6n - 1, 6n + 1, 6n + 2, 6n + 3, and 6n + 5 are pairwise relatively prime.

The Euclidean Algorithm

to list all divisors of each integer, find those divisors common to the two lists, Our current method for finding the greatest common divisor of two integers is and then choose the greatest such common divisor. Surely this method becomes unwieldy for large integers! (For example, what is the greates

> greatest common divisor of two integers? Yes, fortunately. Before discussing common divisor of 803 and 154?) Is there a better method for computing the this method, we need a preliminary lemma.

(a,b)=(b,r).**Lemma 1.12:** If $a, b \in \mathbb{Z}$, $a \ge b > 0$, and a = bq + r with $q, r \in \mathbb{Z}$, then

 $c \mid a - qb$ by Proposition 1.2, from which $c \mid r$; we then have that c is a $c \mid b$ and $c \mid r$. Then $c \mid qb + r$ by Proposition 1.2, from which $c \mid a$; we then common divisor of b and r. Now let c be a common divisor of b and r so that are the same as the common divisors of b and r from which (a, b) = (b, r). have that c is a common divisor of a and b. So the common divisors of a and b **Proof:** Let c be a common divisor of a and b. Then $c \mid a$ and $c \mid b$ imply

repeatedly uses the division algorithm (Theorem 1.4) to generate quotients and proof are the last three statements. following theorem. As you read the theorem, note that the only parts requiring encountered just prior to the zero remainder. All of this is contained in the algorithm; the greatest common divisor of the two integers is the remainder this process, a remainder of zero is encountered, which terminates the remainders from smaller and smaller pairs of positive integers. Eventually in positive integers is called the Euclidean algorithm after Euclid, who describes the algorithm in Book VII of his Elements. The Euclidean algorithm The suggested method for computing the greatest common divisor of two

By the division algorithm, there exist $q_1, r_1 \in \mathbb{Z}$ such that **Theorem 1.13:** (The Euclidean Algorithm) Let $a, b \in \mathbb{Z}$ with $a \ge b > 0$.

$$a = bq_1 + r_1, \qquad 0 \le r_1 < b$$

If $r_1 > 0$, there exist (by the division algorithm) $q_2, r_2 \in \mathbb{Z}$ such that

$$b = r_1 q_2 + r_2, \quad 0 \le r_2 < r_1$$

If $r_2 > 0$, there exist (by the division algorithm) $q_3, r_3 \in \mathbb{Z}$ such that

$$r_1 = r_2 q_3 + r_3, \quad 0 \le r_3 < r_2$$

n = 1, then (a, b) = b. Continue this process. Then $r_n = 0$ for some n. If n > 1, then $(a, b) = r_{n-1}$. If

sible. So $r_n = 0$ for some n. Now, if n > 1, repeated applications of Lemma an infinite, strictly decreasing sequence of positive integers, which is impos-1.12 give **Proof:** Note that $r_1 > r_2 > r_3 > \dots$ If $r_n \neq 0$ for all n, then r_1, r_2, r_3, \dots is

$$(a, b) = (b, r_1) = (r_1, r_2) = (r_2, r_3) = \cdots = (r_{n-1}, r_n) = (r_{n-1}, 0) = r_{n-1}$$

as desired. If n = 1, the desired statement is obvious.

case of two positive integers, a and b (with $a \ge b$). In view of the remarks immediately after Definition 9 and the general remark in (b) of Example 11, all Note that the Euclidean algorithm finds the greatest common divisor in the

illustrate the use of the Euclidean algorithm with an example. other computations are either reducible to this case or trivial.

Example 14.

Find (803, 154) by using the Euclidean algorithm.

b = 154. By the division algorithm, The notation of Theorem 1.13 is used throughout. Here a 1 803 and

$$803 = 154 \cdot 5 + 33 \tag{2}$$

Since $r_1 = 33 > 0$ apply the division algorithm to b = 154 and 7 II 33 to

$$154 = 33 \cdot 4 + 22 \tag{3}$$

obtain Since $r_2 = 22 > 0$, apply the division algorithm to $r_1 = 33$ and . |-| 25 || 22 to

$$33 = 22 \cdot 1 + 11$$

£

obtain Since $r_3 =$ 11 > 0, we apply the division algorithm to $r_2 =$ 22 and $r_3 = 11$ to

$$22 = 11 \cdot 2 + 0$$

Since $r_4 = 0$, the Euclidean algorithm terminates and

$$(803, 154) = r_3 = 11$$

Euclidean algorithm provides a systematic procedure for obtaining such a linear combination, as the following example illustrates. (As already noted, this expression will be used in forthcoming chapters.) The integers is expressible as an integral linear combination of the two integers. Recall that, by Proposition 1.11, the greatest common divisor of two

Example 15.

Essentially, work through the steps of Example 14 backward. We have Express (803, 154) as an integral linear combination of 803 and 154

$$(803, 154) = 11 = 33 - 22 \text{ [by (4)]}$$

$$= 33 - (154 - 33 \cdot 4) \text{ [by (3)]}$$

$$= 33 \cdot 5 - 154$$

$$= (803 - 154 \cdot 5)5 - 154 \text{ [by (2)]}$$

$$= 803 \cdot 5 - 154 \cdot 26$$

 $5 \cdot 803 + (-26)154$

10,9,...,1. Second, the expression of 11 as an integral linear combination integral linear combination of 803 and 154 can yield any of the integers number expressible as an integral linear combination of the integers. So no and 154 as desired. Two remarks are in order here. First, by Proposition This is an expression of (803, 154) as an integral linear combination of 803 , the greatest common divisor of two integers is the least positive

Section 1.4 The Euclidean Algorithm

11 = 19.803 - 99.154 is another such expression. In fact, there are infinitely many expressions of 11 as an integral linear combination of 803 and 154. We of 803 and 154 above is not unique. For example, the reader may verify that will have more to say on this issue in Chapter 6.

Student Project 1. A useful programming project related to Examples 14 and 15 appears as

Exercise Set 1.4

- 54. Use the Euclidean algorithm (Theorem 1.13) to find the greatest common combination of the original integers. divisors below. Express each greatest common divisor as an integral linear
- \widehat{s} (37, 60)
- Ē (78, 708)
- 3 (441, 1155)
- (d) (793, 3172)
- (2059, 2581)
- <u>0</u> (25174, 42722)
- 55. Prove that 7 has no expression as an integral linear combination of 18209 and 19043.
- 56. Find two rational numbers with denominators 11 and 13, respectively, and a sum of $\frac{7}{143}$.
- 57. Use Exercise 51 and the Euclidean algorithm to find the greatest common combination of the original integers. divisors below. Express each greatest common divisor as an integral linear
- (a) (221, 247, 323)
- **(b)** (210, 294, 490, 735)
- algorithm. This new algorithm is based on the absolute least remainder common divisor of two positive integers analogous to the Euclidean algorithm given in part (c) of Exercise 15.] Let $a, b \in \mathbb{Z}$ with $a \ge b > 0$. By [The following exercise presents an algorithm for computing the greatest the absolute least remainder algorithm, there exist $q_1, r_1 \in \mathbf{Z}$ such that

$$a = bq_1 + r_1, \quad -\frac{|b|}{2} < r_1 \le \frac{|b|}{2}$$

such that If $r_1 \neq 0$, there exist (by the absolute least remainder algorithm) $q_2, r_2 \in \mathbf{Z}$

$$=r_1q_2+r_2, \quad -\frac{|r_1|}{2}< r_2 \le \frac{|r_1|}{2}$$

such that If $r_2 \neq 0$, there exist (by the absolute least remainder algorithm) $q_3, r_3 \in \mathbf{Z}$

$$r_1 = r_2 q_3 + r_3, \qquad -\frac{|r_2|}{2} < r_3 \le \frac{|r_2|}{2}$$

Continue this process.

- (a) Prove that $r_n = 0$ for some n. If n > 1, prove that $(a, b) = |r_{n-1}|$.
- (b) Use the new algorithm above to find (204, 228) and (233, 377).

The Fundamental Theorem of Arithmetic

The Fundamental Theorem of Arithmetic (the essence of which appears as Proposition 14 in Book IX of Euclid's *Elements*) is our first big theorem of number theory, but certainly not our last! This theorem guarantees that any integer greater than 1 can be decomposed into a product of prime numbers; furthermore, this decomposition is unique except for the order in which the prime numbers are listed. (For example, the decomposition of 12 into $2 \cdot 2 \cdot 3$ is the same as the decomposition of 12 into $2 \cdot 3 \cdot 2$ except for the order in which the two 2's and one 3 are listed.) We first prove an important preliminary lemma.

Lemma 1.14: (Euclid) Let $a, b, p \in \mathbb{Z}$ with p prime. If $p \mid ab$, then $p \mid a$ or $p \mid b$.

Proof: Assume that $p \nmid a$. Then (a, p) = 1. We must show that $p \mid b$. By Proposition 1.11, there exist $m, n \in \mathbb{Z}$ such that ma + np = 1. Also, $p \mid ab$ implies ab = pc for some $c \in \mathbb{Z}$. Now multiplying both sides of ma + np = 1 by b, we have mab + npb = b; ab = pc then implies that mpc + npb = b or p(mc + nb) = b. So we have $p \mid b$ as desired.

Note that Lemma 1.14 does not hold if p is composite. (Your solution to Exercise 2 in Section 1 should provide a counterexample.) In view of this, the criterion in Lemma 1.14 could be used to define a prime number as follows:

An integer p > 1 is said to be *prime* if whenever a and b are integers with $p \mid ab$, then $p \mid a$ or $p \mid b$.

This alternate definition of *prime* is useful in more general mathematical settings (see, for example, Definition 3.3 on page 136 of Hungerford, 1974); in the system of integers, we have opted instead for the more traditional definition given in Definition 5.

Lemma 1.14 above can be generalized. We state this generalization as a corollary in which we use the powerful proof technique called *mathematical induction*. Mathematical induction will be used frequently in this book, especially in Chapter 7. (You may have already used mathematical induction a few times in the preceding exercises.) See Appendix A for a discussion of mathematical induction.

Corollary 1.15: Let $a_1, a_2, \ldots, a_n, p \in \mathbb{Z}$ with p prime. If $p \mid a_1 a_2 \cdots a_n$, then $p \mid a_i$ for some i.

Proof: We use induction on n. The statement for n = 1 is obvious. The statement for n = 2 is Lemma 1.14. Assume that $k \ge 2$ and that the desired statement is true for n = k so that $p \mid a_1 a_2 \cdots a_k$ implies that $p \mid a_i$ for some i (with $1 \le i \le k$). We must show that $p \mid a_1 a_2 \cdots a_{k+1}$ implies that $p \mid a_i$ for

some i (with $1 \le i \le k+1$) so that the desired statement holds for n = k+1. Now $p \mid a_1 a_2 \cdots a_{k+1}$ implies $p \mid (a_1 a_2 \cdots a_k) a_{k+1}$; Lemma 1.14 then implies $p \mid a_1 a_2 \cdots a_k$ or $p \mid a_{k+1}$. If $p \mid a_{k+1}$, then the desired statement holds for n = k+1. If $p \nmid a_{k+1}$, then $p \mid a_1 a_2 \cdots a_k$, which implies that $p \mid a_1 a_2 \cdots a_k$ which implies that $p \mid a_1 a_2 \cdots a_k$ which implies that $p \mid a_1 a_2 \cdots a_k$ which implies that $p \mid a_1 a_2 \cdots a_k$ which implies that $p \mid a_1 a_2 \cdots a_k$ which implies that $p \mid a_1 a_2 \cdots a_k$ which implies that $p \mid a_1 a_2 \cdots a_k$ which implies that $p \mid a_1 a_2 \cdots a_k$ which implies that $p \mid a_1 a_2 \cdots a_k$ which completes the proof.

We now state and prove the Fundamental Theorem of Arithmetic

Theorem 1.16: (Fundamental Theorem of Arithmetic) Every integer greater than 1 can be expressed in the form $p_1^a p_2^{a_2} \cdots p_n^{a_n}$ with p_1, p_2, \ldots, p_n distinct prime numbers and a_1, a_2, \ldots, a_n positive integers. This form is said to be the *prime factorization* of the integer. This prime factorization is unique except for the arrangement of the $p_i^{a_i}$.

Proof: Assume, by way of contradiction, that k is an integer greater than 1 that does not have an expression as in the statement of the theorem. Without loss of generality, we may assume that k is the least such integer. Now k cannot be prime because it would then be of the desired form. So k is composite and k = ab with 1 < a < k and 1 < b < k. But then a and b are of the desired form due to the minimality of k, from which it follows that k is of the desired form, a contradiction. So every integer greater than 1 has an expression of the desired form. We still must show the uniqueness of such an expression. Assume that k has two such expressions, say

$$k = p_1^{a_1} p_2^{a_2} \cdots p_n^{a_n} = q_1^{b_1} q_2^{b_2} \cdots q_m^{b_m}$$

with p_1, p_2, \ldots, p_n distinct prime numbers; q_1, q_2, \ldots, q_m distinct prime numbers; and $a_1, a_2, \ldots, a_n, b_1, b_2, \ldots, b_m$ positive integers. Without loss of generality, we may assume that $p_1 < p_2 < \cdots < p_n$ and $q_1 < q_2 < \cdots < q_m$. We must show that

$$n = m$$

$$p_i=q_i, \quad i=1,2,\ldots,n$$

and

$$a_i = b_i, i = 1, 2, ..., n$$

Now, given a p_i , we have $p_i | q_1^{b_1} q_2^{b_2} \cdots q_m^{b_m}$, which implies that $p_i | q_j$ for some j by Corollary 1.15. So $p_i = q_j$ for some j. Similarly, given a q_j , we have $q_i = p_i$ for some i. So n = m; by the ordering of the p_i 's and q_j 's, we have $p_i = q_i$, $i = 1, 2, \ldots, n$. Consequently,

$$k = p_1^{a_1} p_2^{a_2} \cdots p_n^{a_n} = p_1^{b_1} p_2^{b_2} \cdots p_n^{b_n}$$

Now assume, by way of contradiction, that $a_i \neq b_i$ for some i. Without loss of generality, we may assume that $a_i < b_i$. Then

$$p_i^{b_i} \mid p_1^{a_1} p_2^{a_2} \cdots p_n^{a_n}$$

which implies that

$$p_i^{b_i-a_i} | p_1^{a_1} p_2^{a_2} \cdots p_{i-1}^{a_{i-1}} p_{i+1}^{a_{i+1}} \cdots p_n^{a_n}$$

Since $b_i - a_i > 0$, we have that

$$p_i \mid p_1^{a_1} p_2^{a_2} \cdots p_{i-1}^{a_{i-1}} p_{i+1}^{a_{i+1}} \cdots p_n^{a_n}$$

 $a_i = b_i, i = 1, 2, \ldots, n.$ from which $p_i \mid p_j$ for some $j \neq i$, by Corollary 1.15. This is a contradiction. So

Example 16:

Find the prime factorization of 756. We have

$$756 = 2 \cdot 378$$

$$= 2 \cdot 2 \cdot 189$$

$$= 2 \cdot 2 \cdot 3 \cdot 63$$

$$= 2 \cdot 2 \cdot 3 \cdot 7 \cdot 9$$

$$= 2 \cdot 2 \cdot 3 \cdot 7 \cdot 3 \cdot 3$$

$$= 2^{2}3^{3}7$$

extremely nice property that it is! moral here is to appreciate the Fundamental Theorem of Arithmetic for the more advanced branch of number theory called algebraic number theory. The unique factorization domain (UFD). UFDs are important number systems in a Theorem of Arithmetic for the integers makes the integers into what is called a investigated more fully in Exercise 77. The presence of the Fundamental systems exist for which unique factorization does not hold. Such a system is Fundamental Theorem of Arithmetic for granted. Note, however, that number Because of our familiarity with the integers, we may tend to take the

the least common multiple of the integers, which we define now A concept that is parallel to the greatest common divisor of two integers is

and b, denoted [a, b], is the least positive integer m such that $a \mid m$ and $b \mid m$. **Definition 11:** Let $a, b \in \mathbb{Z}$ with a, b > 0. The least common multiple of a

well-ordering property of the integers (see the Introduction). consequently, the least common multiple of these integers always exists by the of positive common multiples of two positive integers is always nonempty; other words, ab is always a positive common multiple of a and b. Hence the set Given two positive integers a and b, note that ab > 0, $a \mid ab$, and $b \mid ab$; in

Example 17:

- (a) The positive multiples of 6 are 6, 12, 18, 24, 30, 36, 42, 48, The positive multiples of 7 are 7, 14, 21, 28, 35, 42, 49, 54, It is a fact multiples of 6 and 7, the least common multiple of 6 and 7 is 42, which is multiples common to the two infinite lists above) are 42, 84, 126, denoted [6, 7] = 42. 168, 210, (Convince yourself of this!) Obviously from these common (perhaps not obvious) that the positive common multiples of 6 and 7 (the
- (b) The positive multiples of 8 are 8, 16, 24, 32, 40, 48, 56, 64, From the multiples of 6 in (a) above, it is obvious that the least common multiple of 6

Section 1.5 The Fundamental Theorem of Arithmetic

and 8 is 24, which is denoted [6,8] = 24. (As an exercise, find the first five positive common multiples of 6 and 8.)

common divisors and least common multiples. We illustrate such computations with an example. The Fundamental Theorem of Arithmetic may be used to compute greatest

Example 18:

Find (756, 2205) and [756, 2205] by using prime factorization. By Example 16, we have $756 = 2^23^37$. The reader may easily verify that $2205 = 3^2 \cdot 7^2$. Now

$$756 = 2^2 3^3 5^0 7^1$$

$$2205 = 2^{0}3^{2}5^{1}7^{2}$$

[since (756, 2205) must divide both 756 and 2205]. So numbers and choose the minimum exponent appearing in each comparison For (756, 2205), we compare the exponents appearing on like prime

$$(756, 2205) = 2^{\circ}3^{2}5^{\circ}7 = 63$$

prime numbers and choose the maximum exponent appearing in each comparison (since both 756 and 2205 must divide [756, 2205]). So Similarly, for [756, 2205], we compare the exponents appearing on like

$$[756, 2205] = 2^2 3^3 5^1 7^2 = 26460$$

Example 18 motivates the following proposition.

 $a_1, a_2, \ldots, a_n, b_1, b_2, \ldots, b_n$ are nonnegative integers (possibly zero). Then and $b = p_1^b p_2^{b_2} \cdots p_n^{b_n}$ where p_1, p_2, \dots, p_n are distinct prime numbers and **Proposition 1.17:** Let $a, b \in \mathbb{Z}$ with a, b > 1. Write $a = p_1^{a_1} p_2^{a_2} \cdots p_{a_n}^{a_n}$

$$(a, b) = p_1^{\min\{a_1, b_1\}} p_2^{\min\{a_2, b_2\}} \cdots p_n^{\min\{a_n, b_n\}}$$

and

$$[a, b] = p_1^{\max\{a_1, b_1\}} p_2^{\max\{a_2, b_2\}} \dots p_n^{\max\{a_n, b_n\}}$$

(Theorem 1.16) and the definitions of (a, b) and [a, b]. Proof: The proof is obvious from the Fundamental Theorem of Arithmetic

reader may wish to consult Bressoud (1990) in this regard.] The power inherent in the Euclidean algorithm is that greatest common divisors of torizations of large integers are generally difficult to obtain. [The interested requires the computation of prime factorizations. Unfortunately, prime facand least common multiples of relatively small integers. Proposition 1.17 little practical use except for computations involving greatest common divisors resounding no. While Proposition 1.17 is useful as a theoretical result, it has the greatest common divisor) been rendered obsolete? The answer is a multiples of positive integers. Has our Euclidean algorithm (for computation of beautiful way to compute greatest common divisors and least common It is instructive to pause here. Proposition 1.17 seemingly gives us

a simple relationship between the least common multiple and the greatest common divisor of two positive integers; the desired result is a practical integers. But what about least common multiples? Our goal here is to establish integers may be computed without obtaining the prime factorizations of the method for computing least common multiples. We first need an easy lemma.

Lemma 1.18: Let $x, y \in \mathbb{R}$. Then $\max \{x, y\} + \min \{x, y\} = x + y$.

result follows. The cases are similar for x = y and x > y. **Proof:** If x < y, then $\max\{x, y\} = y$ and $\min\{x, y\} = x$, and the desired

common multiple of two positive integers is now given by the following The relationship between the greatest common divisor and

Theorem 1.19: Let $a, b \in \mathbb{Z}$ with a, b > 0. Then (a, b)[a, b] = ab.

Proposition 1.17. Then **Proof:** If a, b > 1, write $a = p_1^a p_2^{a_2} \cdots p_n^{a_n}$ and $b = p_1^{b_1} p_2^{b_2} \cdots p_n^{b_n}$

 $(a,b)[a,b] = \{p_1^{\min\{a_1,b_1\}}p_2^{\min\{a_2,b_2\}}\cdots p_n^{\min\{a_nb_n\}}\}\{p_1^{\max\{a_1,b_1\}}p_2^{\max\{a_2,b_2\}}\cdots p_n^{\max\{a_nb_n\}}\}$ $=p_1^{a_1+b_1}p_2^{a_2+b_2}\cdots p_n^{a_n+b_n}$ (by Lemma 1.18) $=p_1^{\min\{a_1,b_1\}+\max\{a_1,b_1\}}p_2^{\min\{a_2,b_2\}+\max\{a_2,b_2\}}\dots p_n^{\min\{a_n,b_n\}+\max\{a_n,b_n\}}$ $= p_1^{a_1} p_2^{a_2} \cdots p_n^{a_n} p_1^{b_1} p_2^{b_2} \cdots p_n^{b_n}$

checked and are left as exercises. as desired. The cases a = 1 and b > 1, a > 1 and b = 1, and a = b = 1 are easily

So, to find the least common multiple of two positive integers without using common multiple. Again, this method is usually much easier than using by using the Euclidean algorithm and then Theorem 1.19 to obtain the least prime factorization, one finds the greatest common divisor of the two integers from Example 14. reader is invited to pause here to compute [803, 154] using (803, 154) = 11 Proposition 1.17, which requires the prime factorizations of the integers! The

product of 6 and 7, while the least common multiple of 6 and 8 was not the product of 6 and 8. (Is the least common multiple of 803 and 154 the product of 803 and 154?) Under what circumstances is the least common multiple of Theorem 1.19, the answer is not surprising, as the next corollary shows. two positive integers simply the product of the two integers? In view of Note in Example 17 that the least common multiple of 6 and 7 was the

(a,b)=1.Corollary 1.20: Let $a, b \in \mathbb{Z}$ with a, b > 0. Then [a, b] = ab if and only if

Proof: The (extremely easy) proof is left as an exercise for the reader.

We conclude this chapter with another illustration of the power of the

Section 1.5 The Fundamental Theorem of Arithmetic

Biography

Peter Gustav Lejeune Dirichlet (1805-1859)

such, Dirichlet set the stage for that area of mathematics known as relied on the principles of real and complex analysis in his proofs; as analyzed the convergence of Fourier series and proved the theorem on in Gauss's profound Disquisitiones Arithmeticae. In addition, he essentially devoted to the further understanding of the many treasures century. Dirichlet authored Vorlesungen über Zahlentheorie, a work mathematical activity from France to Germany in the nineteenth P. G. L. Dirichlet was a student of Gauss and Gauss's successor at analytic number theory. prime numbers in arithmetic progressions below. Dirichlet frequently latter's biography in Chapter 4), Dirichlet aided in the shift of Germany and France. Along with his close friend Jacobi (see the German and French and served as a mathematical liasion between Göttingen University. Born in Germany, Dirichlet was fluent in both

the proof of this theorem is beyond the scope of this book of number theory from P. G. L. Dirichlet. This theorem generalizes Euclid's theorem on the infinitude of the prime numbers (Theorem 1.6). Unfortunately Fundamental Theorem of Arithmetic. We begin by stating a famous theorem

Progressions) progression Theorem 1.21: (Dirichlet's Theorem on Prime Numbers in Arithmetic Let $a, b \in \mathbb{Z}$ with a, b > 0 and (a, b) = 1. Then the arithmetic

 $a, a+b, a+2b, \ldots, a+nb, \ldots$

contains infinitely many prime numbers.

1 410, 397, 850, 5553+4,609,099,694,200 M Note that Theorem 1.6 (the infinitude of the prime numbers) follows from March 17, 1993 Parallel Processing Laboratory @ University of Bery Norway: Arithmetic Rogrossian of 21 primes first such known) 0 < 11 < 21 000 all prime.

in Exercise 84. The next proposition is a special case of Dirichlet's Theorem be used to establish many other interesting facts, one of which is investigated (with a = 3 and b = 4). Theorem 1.21 above by putting a = b = 1. Dirichlet's Theorem, however, may

the form 4n + 3 where n is a nonnegative integer. Proposition 1.22: There are infinitely many prime numbers expressible

of Dirichlet's Theorem given in Proposition 1.22 above. We need a preliminary lemma. The Fundamental Theorem of Arithmetic allows us to prove the special case

where n is an integer, then ab is also expressible in that form **Lemma 1.23:** Let $a, b \in \mathbb{Z}$. If a and b are expressible in the form 4n

Proof: Let
$$a = 4n_1 + 1$$
 and $b = 4n_2 + 1$ with $n_1, n_2 \in \mathbb{Z}$. Then $ab = (4n_1 + 1)(4n_2 + 1) = 16n_1n_2 + 4n_1 + 4n_2 + 1$

$$= 4(4n_1n_2 + n_1 + n_2) + 1$$

= 4n + 1

$$=4n+1$$

where $n = 4n_1n_2 + n_1 + n_2 \in \mathbb{Z}$.

We now prove Proposition 1.22

numbers of the form 4n + 1 where n is a positive integer (see Exercise 85) and number p of the desired form or it would otherwise contain only prime p_1, p_2, \ldots, p_r are assumed to be distinct from 3.) Consider the number nonnegative integer, say $p_0 = 3$, p_1, p_2, \ldots, p_r . (Here the prime numbers are only finitely many prime numbers of the form 4n+3 where n is a $p = p_0 = 3$ or $p = p_i$, i = 1, 2, ..., r. hence be of the form 4n + 1 where n is a positive integer by Lemma 1.23. $N = 4p_1p_2\cdots p_r + 3$. The prime factorization of N must contain a prime Proof: (of Proposition 1.22) Assume, by way of contradiction, that there

Case 1: $p = p_0 = 3$

 $3 \mid 4p_1p_2 \cdots p_r$. By Corollary 1.15, we now have $3 \mid 4$ or $3 \mid p_i$, i = 1, 2, ..., r, a contradiction. Then $3 \mid N$ implies $3 \mid N-3$ by Proposition 1.2, and we have that

Case II: $p = p_i, i = 1, 2, ..., r$

Then $p_i \mid N$ implies $p_i \mid N - 4p_1p_2 \cdots p_r$ by Proposition 1.2, and we have that

 $p_i \mid 3$, a contradiction. So there are infinitely many prime numbers of the desired form.

Note the ingenuity in the construction of the number N above, because it is

The Fundamental Theorem of Arithmetic

proof of Proposition 1.22 above? tion 1.22 was billed as an application of the Fundamental Theorem of Arithmetic; where was the Fundamental Theorem of Arithmetic used in the tions. (Where have we seen such ingenuity before?) More important, Proposiprecisely consideration of this number that results in the desired contradic-

Dirichlet's Theorem, one of which is investigated in Exercise 87. (see Exercise 86). The analogue of Lemma 1.23 is true in other special cases of Theorem in general, since the analogue of Lemma 1.23 is not true in general The proof of Proposition 1.22 cannot be extended to prove Dirichlet's

Exercise Set 1.5

- 59. Find the prime factorization of each integer below

- 0
- 367
- <u>@</u>
- 945
- 6292 1001
- 60. Find the least common multiples below
- [6, 9]
- [7,9]
- [13, 91]
- [24, 60]
- [100, 105]
- 61. Find the greatest common divisor and the least common multiple of each [101, 1111]
- pair of integers below.
 (a) $2^2 \cdot 3^3 \cdot 5 \cdot 7$, $2^2 \cdot 3^2 \cdot 5 \cdot 7^2$ (b) $2^2 \cdot 5^2 \cdot 7^3 \cdot 11^2$, $3 \cdot 5 \cdot 11 \cdot 13 \cdot 17$ (c) $2^2 \cdot 5^7 \cdot 11^{13}$, $3^2 \cdot 7^5 \cdot 13^{11}$
- (d) $3 \cdot 17 \cdot 19^2 \cdot 23$, $5 \cdot 7^2 \cdot 11 \cdot 19 \cdot 29$
- 62. Find five integers that are relatively prime (when taken together) but such that no two of the integers are relatively prime when taken separately.
- 63. Find each of the least common multiples below by using the Euclidean algorithm and Theorem 1.19.
- (a) [221, 323]
- **(b)** [257, 419]
- (c) [313, 1252]
- (d) [1911, 9702]
- 64. Find all pairs of positive integers a and b such that (a, b) = 12[a, b] = 360.
- Definition: Let $a_1, a_2, \ldots, a_n \in \mathbb{Z}$ with a_1, a_2, \ldots, a_n nonzero. The positive integer m such that $a_i \mid m, i = 1, 2, ..., n$. common multiple of a_1, a_2, \ldots, a_n , denoted $[a_1, a_2, \ldots, a_n]$, is the least least

Find the least common multiples below.

- 33 [9, 13, 16]
- (c) [6,7,8,9]
- Why is 1 excluded as a prime number?
- 67.66 (a) Let $n \in \mathbb{Z}$ with n > 1. Prove that n is a perfect square if and only if all exponents in the prime factorization of n are even.
- (b) Let $n \in \mathbb{Z}$ with n > 0. Prove that n is the product of a perfect square and (possibly zero) distinct prime numbers.
- **(3)** 68. Let $n \in \mathbb{Z}$ with n > 0. Prove that there exist $k, m \in \mathbb{Z}$ with m odd such that Definition: Let $n \in \mathbb{Z}$ with n > 1. Then n is said to be powerful if all

exponents in the prime factorization of n are at least 2. perfect cube. Prove that a powerful number is the product of a perfect square and a

- (a) If $a, b \in \mathbb{Z}$, a, b > 0, and $a^2 \mid b^3$, then $a \mid b$.
- (b) If $a, b \in \mathbb{Z}$, a, b > 0, and $a^2 | b^2$, then a | b. : 137 JE
- (c) If $a \in \mathbb{Z}$, a > 0, p is a prime number, and $p^4 \mid a^3$, then $p^2 \mid a$. Let n, a, and b be positive integers such that $ab = n^2$. If (a, b) = 1, prove
- 7 that there exist positive integers c and d such that $a = c^2$ and $b = d^2$.
- ij Definition: Let n and a be positive integers and let p be a prime number. Assume that $p^a \parallel m$ and $p^b \parallel n$. Then p^a is said to exactly divide n, denoted $p^a \parallel n$, if $p^a \mid n$ and $p^{a+1} \nmid n$.
- (a) What power of p exactly divides m + n? Prove your assertion
- (b) What power of p exactly divides mn? Prove your assertion.
- (c) What power of p exactly divides m^n ? Prove your assertion.
- 73. Let $n \in \mathbb{Z}$ with n > 0. Find the largest integer guaranteed to divide all products of n consecutive integers and prove your assertion. (Hint: Consider several small values of n and look for a pattern.)
- 75. Find all positive integers a and b such that $a^b = b^a$.
- (Note: You may wish to review Exercise 14 before attempting this problem.)
- (a) Find the number of positive integers not exceeding 500 that are divisible by 2 and by 3.
- (b) Find the number of positive integers not exceeding 500 that are divisible by neither 2 nor 3.
- Ō Find the number of positive integers not exceeding 500 that are divisible by 2 but not by 3.
- 76 (a) Let $n \in \mathbb{Z}$ with n > 1, and let p be a prime number. If $p \mid n!$, prove that the exponent of p in the prime factorization of n! is $\lfloor n/p \rfloor + \lfloor n/p^2 \rfloor + \lfloor n/p^3 \rfloor + \cdots$. (Note that this sum is finite, since $\lfloor n/p^m \rfloor = 0$ if $p^m > n$.)
- (b) Use part (a) above to find the prime factorization of 20!.
- Find the number of zeros with which the decimal representation of
- 77. (The following exercise develops a number system that does not possess unique factorization and thus no Fundamental Theorem of Arithmetic.) Let $\mathbf{Z}[\sqrt{-10}]$ denote the set of all complex numbers of the form

Section 1.5 The Fundamental Theorem of Arithmetic

multiplication of complex numbers. Define an element $a + b\sqrt{-10}$ of $a + b\sqrt{-10}$ with $a, b \in \mathbb{Z}$ under the usual operations of addition and of two elements of $\mathbb{Z}[V-10]$ except as the trivial factorizations $\mathbf{Z}[\sqrt{-10}]$ to be irreducible if $a + b\sqrt{-10}$ cannot be expressed as a product

$$a + b\sqrt{-10} = (1)(a + b\sqrt{-10})$$

Ç

$$a + b\sqrt{-10} = (-1)(-a - b\sqrt{-10})$$

- (a) Prove that 2 and 7 are irreducible elements in $\mathbb{Z}[\sqrt{-10}]$. (b) Prove that $2 + \sqrt{-10}$ and $2 \sqrt{-10}$ are irreducible elements in $b\sqrt{-10}(c-d\sqrt{-10})$ (why?). Now multiply the left-hand sides and tion of $2 + \sqrt{-10}$ must be a trivial factorization.] the right-hand sides of the two equations and prove that the factoriza $b\sqrt{-10}(c + d\sqrt{-10})$ with $a, b, c, d \in \mathbb{Z}$. Then $2 - \sqrt{-10} = (a - d\sqrt{-10})$ $\mathbb{Z}[\sqrt{-10}]$. [Hint: For $2 + \sqrt{-10}$, assume that $2 + \sqrt{-10} = (a + \sqrt{-10})$]
- 0 Prove that $\mathbf{Z}[V-10]$ does not possess unique factorization into V-10)(2-V-10).irreducible elements. [Hint: In $\mathbb{Z}[\sqrt{-10}]$, we have $14 = 2 \cdot 7 = (2 + 10)$]
- Let $n \in \mathbb{Z}$ with n > 1. Prove that $1 + \frac{1}{2} + \frac{1}{3} + \cdots + \frac{1}{n} \notin \mathbb{Z}$.
- 9 Let a and b be positive integers.
- (a) Prove that (a, b) | [a, b].
- (b) Find and prove a necessary and sufficient condition that (a, b) =
- Let a, b, and c be positive integers. Prove that [ca, cb] = c[a, b].
- 81. Let a_1, a_2, \ldots, a_n be positive integers. Prove that

$$[a_1, a_2, a_3, \ldots, a_n] = [[a_1, a_2], a_3, \ldots, a_n].$$

of more than two integers.) Use this method to compute the least common multiple of each set of integers in Exercise 65. (This method can be used generally to compute the least common multiple

82. Let a_1, a_2, \ldots, a_n , and c be positive integers. Prove that

$$[ca_1, ca_2, ca_3, \ldots, ca_n] = c[a_1, a_2, a_3, \ldots, a_n].$$

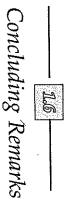
83. Let $a, b \in \mathbb{Z}$ with a, b > 0 and (a, b) = 1. Prove that the arithmetic progression

$$a, a+b, a+2b, \ldots, a+nb, \ldots$$

contains infinitely many composite numbers.

- 84. Let $k \in \mathbb{Z}$ with k > 0. Prove that there are infinitely many prime numbers ending in k 1's.
- <u>8</u>5. (a) Prove that any integer is expressible in the form 4n, 4n + 1, 4n + 2, or 4n + 3 where n is an integer.
- (b) Prove that any odd number is expressible in the form 4n + 1 or 4n + 3 where n is an integer.
- 86. Prove that the analogue of Lemma 1.23 is not true for numbers of the form 4n + 3 where n is an integer.
- (a) Let $a, b \in \mathbb{Z}$. Prove that if a and b are expressible in the form 6n + 1, where n is an integer, then ab is also expressible in that form.
- (b) Prove that there are infinitely many prime numbers of the form 6n + 5

where n is an integer. (Hint: Assume, by way of contradiction, that there are only finitely many prime numbers of the desired form and ingeniously construct a number N that will eventually lead to a contradiction. In other words, parallel the proof of Proposition 1.22.)



The importance of divisibility and factorization in elementary number theory cannot be overestimated; the concepts and ideas presented in this chapter will appear again and again in succeeding chapters. The repercussions of the Fundamental Theorem of Arithmetic will be monumental. (Moral: Learn these concepts and ideas now!) The ultimate simplicity of these concepts has its disadvantages: Many of the open problems in elementary number theory are easily stated but maddeningly difficult to prove. (Go back and look at the conjectures in this chapter. How many of these conjectures would you have guessed still require proofs or counterexamples?) The simple nature of elementary number theory seemingly does not give us adequate techniques for attacking these questions; most mathematicians focus on more advanced algebraic and analytic techniques in their attempts to find solutions to these problems. It is perhaps unexpected (but certainly fascinating!) that the integers apparently contain so many secrets waiting to be discovered.

-Student Projects

- 1. (Programming project for calculator or computer)
- (a) Given positive integers a and b, compute (a, b) by using the Euclidean algorithm.
- (b) Given positive integers a and b, express (a, b) as an integral linear combination of a and b.

5

Prove or disprove the following conjectures. Conjecture: If n is a nonnegative integer, then $n^2 - 79n + 1601$ is a prime number. Conjecture: If n is a nonnegative integer, then $n^2 + n + 41$ is a prime

[A discussion of prime-producing polynomials of the form $n^2 + n + c$ (as in the second conjecture above) may be found in Daniel Fendel, "Prime-producing Polynomials and Principal Ideal Domains," Mathematics Magazine, 58 (1985), 204–210.]

(a) Let p_n denote the *n*th prime number. Prove that the infinite series $\sum_{n=1}^{\infty} \frac{1}{p_n}$ diverges. (A short proof of this fact can be found in Apostol, 1976).

(b) Do some research to find the behavior of the series $\sum_{p} \frac{1}{p}$, where p ranges over all twin primes.

It wo integers m and n between 2 and 100 inclusive are chosen. The sum of the two integers is given to one mathematician, Sam, and the product of the two integers is given to another mathematician, Prudence. Suppose that, after some thought, the two mathematicians exchange the following dialogue:

Prudence: "I don't know your sum, Sam." Sam: "I knew that you didn't, Prudence." Prudence: "Now I know your sum."

Sam: "And now I know your product."

What are m and n?

[A discussion of the problem above and similar problems may be found in John O. Kiltinen & Peter B. Young, "Goldbach, Lemoine, and a Know/Don't Know Problem," *Mathematics Magazine*, 58 (1985), 195-203.]

5. Answer the problem posed by Archimedes Andrews at the conclusion of the following article: Barry A. Cipra, "Archimedes Andrews and the Euclidean Time Bomb," *Mathematical Intelligencer*, 9 (1987), 44–47.

. For positive integral n, consider the function

$$h(n) = \begin{cases} \frac{n}{2}, & \text{if } n \text{ is even} \\ 3n + 1, & \text{if } n \text{ is odd} \end{cases}$$

Given n, one may iterate the function h(n) to obtain a sequence of positive integers $\{n, h(n), h(h(n)), h(h(h(n))), \dots\}$. For example, the sequence associated with the starting integer 6 is $\{6, 3, 10, 5, 16, 8, 4, 2, 1, \dots\}$. By experimenting with various starting values of n, formulate a conjecture concerning the behavior of the associated sequences.

[There is a famous unsolved problem concerning the function h(n) that you may have formulated above as a conjecture. For further discussion of this problem, consult section 11.3 of the following book: Clifford A. Pickover, Computers, Pattern, Chaos and Beauty (New York: St. Martin's Press, 1990).]

7. Find the next term in the following sequence:

[This sequence, created by Paul Chernoff, is discussed in Chapter 66 of the following book: Clifford A. Pickover, Mazes for the Mind: Computers and the Unexpected (New York: St. Martin's Press, 1992).]