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Divisibility and
Factorization

lementary number theory is the study of the divisibility properties of the
integers. Inasmuch as these divisibility properties form the basis for the
study of more advanced topics in number theory, they can be thought of as
forming the foundation for the entire area of number theory. It is both
beautiful and appropriate that such a pure area of mathematics is derived from
such a simple source. In addition, the main topics of this chapter are quite old,
dating back to the Alexandrian Greek period of mathematics, which began
approximately 300B.c. In fact, most of the ideas discussed here appear in
Euclid’s Elements.

In this chapter, we develop the concept of divisibility and the related
concept of factorization, which culminate in an extremely important property
of the infegers appropriately named the Fundamental Theorem of Arithmetic.
In addition, we will encounter and highlight certain proof strategies that are
used again and again in elementary number theory. These strategies form some
of the important “tools of the trade” of the number theorist.

Divisibility

The fundamental relation connecting one integer to another is the notion of
divisibility. In terms of long division, the divisibility relation means “divides
evenly with zero remainder.” Hence, the integer 3 divides the integer 6 since 3
divides evenly into 6 (two times) with zero remainder. Similarly, the integer 3
does not divide the integer 5, since 3 does not divide evenly into 5; 3 divides
into 5 with a quotient of 1 and a remainder of 2. We now make the divisibility
relation more mathematically precise.
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4  Chapter 1 Divisibility and Factorization

Biography

Fuclid of Alexandria (3657-2757 8.c.)

Little is known of Euclid’s life. The exact dates of his birth and death
(as well as his birthplace and nationality) are unknowi. Euclid is
remembered mainly for his monumental work, entitled Elements,
which was essentially a compilation of the mathematics of the classical
Greek period that preceded him. This massive work comprised 13
books and contained 465 propositions. Elements emphasized the
discipline of mathematics as a deductive science based on explicit
axioms and, as such, has influenced the course of mathematics as has
no other work., While much of Elements was devoted to geometry,
Books VII-IX as well as portions of Book X were devoted to the
theory of numbers. It is Euclid’s proof of the infinitade of the prime
numbers that is still used today. In addition, Euclid studied the
division algorithm (culminating in the so-called Euclidean algorithm
for the computation of greatest common divisors}, perfect numbers,
and Pythagorean triples. (All of the number-theoretic topics above will
be discussed in this book.)

Definition 1: Let a, b e Z. Then a divides b, denoted @’| b, if there exists
ceZ such that b = ac. If a | b, then a is said to be a divisor or factor of b. The
notation a + b means that ¢ does not divide b.

Example 1:

(@) 3|6 since there exists ¢ e Z such that 6 = 3c. Here,c = 2. Hence 3 is a
divisor of 6. _ ,

(b) 3} 5 since there does not exist ¢ & Z such that 5 = 3c. Note that ¢ would
have to be § here and § ¢ Z. Hence 3 is not a divisor of 5.
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(c) 3| —6 since there exists ¢ e Z such that —6 = 3¢. Here, ¢ = —2. Hence 3
is a divisor of —6. In fact, it is easily seen that +3 | £6.
(d) 1f a e Z, then a | O since there exists ¢ € Z such that 0
In other words, any integer divides 0.

(e) facZ and 0 _ a, then there exists ¢ €Z such that a = Oc if and only if
a = 0. In other words, the only integer having zero as a divisor is zero.

Il

ac. Here, ¢ = 0.

We now make two remarks concerning the notation a | b. First of all, a _ b
does not have the same meaning as either of the notations a/b and b /a. Note
that 4 | b is a statement about the relationship between two integers: It says
that a divides into b evenly with no remainder. The notations a/b and b/a are
interpreted, respectively, as a + b and b + @ and, as such, are rational
numbers. In other words, ¢ _ b is a statement about numbers while a/b and b/a
are numbers. Note, however, that a | b does imply that a divides b exactly bla
times provided that @ # 0.

The restriction that 4 not be zero in the implication above brings us to our
second remark. You may feel uncomfortable about allowing zero as a divisor
in (e) of Example 1 above. The phrase “division by zerc is undefined” has
probably been ingrained in your mind through constant repetition by many of
your mathematics teachers. We say that 0 | 0 here only because it is consistent
with our definition of divisibility; it should not be interpreted as implying that 0
divides 0 exactly 0/0 times. The form 0/0 is said to be indeterminate: It has no
meaning, The difference between the notation 0 | 0 and 0/0 is hence clear —
the former notation has meaning (albeit minimal and only as a consequence of
our definition), and the latter notation does not have meaning. We urge the
reader to pause and carefully consider the remarks above before continuing.

-The divisibility relation enjoys the following two properties, which are
recorded as propositions.

Proposition 1.1: Leta, b,c=Z. Ifa {band b |c, thenalc

Proof: Since a | b and b | ¢, there exist e, f & Z such that b = ae and ¢ = bf.
Then ’

¢ =bf = (ae)f = alef)
andajc B

Before continuing, note that we have just proven that the divisibility relation is
transitive. If the word transitive is unfamiliar to you, see Appendix B [in
particular, Example 3(b)] for a further discussion of relations and their
properties.

Proposition 1.2: Leta, b,c,m,neZ. Iic | @ and c | b, then ¢ | ma + nb.

Proof: Since ¢ | a and ¢ | b, there exist ¢, f e Z such that @ = ceand b = f
Then ’

\

ma + nb = mce + ncf = c(me + nf)

and ¢ |ma + nb. W .
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A special case of Proposition 1.2 is important enough to be highlighted
separately. We first give a special name to the expression ma -+ nb.

Definition 2: The expression ma + nb in Proposition 1.2 is said to be an
integral linear combination of a and b.

Proposition 1.2 says that an integer dividing cach of two integers also divides
any integral linear combination of those integers. This fact is extremely
valuable in establishing theoretical results. Consider the special case where
m = n = 1. We obtain the fact that, if an integer divides each of two integers,
then it divides the sum of the integers. The case where m = 1 and n = —1
similarly yields the fact that, if an integer divides each of two integers, then it
divides the difference of the two integers. We will use these facts repeatedly in
this book, and you will find them particularly useful in several theoretical
exercises. e

We now introduce a function with the set of real numbers R as its domain
and the set of integers Z as its range. This function will be used shortly to
prove the major result on divisibility; it will also be useful in Chapters 4 and 7.

Definition 3: Let x =R. The greatest integer function of x, denoted [x], is
the greatest integer less than or equal to x.

The existence of a greatest integer less than or equal to a given real number
follows from the well-ordering property of the integers discussed in the
Introduction.

Example 2:

(a) If a =7, then [a] = a since the greatest integer less than or equal to any
integer is the integer itself. It is easily seen that the comverse of this
statement is also true, namely that, if [2] = a for some a eR, then a e Z.
(b) Since the greatest integer less than or equal to 3 is 1, we have [3] = 1.
(c) Since the greatest integer less than or equal to 7 is 3, we have [x] = 3.
(d) Since the greatest integer less than or equal to —3 is —2, we have
3] = 2.

(e) Since the greatest integer less than or equal to —z is —d4, we have
[—m] = —4

The following lemma is basically an immediate consequence of the

definition of the greatest integer function, but a short proof is nonetheless
provided for your inspection.

Lemma 1.3: Let xR, Thenx — 1 < [x] = x

.Huwooﬂ.. Since the greatest integer function of x is less than or equal to x, the
second Imequality is clear. For the first inequality, assume, by way of
contradiction, that x — I = [x]. Then [x] + 1 = x and

Xl<x]+1=x

Lo ad ABRA ey cen e
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1 <« Quotient
Divisor—3[5 «Dividend
-3

2 <« Remainder
—— Figure 1.1 ——
Since [x] + 1 is an integer, this contradicts the fact that [x] is the greatest
integer less than or equal to x. Hence x — 1 < [x]. B

When one integer (the divisor) is divided into another integer (the dividend)
to obtain an integer quotient, an integer remainder is obtained. For example,
the long division for 3 divided into 5 (shown in Figure 1.1} can be expressed
more compacily via the equation

5=3-1+12

or by the phrase “the dividend is equal to the divisor times the quotient plus
the remainder.” Note that the remainder is strictly less than the divisor. If the
divisor in such a long division of integers is positive, the fact above is true in
general as the following theorem illustrates.

Theorem 1.4: (The Division Algorithm) Let 2, beZ with b > 0. Then
there exist unique g, r € Z such that
a=bg +r, O0=r<b
(Note that g stands for guotient and r stands for remainder.)

Proof: Let g = [¢] and r = a — b[Z]. Then a = bg + r is easily checked.
It remains to show that 0 =< r < b. By Lemma 1.3, we have that

mlA E Am
b bl b
Multiplying all terms of this inequality by —b, we obtain
b—a> niﬂwla
Reversing the inequality and adding a to all terms gives
a
0=a-s[Z] <5
“7 s

which is precisely 0 < r < b as desired; so, g and r as defined above have the
desired properties. It remains to show the uniqueness of g and r. Assume that

D”@Qunmlwwu OMJA@
and
a=bg; +r, O0=rn<h

We must show that ¢, = ¢, and r, = r,. We have

O=a—a=bg +r —(bgx+r)y=>5bg,—g)+(nnr)
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which implies that
B =1 = b{g — ¢2) ey

Hence, b |r —rn. Now 0 =n <band 0 =rn<bimply ~b <r —n <b;
along with b w r, —r, wehave r, — y = 0 or n, = 1. Now (1) bécomes

0 =bd(g: — g2)
Since b # 0, we have that g, — g, = 0 or g; = g, as desired. H

Note that = 0 in the division algorithm if and only if & | . Equivalently, a
necessary and sufficient condition in Theorem 1.4 for the remainder in a
division of integers to be zero is that the divisor evenly divide the dividend.
Given a, beZ with b > 0, the g and r of the division algorithm may be
obtained by using the equations defining g and r in the first statement of the
proof of the algorithm. (In fact, one would use precisely these equations to
comptute g and r on a standard calculator.) We illustrate with an exampie.

Example 3:

Find ¢ and r as in the division algorithm if 2 = —5 and b = 3.
By the proof of Theorem 1.4, we have

- (-3

__.na JL& n|m|m?mqu

and

Please check for yourself thata = bg + rand 0 = r << b.

A remark is in order here. When asked, “What is —5 divided by 3?” (as in
Example 3 above), many students will respond *“—1 with a remainder of -2
since —3 = —1 — % Although g = —1 and r = -2 satisfy a = bg + r, the
condition that 0 = r < b in Theorem 1.4 is no longer true. Hence, division in
the context of the division algorithm must be performed carefully so that both
desired conditions hold. More generalized versions of Theorem 1.4 that allow
negative divisors are investigated in Exercise 15.

We conclude this section with a definition and an example of concepts with
which you are probably already familiar.

Definition 4: Let n e Z. Then n is said to be even if 2| 7 and n is said to
be odd if 2 ¥ n. )

Example 4:

The set of even integers is given by {..., 6, -4, ~2,0,2,4,6,...}; the set
of odd integers is given by {...,—=7,-5,-3,-1,1,3,5,7,... 1
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Exercise 11 establishes important facts about even and odd integers that will be
useful throughout this book; solving this exercise is greatly encouraged.

Exercise Set 1.1

_\ 1. Prove or disprove each statement below.
(a) 6142
(b) 450
(c) 16|0
(d) 015
(e) 14997157 ‘
() 17998189
v 2. Find integers a, b, and ¢ such that a |bcbutatbandartc
" 3. Find the unique infegers g and r guaranteed by the division algorithm
(Theorem 1.4) with each dividend and divisor below.
(a) a =47, b =6

®) a=281,b=13
(©) a =343, b = 49
@ a=—105,b =10
() a = —469, b = 31
f a= —500, b =28

If @, b e Z, find a necessary and sufficient condition that a | b and & | a.

:5J Prove or disprove the following statements.

" (@ If a, b, ¢, and d are integers such that a|b and c|d, then

a+clb+d

{b) If a, b, ¢, and d are integers such that a | b and ¢ | d, then ac | bd.

{(c) If @, b, and ¢ are integers such that a t b and b ¢ ¢, then a f¢.°

/(6 (a) Leta, b, c e Z with ¢ # 0. Prove that a | b if and only if ac | be.
() Provide a counterexample to show why the statement of part (a) does

. not holdif ¢ = 0,

7 @ leta beZ with a | b. Prove that a” | b for every positive integer n.

# (& Let neZ with n > 0. Prove that n | (n + 1) — 1.

9. Let a, m and n be positive integers with a > 1. Prove that e™ — 1|a” — 1

© if and only if m |n. [Hint: For the “if” direction, write n = md with d
a positive integer and use the factorization 2™ — 1= (a™ — 1) X
Anihnfs + h‘.iﬂmiwv + oo+ g™m + HVH_

< 10, (@) Let neZ. Prove that 3| n® — n.

() Let neZ. Prove that 5| n® - n.

() Let neZ. Is it true that 4|a* -~ n? Provide a proof or

. counterexample.
s @ (2} Let neZ. Prove that n is an even integer if and only if n = 2m with
¢ mel.
© (b) Let neZ. Prove that n is an odd integer if and only if n = 2m + 1
T with meZ.

{c) Prove that the sum and product of two even integers are even.
{d) Prove that the sum of two odd integers is even and that their product is
odd.
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{e) Prove that the sum of an even integer and an odd integer is odd and

\. that their product is even.
1

2. Prove that the square of any odd integer is expressible in the form 81 + 1
with n e Z.

Ve 13. Prove that the fourth power of any odd integer is expressible in the form

16n + 1 withreZ.

/4. (a) Let x be a positive real number and let d be a positive integer. Prove

that the number of positive integers less than or equal to x that are
divisible by d is [3].

() Find the number of positive integers not exceeding 500 that are
divisible by 3.

{c) Find the number of positive integers between 200 and 500 that are
divisible by 3.

#4715, [The following exercise presents two alterdate versions of the division

algorithm (Theorem 1.4). Both versions allow negative divisors; as such,

they are more general than Theorem 1.4.]

(a) Let 2 and b be nonzero integers. Prove that there exist unique g, 7 ez
such that

a=>bg +r 0=r<|bl

(&) Find the unique g and r guaranteed by the division algorithm of part
(a) above with a = 47 and b = —6.
(&) Let a and b be nonzero integers. Prove that there exist unique g, r el
such that ,
b} b]

-y E

= bg +
a =bg +r, ) 5

This algorithm is called the absolute least remainder algorithm.
(4) Find the unique g and r guaranteed by the division algorithm of part
(c) above with ¢ = 47 and b = —6.

12
Prime Numbers

Every integer greater than one has at least two positive divisors, namely, 1 and
the integer itself. Those positive integers having no other positive divisors (and
so exactly two positive divisors) are of crucial importance in number- theory
and are introduced now.

Definition 5: Let p Z with p > 1. Then p is said to be prime if the ‘only
positive divisors of pare 1and p. i neZ,n > 1, and » is not prime, then n is
said to be composite.

Note that the positive integer 1 is neither prime nor composite by definition.
The reason for disallowing 1 as a prime number is investigated in Exercise 66.

Section 1.2 Prime Numbers 11
Example 5: _

The prime numbers between 2 and 50 inclusive are 2, 3, 5, 7, 11, 13, 17, 19,
23, 29, 31, 37, 41, 43, and 47. Exercise 22 shows that all prime numbers
except the integer 2 are odd and hence the integer 2 is the only even prime
number. :

Having introduced the concept of a prime number, a most fundamental
question arises. Are there finitely many or infinitely many prime numbers?
Before reading further, formulate your own conjecture; Theorem 1.6 will
ultimately provide the answer to this question. We first prove a preliminary
lemma,

Lemma 1.5: Every integer greater than 1 has a prime divisor.

Proof: Assume, by way of contradiction, that some integer greater than 1,
say 7, has no prime divisor. By the well-ordering property, we may assume that
n is the least such integer. Now n | »; since r has no prime divisor, » is not
prime. So n is composite and consequently there exist a, beZ such that
n=ab,1<ag<n and 1 <b <n Since 1 <a <n, we have that g has a
prime divisor, say p, so that p | @. But a | n so we have that p | » by Proposition
1.1 from which # has a prime divisor, a contradiction. So every integer greater
than 1 has a prime divisor.

We may now answer our motivating question posed prior to Lemma 1.5,
This result appears as Proposition 20 in Book IX of Euclid’s Elements; study
the proof carefully because it is a vivid illustration of great mathematical
ingenuity.

Theorem 1.6: (Euclid) There are infinitely many prime numbers.

L_uwc&".. Assume, by way of contradiction, that there are only finitely many
prime numbets, say pa, P, - - - , Pn. Consider the number N = pyp;+--p. + 1
Now N has a prime divisor, say p, by Lemma 1.5. So p = p; for some i
i=1,2,...,n Then p |N - pyps- - p, (by Proposition 1.2), which implies
that p | 1, a contradiction. Hence, there are infinitely many prime numbers. Bl

The point of ingenuity in the proof above is the construction of the number N;
it is precisely consideration of this number that eventually results in the desired
contradiction. You will find similar constructions useful throughout this book.
Given that there are infinitely many prime numbers, how can we go about
finding these numbers? The following proposition is useful in this regard.

Proposition 1.7: Let n be a composite number. Then n has a prime
divisor p with p = Vn.

Proof: Since n is a composite number, there exist a,beZ such that
n=ab, 1<a<n, 1<b<n, and, without loss of generality, o =< b. Now
a=Vn.(Ifa>Vn, we have

n=ab>Vavn=n
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which is impossible.) By Lemma 1.3, we have that « has a prime divisor, say p,
so that p | a. But a | n, so we have that p | n by Proposition 1.1. Furthermore,
p = a = Vn;pis the desired prime divisor of n. B

Proposition 1.7 yields a method for finding all prime numbers less than or
equal to a specified integer n > 1 by producing a criterion satisfied by all
composite numbers. If an integer greater than one fails to satisfy this criterion,
then the integer cannot be composite and so is prime. This method is called the
sieve of Eratosthenes and is one of several “‘sieve methods.” We illusirate the
sieve of Eratosthenes with an example.

Example 6:

Suppose that we wish to find all prime numbers less than or equal to 50. By
Proposition 1.7, any composite number less than or equal to 50 must have a
prime divisor less than or equal to V50 = 7.07. The prime numbers less
than or equal to 7.07 are 2, 3, 5, and 7. Hence, from a list of the integers
from 2 to 50, we delete all multiples of 2, all multiples of 3, all multiples of
5, and all multiples of 7 (not including 2, 3, 3, and 7 themselves). Note that
all such multiples are clearly composite.

2 3 4 5 6 7 8 9 W0
11 ¥ 13 4 15 36 17 18 19 W
M 22 23 4 25 26 ¥ B2/ N
31 32 33 34 35 36 37 38 38 40
41 42 43 44 45 46 47 48 48 X0

Any number remaining in the list is not divisible by 2, 3, 5, or 7 and, by
Proposition 1.7, cannot be composite. So the numbers remaining in the list
above are prime (compare these numbers with those in Example 5); the
composite numbers have been “sieved out” of the list.

_In addition to finding prime numbers, Proposition 1.7 can be used to
determine an algorithm for testing whether a given positive integer n > 1 is
prime or composite. One checks whether n is divisible by any prime number p
with p = Vn. Ifit is divisible, then » is composite; if not, then # is prime. Such
an algorithm is an example of a primality test. Note that this particular
primality test is highly inefficient since it requires testing a given integer for
divisibility by all prime numbers less than or equal to the square root of the
integer. More useful primality testing algorithms exist — unfortunately, they
require more number theory than we have developed at the present time. Two
such primality tests are discussed in Section 8.3. The largest prime number
known at this writing was discovered in 1992; 27%%° — 1, ‘We will return to this
prime number later. In addition, the primality or compositeness of any given
integer between 101 and 9999 inclusive may be deduced using the mHE inside
the cover of this book; instructions for using this grid may be found in Table 1
of Appendix E.
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Eratosthenes of Cyrene (276194 5.c.)

Eratosthenes, a contemporary of Archimedes, is perhaps best remem-
bered as the chief librarian at the University of Alexandria in ancient
Egypt. Born in Cyrene on the southern coast of the Mediterranean
Sea, he was gifted not only as a mathematician, but also as a
philosopher, astronomer, poet, historian, and athlete. There is much
speculation as to his nickname of “Beta.” One theory offers that the
nickname originated from the fact that he stood at least second in each
of the branches of knowledge of his day. In 240s.c,, Eratosthenes
made what was perhaps his most significant scientific contribution
when he measured the circumference of the earth using a simple
application of Euclidean geometry. His primary contribution to
number theory is his famous sieve for finding prime numbers as
discussed in the text.

How are prime numbers distributed among the positive integers? A solution
of Exercise 17 suggests that the prime numbers are distributed more sparsely
as you progress through larger and larger positive integers. The proposition
below shows .more precisely that there exist arbitrarily long sequences of
consecutive positive integers containing no prime numbers. Equivalently, there
exist arbitrarily large gaps between prime numbers.

Proposition 1.8: For any positive integer n, there are at least n
consecutive composite positive integers.

Proof: Given the positive integer n, consider the n consecutive positive
integers
n+N+2,n+1)+3,...,{n+1+n+1

Let i be a positive integer such that 2 =i =n + 1. Since i | (n + 1)!
we have
Hua+DI+4, 2=i=n+1

by Proposition 1.2. So each of the r consecutive positive integers above is
composite. &

Example 7

By the proof of Proposition 1.8 above, a sequence of eight consecutive
composite positive integers is given by 9! 4+ 2, 914 3,,..,91 + 9 or,
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equivalently, 362882,362883,...,362889. Note that there is no guarantee
that the sequence of integers produced by the proof of Proposition 1.8 will
be the least such occurrence of integers. For example, the least occurrence
of eight consecutive composite positive integers is given by the sequence
114, 115, 116, 117, 118, 119, 120, and 121.

Since 2 is the only even prime number, the only consecutive prime numbers
are 2 and 3. How many pairs of maﬁm numbers differ by two as in 3 and 5, 5
and 7, 11 and 13, and so on? Such pairs of prime numbers are said to be twin
primes. Unfortunately, the answer to this question is unknown. The operative
conjecture asserts the existence of infinitely many twin primes, as stated below.

Conjecture 1:«Twin Prime Conjecture) There are infinitely many prime
numbers p for which p + 2 is also a prime number.

The largest known pair of twin primes is 1706595 - 2% + 1, discovered in
1990 by B. Parady, 1. Smith, and S. Zarantonello.

The most famous result concerning the distribution of prime numbers is
called the Prime Number Theorem. This theorem was conjectured in 1793 by
Carl Friedrich Gauss but resisted proof until 1896 when two independent
proofs were produced by J. Hadamard and C. J. de la Vallée Poussin. The
Prime Number Theorem pgives an estimate of the number of prime numbers
less than or equal to a given positive real number x. The estimate improves as
x gets large. We first define a function that counts prime numbers.

Definition 6: Let x € R with x > 0. Then n(x) is the function defined by

n(x) = |{p:p prime; 1 < p = x|

In this book, vertical bars enclosing a set (as in Definition 6 above) will denote
the cardinality of the set. So, if x is a positive real number, then z{x) is the
number of prime numbers less than or equal to x.

Example 8:

From Example 5, we have that the number of prime numbers less than or
equal to 50 is 15. So =(50) =

We may now state the Prime Number Theorem.

a{x)nx

Theorem 1.9: (Prime Number Theorem) lim =1

P X

The Prime Number Theorem says that, for large x, the quantity *H2* is close
to 1. This is equivalent to saying that the quantity 7(x) may be approximated
by :%. In other words, %5 is an estimate for n{x) for large x. Table 1.1 gives a

great H.mouwma Euler. :
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— Table1.1 ——
. () X w(x)lnx
Inx x
10° 168 1448 1.161
10° 1229 10857 1132
10° 9592 8685.9 1.104

10° 78498 72382.4 1084
107 664579 620420.7 1.071
10° 5761455  5428681.0  1.061

comparison of m(x) and 5 for increasingly larger values of x. Note how the
ratio 20t oatg closer and closer to 1 as x — o,

The most direct proof of the Prime Number Theorem requires considerable
complex analysis, which is beyond the scope of this book. A complete
discussion of this analytic proof may be found in Apostol (1976). In 1949,
Atle Selberg and Paul Erdds discovered a surprising new proof of the
Prime Number Theorem. This new proof was termed “elementary” by the
mathematical community; although lengthy and considerably more intricate
than the original proof, the new one is accessible to anyone with a know-
ledge of calculus. The elementary proof may be found in Hardy and Wright
(1979).

Many unsolved problems in number theory deal with integers that are
expressible in certain forms. One of the most famous unsolved problems in all
of number theory was ncu_anz:d& by Christian Qom&umnr E a letter to the

\:131. '

P

Conjecture 2: (Goldbach, 1742) Every even integer greater than 2 can
be expressed as the sum of two (not necessarily distinet) prime numbers.

As three quick illustrations of such expressions, consider 4 = 2 + 2,
6 =3+ 3, and 8 = 3 + 5. Goldbach’s Conjecture (as Conjecture 2 has come
to be known, appropriately enough) has been verified for all even integers less
than 210" By experimentation with small even integers, the interested
reader can discover that the representation of an even integer as the sum of
two prime numbers may not be unique. (In fact, the number of such
representations has been predicted in a formula by English mathematicians
G. H. Hardy and I. E. Littlewood.) However, a proof that at léast one such
representation exists for every even integer greater than 2 remains elusive.

We conclude this section with a discussion of three unsolved problems
concerning prime numbers expressible in certain forms and a related helpful
remark for the exercises. The first form is named wmma a French monk, Father
Marin Mersenne (1588-1648).
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Definition 7: Any prime number expressible in the form 27 - 1 with p
prime is said to be a Mersenne prime. _

Example 9:

The first five Mersenne primes are 3 (=22 -1), 7 (=2"-1), 31
(=25-1), 127 ( =27 — 1), and 8191 ( = 2** — 1). Note that 21 — 1 =
2047 = (23)(89) is not a Mersenne prime. .

In 1644, Mersenne authored Cogitata Physica-Mathematica in which he
claimed that 2¥ — 1 was a prime number for p equal to 2, 3, §, 7, 13, 17, 19, 31,
67, 127, and 257 and a composite number for all other prime numbers p with
p < 257. Work completed in 1947 revealed that Mersenne made five mistakes:
2 -1 is a prime number for p equal to 61, 8%, and 107 (not included in
Mersenne’s list) and is a composite number for p equal to 67 and 257 (included
in Mersenne’s list). There are currently 32 known Mersenne primes. The
largest known Mersenne prime is of vintage 1992 and was discovered by
D. Slowinski and P. Gage; it is 27°°*® — 1, a number containing 227832 digits.
{The observant reader will recall that this Mersenne prime is also the largest
known prime number!) Curiously enough, the Mersenne primes have not been
discovered in increasing order. For example, the 31st known Mersenne prime,
21855 — 1 was discovered three years after the larger 30th known Mersenne
prime, 22¥%%%% — 1. It may be that other Mersenne primes lie in the gaps formed
by known Mersenne primes. In any event, most mathematicians believe that
there are infinitely many Mersenne primes, and so we state the following
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Conjecture 3: There are infinitely many Mersenne primes.

The second form for prime numbers is named after French mathematician
Pierre de Fermat.

Definition 8: Any prime number expressible in the form 2% + 1 with
rneZ and n = 0 is said to be a Fermat prime.

Example 10:

The first five Fermat primes are 3 { = 224 1), 5% + 1),17 (= 22 + 1),
257 (=22 + 1), and 65537 ( = 2% + 1).
Fermat conjectured in 1640 that any number expressible in the form 2% + 1

with n € Z and n = 0 is prime. The conjecture was disproved in 1732 by Euler,
who proved that 641|2% + 1 and hence 2¥ + 1 is not a Fermat prime.
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Currently, only five Fermat primes are known, namely those prime numbers
! given in Example 10 above. Many mathematicians believe that there are no
Fermat primes other than these five; thus the following conjecture.

Comnjecture 4: There are exactly five Fermat primes.

The final form for prime numbers that we examine here are those prime
numbers that are expressible as one more than a perfect square. The
conjecture below was made in 1922 by Hardy and Littlewood:

Conjecture 5: There are infinitely many prime numbers expressible in the
form n* + 1 where n is a positive integer.

If you are interested, there are several examples of primes of the form in
Conjecture 5.

We make one final remark here. In view of Conjecture 5 above, it may be
tempting to conjecture that there are infinitely many prime numbers expres-
sible in the form n® — 1 where n is a positive integer. This conjecture,
however, is easily seen to be false. Note first that n = 1 does not give a prime
_ number when substituted in the desired form, while n = 2 does. Now note that

p?—1=(n-—1)}n +1)

Inasmuch as the product (# — 1}{n + 1) pives a nontrivial factorization of
n® — 1if n > 2, we have the fact that n* — 1 is a prime number if and only if
n = 2. Something as simple as factoring expressions can be a powerful tool in
number theory (see also Exercise 9 of Section 1). Remember this tool!

Exercise Set 1.2

! \ 16. Determine whether the following positive integers are prime or composite
by using the primality test motivated by Proposition 1.7.
() 127
(b 129
{c) 131
{d) 133
{(e) 137
(fr 139
\@;Cmn the sieve of Eratosthenes to find all prime numbers less than 200.
« 18. (@) Find 13 consecutive composite positive integers.
(b) Find the least occurrence of 13 consecutive composite positive integers.
{(Hint: Use Table 3 in Appendix E.)
/19, Find all twin primes less than 200,
v 20. (a) Find £(10), x(100), and 7(200).
(b) Compute ZEUAE for x = 10, x = 100, and x = 200 and compare the
- obtained values with those in Table 1.1.
&@b/\am@ Goldbach’s Conjecture (Conjecture 2) for the following even
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(c) 114
(d) 222
" @ Prove that 2 is the only even prime number.
\\ @ Prove or disprove the following conjecture, which is similar to Conjecture
o1,
f Conjecture: There are infinitely many prime numbers p for which p + 2
~and p + 4 are also prime numbers.
\ ®v Prove that every integer greater than 11 can be nmm:,wmmna as the sum of
P two composite numbers.
/" 25. (a) Prove that all odd prime numbers can be expressed as the difference of
‘ squares of two successive integers.

(b} Prove that no prime number can be expressed as the difference of two
fourth powers of integers. (Hint: Use the factorization tool discussed
in the final paragraph of this section.)

v @?oﬁw or disprove the following statements.
(@) fpisa HuEEm number, then 22 — 1 is a munaw number.
(&) If 22 — 1 is a prime number, then p is a prime number. (Hing
) Consider the contrapositive of the statement.)
v 27. Let ¢ and n be m,Om:?m integers. Prove that, if 2 — 1 is a prime number,
then @ =2 and n is a prime number. Conclude that Em only prime
/ numbers of the form ¢" — 1 are Mersenne primes.
v 28. Letaand n be positive integers with a4 > 1. Prove that, if " + 1 is a prime
. number, then a is even and n is a power of 2.
# 29. let n be a @cm:::w integer with n 5 1. Prove that, if n® + 1 is a prime

number, then #® -+ 1 is expressible in the form 4k + 1 with k e Z.

“@ Prove or disprove the following conjecture, which is similar to Conjecture

5.

ﬁ_oémngé. There are infinitely many primne numbers nxvmmmm&_m in the

form n* + 1 where n is a positive integer.

R @ Prove or &%846 the following conjecture.
Conjecture: I n is a positive integer, then n? — n + 41 is a prime E:ugﬁ

Greatest Common Divisors

Given two integers ¢ and b, not both zero, consider the set S of integers that
divide both a and b. The set S is necessarily nonempty (since +1 €$) and finite
{since zero is the only integer that has an infinite number of divisors and at
least one of a and b is nonzero). So it makes sense to speak of the greatest
element of 8. Note that such an element is necessarily positive.

Definition 9: Let a,b«Z with a and b not both zero. The greatest
common divisor of a and b, denoted (a, b), is the greatest positive integer d
_-slich that d | & and 4| b: If (g, b) =.1, then g and-b are said to be relatively

prime. . “

Section 1.3  Greatest Common Divisors 19

Note that (0,0) is undefined. (Why?) Furthermore, it is easy to see m:: if
{a, b} = d, then

A|ﬁu @v = AQ‘. |_w.v - A?h“ |.Wv =
So, in Example 11, we restrict our discussion to the computation of the greatest
common divisor of two nonnegative integers.

Example 11:

(@) The divisors of 24 are 1, £2, +3, +4, +6, +8 +12, and +24. The
divisors of 60 are +1, +2, %3, +4, +5, +6, 10, £12, £15, +20, £30, and
+60. The common divisors of 24 and 60 are +1, £2, £3, £4, £6, and +12.
So the greatest common divisor of 24 and 60 is 12, which is denoted
(24, 60) =

(b) Every integer is a divisor of zero. So the common divisors of 24 and 0
are precisely the divisors of 24; from (a) above, the greatest common divisor
of 24 and 0 is 24, which is denoted (24,0) = 24. In general, if s € Z with
a # 0, we have Aa 0) = |al.

{c) The divisors of 35 are +1, +5, +7, and %35. From (a) above, the
common divisors of 24 and 35 are +1. So the greatest common divisor of 24
and 35 is 1, which is denoted (24, wmv 1. In other words, 24 and 35 are
relatively prime.

One crucial fact to remember when solving theoretical problems involving
greatest common divisors is that (a, b) = d implies d|a and d|b; this
observation in conjunction with Definition 1 or Proposition 1.2 or both is an
extremely effective theoretical tool. At this point, it may be particularly
instructive to attempt the solution of Exercises 36 and 38 with the above facts
in mind.

We now prove two properties of greatest common divisors, which are
recorded as propositions.

..~ Proposition (.10} Let a, b e Z with (a, b) = d. Then (a/d, b/d) =

Proof: Let (a/d,b/d) = d'. Then d'|a/d and d'|b/d so there exist
e,feZ such that a/d = d'e and b/d = d'f. So a =d'de and b = d'df;
consequently, we have d'd | and d'd | b. This implies that d’d is a common
divisor of ¢ and b and, since d is the greatest common divisor of 2 and b, we
have d’ = 1, from which comes the desired result. B

Proposition 1.11: Let a, b € Z with a and b not both zero. Then
{a,b) = min{ma + nb:m, neZ,ma + nb > 0}

The set-theoretic function “min” produces the minimum element of z set.
(Similarly, the set-theoretic function “max,” to be used Ilater, produces the
maximum element of a set.} So Proposition 1.11 says that the greatest common
divisor of two integers is the least positive number that is expressible as an
integral linear combination of the integers.
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Proof: (of Proposition 1.11) Note that {ma + nbim,neZ,ma +
nb > 0} # @ since, without loss of generality, 4 # 0 and then either
1a +0b >0 or —la + 0b > 0. So min{ma + nb:m,neZ, ma +'nb > 0}
exists by the well-ordering property; let ,

d = min{ma + nb:m,neZ,ma + nb >0} =m'a +n'b

We first show that d | 2 and d | b. By the division algorithm, there exist ¢, r e Z
such that
a=dq +r O=r<d
Now
r=a—-dg=a—(ma+nb)g=(1-gma~gnb

and we have that r is an integral linear combination of & and b. Since
0 = r < 4 and 4 is the minimum positive integral linear combination of & and
b, we have r = 0, from which @ = dg + r implies that a = dg. So d|a.
Similarly, d | b. Tt remains to show that d is the greafest common divisor of «
and b. Let ¢ be any common divisor of a and b so that ¢ |a and ¢ | b. Then
¢|m'a + n'b = d by Proposition 1.2, from which ¢ = d. H

Proposition 1.11 above gives another important theoretical tool when dealing
with greatest common divisors, namely, that (a, b) = d implies that d may be
expressed as an integral linear combination of 2 and b. In fact, the converse of
this fact is true if d = 1, namely, that if 1 is expressible as an integral linear
combination of two integers a2 and b, then (z, b) = 1. (Why is this true?) We
will use the tool of expressing the greatest common divisor of two integers as
an integral linear combination of these integers in forthcoming chapters. Note
further that Proposition 1.11 may be used to show that a common divisor of
two integers is not only less than the greatest common divisor but also divides
the greatest common divisor. (Do this!) This fact is also frequently useful in
establishing theoretical results.

The concept of greatest common divisor can be extended to more than two
integers.

Definition 10: Let a,, aa, ..., 8, & Z with a3, a5, .. ., @, 1Ot all zero. The
greatest common divisor of ai, dz,. .., @, denoted (ai, as, ... ,4a.), 5 the
greatest integer d such that d _ a,i=12...,n If(a,8;,...,8,) = 1, then
ai, @, . . . , 4, are said to be relatively prime. If (a;, a;} = 1 for all pairs i, | with
i # J, then ay, 22, . . . , @, are said to be pairwise relatively prime.

Example 12:

The divisors of 24 are £1, £2, +3, =4, £6, +8, +12, and £24. The divisors
of 60 are +1, £2, £3, =4, £5, 6, 210, £12, £15, +20, +30, and +60. The
divisors of 30 are 1, £2, +3, £5, =6, £10, 15, and +30. The common
divisors of 24, 60, and 30 are £1, 2, £3, and 0. So the greatest common
divisor of 24, 60, and 30 is 6, which is denoted (24, 60, 30) = 6. An alternate
method for computing the greatest common divisor of more than two
integers is investigated in Exercise 51, :
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Pairwise relatively prime integers are relatively prime; it is ot the case that
relatively prime integers are necessarily pairwise relatively prime as Example
13 illustrates.

Example 13:

Since (24, 60,49) = 1 (verify this!), we have that 24, 60, and 49 are relatively
prime. Since (24,60) = 12 # 1 by Example 11(a), we have that 24, 60, and
49 are not pairwise relatively prime.

Exercise Set 1.3

.\\mn. Find the greatest common divisors below.
®) (32,56)
{c) (58,63} 7
d (0,113) n3
(e) (111,129} 3
o~ () (120,165) 157
, rmm Let ¢ e Z with a > 0. Find the greatest common divisors below.
=" {a) (a, &™) where n is a positive integer
® (a,a +1)
© (g,a +2)
(d) (3a + 3,72 +12)
"34. Find the greatest common divisors below.
{2) (18,36,63) :
(b) (30,42,70)
ﬁh.v AOu m.ww O.v
(d) (35,55,77)
(e) (36,42,54,78)
(P (35,63,70,98)
v 35. Find four integers that are relatively prime (when taken together) but such
e that no two of the integers are relatively prime when taken separately.
m\wm.:& Do there exist integers x and y such that x + y = 100 and (x, y) = 8?
e Why or why not?
(b) Prove that there exist infinitely many pairs of integers x and y such that
) x+y=87and (x,y) = 3. _
#37. Let a, beZ with @ and b not both zero and let ¢ be a nonzero integer.
Prove that {ca, cb) = lc|(a, b).

Y @mv Let a and b be relatively prime integers. Prove that (a + b,a — b) is

~ either T or 2.

/39 Let a and b be relatively prime integers. Find all values of

, {a+2b,2a + b).

“ 407 Let a, b e Z with (a,4) = 2 and (b, 4) = 2. Find (a + b, 4) and prove that
~ your answer is correct.

¥ 41, Let a, b, ceZ with {a,b) =1 and c|a + b. Prove that {(a,¢) =1 and
(b= L ,

_~12. (a) Let a, b, c eZ with (a, b) = (g, ¢) = 1. Prove that (g, bc} = L.

P L AU SRS TR 5N
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() Let a by, by, ..., baeZ with (a,b) = (abz) =" =(ab)=1
Prove that
(@, bibz- - by) =1

\@ (@) Let a, b, ¢ e Z with (a, b) = 1. Prove that if a lcand b |c, then ab | c.

“~ (b) Provide a counterexample to show why the statement of part (a) does
not hold if (g, b) = L

(© Let a,as,...,a, ced with a;,a;,...,8, pairwise relatively prime.
Prove that if 4; | ¢ for each i, then a1a, * - - a, | c.

#44. (@) Let a, b, ceZ with (a, b) = 1 and a | bc. Prove thata |e

() Provide a counterexample to show why the statement of part (a) does
not hold if {a, b) # L.

/45, Let a, b, ¢, and d be positive integers. If b # 4 and (g, b)

_ provethatf + 5 ¢ Z

/6. Let a, b, ¢, and d be integers with b and d positive and (a, b) = (c,d) =1

A mistake often made when first encountering fractions is to assume that

¢ 4+ £ = £%< Find all solutions of this equation. ,

(@) Lot g, b eZ and let m be a nonnegative integer. Prove that (a, by=1
if and only if (a™, b) = 1. .

(b) Let a,beZ and let m and n be nonnegative integers. Prove that

. (a, b) = 1if and only if (a™, d") = L.

/48. Let a, b = 7. Prove that (a, b) = 1 if and only if (& + b, ab) = 1.

¥ 49. Prove that in any eight composite positive integers not exceeding 360, at

" .. least two are not relatively prime.

50, Prove that every integer greater than 6 can be expressed as the sum of two

relatively prime integers greater than 1.
@u._,. Let ay, ay, - - . , 4, € Z with a; # 0. Prove that

(c,d) =1,

Aﬁm‘. dz, hw: LI ) hav = Ahﬁ:“ hnvu 7 VRN &:v

(This method can be used generally to compute the greatest common
divisor of more than two integers.) Use this. method to compute the
greatest common divisor of each set of integers in Exercise 34.
52. Let ay, a0, ..., 8,6 L with a; # 0 and let ¢ be a nonzero integer. Prove
that
Aﬁn.:u Clz, CB3y - vy ﬁhav = _n_ A.nmv a2, 354 -5 Q:v.

53. Let neZ. Prove that the integers 6n — 1, 6n + 1, 6n + 2, 6n + 3, and
6n + 5 are pairwise relatively prime.

The m:&&%z Algorithm

Our current method for finding the greatest common divisor of two integers is
to list all divisors of each integer, find those divisors common to the two lists,
and then choose the greatest such common divisor. Surely this method
becomes unwieldy for large integers! (For example, what is the greatest
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common divisor of 803 and 154?) Is there a better method for computing the
greatest common divisor of two integers? Yes, fortunately. Before discussing
this method, we need a preliminary lemma.

Lemma 1.12: ¥ a,beZ, a = b >0, and a = bg + r with g, reZ, then
(a, b) = (b, 1).

Proof: Let c be a common divisor of 4 and b. Then ¢ |a and ¢ |b imply”
c¢|a — gb by Proposition 1.2, from which c|r; we then have that ¢ is a
common divisor of b and r. Now let ¢ be a common divisor of b and r so that
¢|b and ¢ |r. Then c|gb + r by Proposition 1.2, from which ¢ |a; we then
have that c is a common divisor of g and 5. So the common divisors of.¢ and b

are the same as the common divisors of b and 1 from which (4, 5) = (b,r). B _

The suggested method for computing the greatest common divisor of two
positive integers is called the Euclidean algorithm after Euclid, who describes
the algorithm in Book VII of his Elements. The Euclidean algorithm
repeatedly uses the division algorithm (Theorem 1.4) to generate guotients and
remainders from smaller and smaller pairs of positive integers. Eventually in
this process, a remainder of zero is encountered, which terminates the
algorithm; the greatest common divisor of the two integers is the remainder
encountered just prior to the zero remainder. All of this is contained in the
following theorem. As you read the theorem, note that the only parts requiring
proof are the last three statements.
Theorem 1.13: (The Euclidean Algorithm) Leta, beZ witha = b > 0.
By the division algorithm, there exist ¢,, r; ¢ Z such that
h”mu&_ux_lﬁr OMH_JA@

If r, > 0, there exist (by the division algorithm) g, r,€ Z such that
b =ng, +n, 0=r<n

If r, > 0, there exist _Quw the division algorithm) g5, r; € Z such that
H=ngstn, 0=rn<pn

Continue this process. Then r, = 0 for some n. If n > 1, then (g, b) = r,.... If

n = 1, then (g, b) = b.

Proof: Note thatry > r, > 1, > . ... Ifr, # 0 forall n, then 1y, 1, 73, . .. 8
an infinite, strictly decreasing sequence of positive integers, which is impos-
sible. So r, = 0 for some n. Now, if n > 1, repeated applications of Lemma
1.12 give ‘

(a.b)y=(b,n)=(r, ) =(n = F (o) = (rn-1,0) = rnq
as desired. If n = 1, the desired statement is obvious. B

Note that the Euclidean algorithm finds the greatest common divisor in the
case of two positive integers, 4 and b (with a = b}). In view of the remarks
immediately after Definition 9 and the general remark in {b} of Example 11, all
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other computations are either reducible to this case or trivial. We now
illustrate the use of the Euclidean algorithm with an example.

Example 14: -

Find (803, 154) by wsing the Euclidean algorithim.
The notation of Theorem 1.13 is used throughout. Here & = 803 and
b = 154. By the division algorithm,

803 = 154-5 + 33 2)

Since r, = 33 > 0 apply the division algorithm to & = 154 and r, = 33 to
obtain

154 = 33-4 + 22 (3)

Since r, = 22 > (1, apply the division algorithm to r; = 33 and r, = 22 t0
obtain

33=22-1+11 @)
Since r; = 11 > 0, we apply the division algorithm to . = 22 and r; = 11 to
obtain

2=11-2+ 0
Since ry = 0, the Euclidean algorithm terminates and

803,154y =, = 11

Recall that, by Proposition 1.11, the greatest common divisor of two
integers is expressible as an integral linear combination of the two integers.
{As already noted, this expression will be used in forthcoming chapters.) The
Euclidean algorithm provides a systematic procedure for obtaining such a
linear combination, as the following example illustrates.

Example 15:

Express (803, 154) as an integral linear combination of 803 and 154.
Essentially, work through the steps of Example 14 backward. We have

(803,154) = 11 = 33 — 22 [by (4)]
=33 — (154 — 33-4) [by (3)]

I

=33.5—- 154 ,
= (803 ~ 154-5)5 - 154 [by (2}]
=803-5—154-26

5-803 + (—26)154

This is an expression of (803,154} as an integral linear combination oﬂ M.wom
and 154 as desired. Two remarks are in order here. First, by Proposition
i.11, the greatest common divisor of two integers is the least positive
number expressible as an integral linear combination of the integers. So no
integral linear combination of 803 and 154 can yield any of the integers
10,9,...,1. Second, the expression of 11 as an integral linear combination
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of 803 and 154 above is not unique. For example, the reader may verify that
11 = 19-803 — 99-154 is another such expression. In fact, there are infinitely
many expressions of 11 as an integral linear combination of 803 and 154. We
will have more to say on this issue in Chapter 6.

A useful programming project related to Examples 14 and 15 appears as
Student Project 1. :

Exercise Set 1.4

54. Use the Euclidean algorithm (Theorem 1.13) to find the greatest common
divisors below. Express each greatest common divisor as an integral linear
combination of the original integers.

{(a) (37,60)

(b) (78,708) ’
(c) (441,1135)

(d) (793,3172)

{e) (2059, 2381)

() (25174,42722)

55. Prove that 7 has no expression as an integral linear combination of 18209
. and 19043.

,_.m.m.“ Find two rational numbers with denominators 11 and 13, respectively, and
T asum of & :

57. Use Exercise 51 and the Euclidean algorithm to find the greatest common

divisors below. Express each greatest common divisor as an integral linear
combination of the original integers.

(a) (221,247,323)

@) (210,294, 490, 735)

[The. following exercise presents an algorithm for computing the greatest
common divisor of two positive integers analogous to the Euclidean
algorithm. This new algorithm is based on the absolute least remainder
algorithm given in part (c) of Exercise 15.] Let a, b« Z witha = b > 0. By
the absolute least remainder algorithm, there exist g1, r € Z such that

b el
QNWQH..TJL ||M|AJMIN|
If r, # O, there exist (by the absolute least remainder algorithm) g,, e Z
such that
ni Iri
b=rg,+n, FM_AGMMW

If r, # O, there exist (by the absolute least remainder algorithm) ¢., e 7
such that

P = Fgs o1, TSR =
Continue this process.

(a) Prove that r, = ( for some n. If n > 1, prove that (g, b) = |r,_4|.
() Use the new algorithm above to find (204, 228) and (233, 377).
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The Fundamental Theorem of Arithmetic

The Fundamental Theorem of Arithmetic (the. essence of which appears as
Proposition 14 in Book IX of Buclid’s Elemenss) is our first big theorem of
number theory, but certainly not our last! This theorem guarantees that any
integer greater than 1 can be decomposed into a product of prime numbers;
furthermore, this decomposition is unique except for the order in which the
prime numbers are listed. (For example, the decomposition of 12 into 2-2-3 is
the same as the decomposition of 12 into 2 - 3 - 2 except for the order in which
the two 2°s and one 3 are listed.) We first prove an important preliminary
lemma.

Lemma 1.14: (Buclid) Let g, b, p e Z with p prime. If p [ab, then p | a
orp |b. ,

Proof: Assume that p +a. Then (a,p) = 1. We must show that p | b. By
Proposition 1.11, there exist m, neZ such that ma + np = 1. Also, p|ab
implies @b = pc for some ¢ e Z. Now multiplying both sides of ma + np =1
by b, we have mab + npb = b, ab = pc then implies that mpc + npb = b or
p(me + nb) = b. So we have p | b as desired. B

Note that Lemma 1.14 does not hold if p is composite. {(Your solution to
Exercise 2 in Section 1 should provide a counterexample.) In view of this, the
criterion in Lemma 1.14 could be used to define a prime number as follows:

An integer p > 1 is said to be prime if whenever a and b are
integers with p | ab, then p |a or p | b.

This alternate definition of prime is useful in more general mathematical
settings (see, for example, Definition 3.3 on page 136 of Hungerford, 1974); in
the system of integers, we have opted instead for the more traditional
definition given in Definition 5. :

Lemma 1.14 above can be generalized. We state this generalization as a
corollary in which we use the powerful proof technique called mathematical
induction. Mathematical induction will be used frequently in this book,
especially in Chapter 7. (You may have already used mathematical induction a
few times in the preceding exercises.) See Appendix A for a discussion of
mathematical induction:

Corollary 1.15: Let ay, a5, ..., a,, p e Z with p prime. If p | 2105 - - 4,
then p | 4; for some . _

, Huwoc%.. We use induction on n. The statement for » = 1 is obvious. The
staternent for » = 2 is Lemma 1.14. Assume that k = 2 and that the desired
statement is true for n = k so that p _ @8, - - - a; implies that p _ a; for some i
(with 1 =i = k). We must show that p | a;a, - - @, implies that p | g; for
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some { (with 1=i=k + 1) so that the desired statement holds for
n=%k+1 Now p|aja,- - a., implies p|(a,a," - - a)ar..; Lemma 1.14
then implies p |10, - - @y or p | aysy. I p | @r.y, then the desired statement
holds for n = k + 1. If p 4 ass, then p | aya, - - - a,, which implies that p | a,
for some i (with 1 =i = k) by the induction hypothesis, and the desired
statement holds for n = k + 1, which completes the proof. @

We now state and prove the Fundamental Theorem of Arithmetic,

Theorem 1.16: (Fundamental Theorem of Arithmetic) Every integer
mﬁ@mﬁm_. Emﬁ 1 can be expressed in the form p%p%- - - p2 with py, pa, .. ., Dn
distinct prime numbers and g, a,, . . ., a, positive integers. This form is said to
be the prime factorization of the integer. This prime factorization is unique
except for the arrangement of the p#,

S
Lt

* Proof: Assume, by way of contradiction, that k is an integer greater than 1

that does not have an expression as in the statement of the theorem. Without
loss of generality, we may assume that k is the least such integer. Now k cannot
be prime because it would then be of the desired form. So & is composite and
k=abwithl<a<kandl<»d <k Butthen a and b are of the desired
form due to the minimality of k, from which it follows that k is of the desired
form, a contradiction. So every integer greater than 1 has an expression of the
desired form. We still must show the uniqueness of such an expression,
Assume that £ has two such expressions, say

k= .__um:»wmn <o pln o= QW_QWM . .sza_
with py, ps, ..., p, distinct prime numbers; gy, 4s,..., g, distinct ﬁmaa
numbers; and ay, a,, ..., a,, by, bs, ..., b, positive integers. Without loss of

generality, we may assume that p; < p, <:+- <p,and g, < g, <--- < g,.
We must show that

n=m

Pi = 4 m”H»Mc...\.z_
and

Q-.ﬂmu? mHMuN‘....._B
Now, given a p;, we have p; | g}'g5*- - - q&r, which implies that p; | g, for some j
by Corollary 1.15. So p; = g; for some j. Similarly, given a g;, we have q; = p;
for some i So n = m; by the ordering of the p/’s and g,’s, we have p; = gq;,
i=1,2,...,n Consequently,

k= ﬁm:ﬁmN .. ...Gna = ﬁw_»UWN .. .%w:

Now assume, by way of contradiction, that g, # b, for some i Without foss of
generality, we may assume that @, << b,. Then
.uw_. _ pipi. . po
which implies that
P ptps - pisiptit
Since b; — a; > 0, we have that

h.._

182 ., , plieipn@is) ., ,
pi | pi'ps picipid n
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from which p; | p; for some j # i, by Corollary 1.15. This is a contradiction. So
a=b,i=12...,n H

Example 16:

Find the prime factorization of 756.
We have .
756 = 2378

2-2-189
2-2-3-63
=2-2-3-7-9
=2:2:3:7-3-3
= 223%7

il

Because of our familiarity with the integers, we may tend to take the
Fundamental Theorem of Arithmetic for granted. Note, however, that number
systems exist for which unique factorization does not hold. Such a system is
investigated more fully in Exercise 77. The presence of the Fundamental
Theorem of Arithmetic for the integers makes thé integers into what is called a
unigue factorization domain (UFD). UFDs are important number systems in a
more advanced branch of number theory called algebraic number theory. The
moral here is to appreciate the Fundamental Theorem of Arithmetic for the
extremely nice property that it is!

A concept that is parallel to the greatest common divisor of two integers is
the least common multiple of the integers, which we define now. ,

Definition 11: Let a, b € Z with a, b > 0. The least common multiple of a
and b, denoted [a, b), is the least positive integer m such that @ | m and b | m.

Given two positive integers a and b, note that ab > 0, a _nw. and b _ ab; in
other words, ab is always a positive common multiple of ¢ and b. Hence the set
of positive common multiples of two positive integers is always nonempty;
consequently, the least common multiple of these integers always exists by the
well-ordering property of the integers (see the Introduction).

Example 17:

(a) The positive multiples of 6 are 6,12, 18,24,30,36,42,48,.... The
positive multiples of 7 are 7, 14, 21, 28, 35, 42, 49, 54,. ... It is a fact
{(perhaps not obvious) that the positive common multiples of 6 and 7 (the
multiples common to the two infinite lists above) are 42,84,126,
168,210,.... (Convince yourself of this!) Obviously from these common
multiples of 6 and 7, the least common multiple of 6 and 7 is 42, which is
denoted [6,7] = 42. .

(b) The positive multiples of § are 8, 16,24, 32,40, 48,56,64,.... From the
multiples of 6 in (a) above, it is obvious that the least common multiple of 6
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and 8 is 24, which is denoted [6, 8] = 24. (As an exercise, find the first five
positive common multiples of 6 and 8.)

The Fundamental Theorem of Arithmetic may be used to compute greafest
common divisors and least common multiples. We illustrate such computations
with an example.

Example 18:

JFind (756, 2205} and [756, 2205] by using prime factorization.
By Example 16, we have 756 =:273*7. The reader may easily verify that
2205 = 3°5- 7% Now

756 = 2°3°5%7
and

2205 = 20325172
For (756,2205), we compare the exponents appearing on like prime
numbers and choose the minimum exponent appearing in each comparison
[since (756, 2205) must divide both 756 and 2205]. So

(756,2205) = 2°325%7 = g3

Similarly, for [756,2205], we compare the exponents appearing on like
prime numbers and choose the maximum exponent appearing in each
comparison (since both 756 and 2205 must divide [756,2205]). So

[756,2205] = 2*335172 = 26460

Example 18 motivates the following proposition.

Proposition 1.17: Let a,beZ with a, b > 1. Write g = pips .- pi
and b = p{'py*- - - pi where py, p,, ..., p, are distinct prime numbers and
A1, @2, - ., dn, by, by, ..., b, are nonnegative integers {possibly zero). Then

mnn\. @v = »Ewdmln_‘yﬁmi:?n.v& - M&n?&v&
and

_Hhv Wg ” ﬁﬂ_minrw_ﬁumdminu.&b ... Mﬂmina.ui

Proof: The proof is obvious from the Fundamental Theorem of Arithmetic
(Theorem 1.16) and the definitions of (g, #) and [g, 5]. B

It is instructive to pause here. Proposition 1.17 seemingly gives us a
beautiful way to compute greatest common divisors and least common
multiples of positive integers. Has our Euclidean algorithm (for computation of
the greatest common divisor) been rendered obsolete? The answer is a
resounding no. While Proposition 1.17 is useful as a theoretical result, it has
little practical use except for computations involving greatest common divisors
and least common multiples of relatively small integers. Proposition 1.17
requires the computation of prime factorizations. Unfortunately, prime fac-
torizations of large integers are generally difficult to obtain. [The interested
reader may wish to consult Bressoud (1990} in this regard.] The power
inherent in the Euclidean algorithm is that greatest common divisors of
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integers may be computed without obtaining the prime factorizations of the
integers. But what about least common multiples? Our goal here is to establish Bi h

a simple relationship between the least common multiple and the greatest tograpny
common divisor of two positive integers; the desired result is a practical
method for computing least common multiples. We first need an easy lemma.

Lemma 1.18: Let x, y € R. Then max {x, y} + min{x, y} = x + y. _

Proof: If x <y, then max{x, y} = y and min {x, ¥} = x, and the desired
result follows. The cases are similar for x = y and x > y. B ;

The relationship between the greatest common divisor and the least i
common multiple of two positive integers is now given by the following
theorem.

Theorem 1.19: Let a, b e Z with a, b >0. Then (a, b)[a, b] = ab.

bz .. b

Proof: If a,b>1, writt a=p{p§ --p and b =phpbr--.pl as in :
Proposition 1.17. Then . . Peter Gustav Lejeune Dirichlet (1805-1859)
Ou. @vTﬁ WH — mﬁ“smin_.wmﬁw:iayv& .. .ﬁw.:??é?.ﬁﬁﬂ%ﬁin_.F_.mumsmx?@w& - M_min._.b:vv .
b i ratan] .} medan) H.Q I. GEmEmﬁ.émm a mEaaE of Gauss and Gauss’s successor at
= pf D3 s pn Gittingen University. Born in Germany, Dirichlet was fluent in both
= pgrtbipgith. . pithe (by Lemma 1.18) German and French and served as a mathematical liasion between
e plptipli . pb an.:m:u\.mna mumb.no. Along with his close friend Jacobi (see the
n n u latter’s biography in Chapter 4), Dirichlet aided in the shift of
=ab mathematical activity from France to Germany in the nineteenth

century. Dirichlet authored Vorlesungen iiber Zahlentheorie, a work
essentially devoted to the further understanding of the many treasures
in Gauss’s profound Disquisitiones Arithmeticae. In addition, he

as desired. The cases a =1 and b>>1, a>1and b =1, and ¢ = b =1 are easily
checked and are left as exercises. ll

So, to find the least common multiple of two positive integers without using ‘ analyzed the convergence of Fourier series and proved the theorem on
prime factorization, one finds the greatest common divisor of the two integers : prime numbers in arithmetic progressions below. Dirichlet frequently
by using the Euclidean algorithm and then Theorem 1.19 to obtain the least : relied on the principles of real and complex analysis in his proofs; as
common multiple. Again, this method is usually much easier than using L such, Dirichlet set the stage for that area of mathematics known as

Proposition 1.17, which requires the prime factorizations of the integers! The
reader is invited to pause here to compute [803,154] using (803, 154) = 11
from Example 14.

Note in Example 17 that the least common multiple of 6 and 7 was the
product of 6 and 7, while the least common multiple of 6 and 8 was not the
product of 6 and 8. (Is the least common multiple of 803 and 154 the product
of 803 and 1547) Under what circumstances is the least common multiple of
two positive integers simply the product of the two integers? In view of
Theorem 1.19, the answer is not surprising, as the next corollary shows.

analytic number theory.

Fundamental Theorem of Arithmetic. We begin by stating a famous theorem
of number theory from P. G. L. Dirichlet. This theorem generalizes Euclid’s
theorem on the infinitude of the prime numbers (Theorem 1.6). Unfortunately,
the proof of this theorem is beyond the scope of this book.

Theorem 1.21: (Dirichlet’s Theorem on Prime Numbers in Arithmetic

ﬁ.ou.oﬁaé 1.20: Let a, b € Z with @, b > 0. Then [a, b] = ab if and only if Progressions) Let a, beZ with ¢, b > 0 and (g, b} = 1. Then the arithmetic

(@ b) = 1 progression . :
! ’ . a,a+ba+2b...,a+nb, ...
Proof: The (extremely easy) proof is left as an exercise for the reader. B m contains infinitely many prime numbers,
We conclude this chapter with another illustration of the power of the , Note that Theorem 1.6 (the infinitude of the prime numbers) follows from

March Q\st Parutlel Procossiag goﬁa«_&_}\ @ Unaivecsdy of Rer
Zaws_er.ﬂn .Pﬁpi)?hrnn ﬁom‘ﬂﬁmm..é.p e ..u!\d[ﬂ.m.u .w;,s\rn\wmb.._.wf Futh wﬂ.}M.m.raV HICS..&. &
Ly - , s=Re P
)} “,.Za.mwmw \»mﬂﬂﬁ .muu.wi?mm%%ﬂmm..@wm \W@_MMNWG E ﬁum...\uIA..N’ 43 39% ‘W.«:.Mm..z..w“T

1371034

&
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Theorem 1.21 above by putting a = b = 1. Dirichlet’s Theorem, however, may
be used to establish many other interesting facts, one of which is investigated
in Exercise 84. The next proposition is a special case of Dirichlet’s Theorem
(with a = 3 and b = 4). :

\ Huﬂoﬁomﬁ.ﬁ.c:H.NN..HW_@H.@mﬁHmﬁﬁqﬁmnwﬁagoncz&mam nxmﬁmwmmEm
in the form 4n + 3 where 71 is a nonnegative integer.

The Fundamenta! Theorem of Arithmetic allows us to prove the special case
of Dirichlet’s Theorem given in Proposition 1.22 above. We need a preliminary

lemma.

Lemma 1.23: Let a, b eZ. If a and b are expressible in the form 4n + 1
where » is an integer, then ab is also expressible in that form.

Proof: Leta = 4n, + 1 and b = 4n, + 1 with ny, ne Z. Then.

1

ab = (4n; + D(dn, + 1) = 16mn; + 4ny + 40, + 1

&.ﬁh.w\:ﬁw + (431 + HwNV + 1

I

dn + 1
where n = dpn, + 1y +naeZ. @

We now prove Proposition 1.22.

Proof: (of Proposition 1.22) Assume, by way of contradiction, that there
are only finitely many prime numbers of the form 4n + 3 where n is a
nonnegative integer, say po=3, P1, P2 -+ Pr (Here the prime numbers
D1 P2s -, Pr are assumed to be distinct from 3.) Consider the number
N=4p,p,---p,+3. The prime factorization of N must contain a prime
number p of the desired form or it would otherwise contain only prime
numbers of the form 4n + 1 where n is a positive integer (see Exercise 85) and
hence be of the form 4n + 1 where n is a positive integer by Lemma 1.23. So
p=po=3orp=p,i=12,...,n
Case I p=py=3
Then 3|N implies 3|N—3 by Proposition 1.2, and we have that
3| 4pyp, - - - p- By Corollary 1.15, we now have 3 [40c3|pni=1,2...,12
contradiction.

Case II' p=p;, i=1,2,...,¢

Then p; | N implies p; | N —4pp, - - p, by Proposition 1.2, and we have that
p: |3, a contradiction.

So there are infinitely many prime numbers of the desired form. -]

Note the ingenuity in the construction of the number N above, because it is
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precisely consideration of this number that results in the desired contradic-
tions. (Where have we seen such ingenuity before?) More important, Proposi-
tion 1.22 was billed as an application of the Fundamental Theorem of
Arithmetic; where was the Fundamental Theorem of Arithmetic used in the
proof of Proposition 1.22 above?

The proof of Proposition 1.22 cannot be extended to prove Dirichlet’s
Theorem in general, since the analogue of Lemma 1.23 is not true in general
(see Exercise 86). The analogue of Lemma 1.23 is true in other special cases of
Dirichlet’s Theorem, one of which is investigated in Exercise 87.

Exercise Set 1.5

59, Find the prime factorization of each integer below.

{a) 51

) 87

(c) 361

(d) 367

(e) 422

(fH 945

(g 1001

(h) 6292

Find the least common multiples below,

{a) 16,9]

® {7,9]

(c) {13,91]

(d) [24,60]

(e) [100,105]

( [101,1111]

61. Find the greatest common divisor and the least common multiple of each
pair of integers below.

(@) 2*-3°-5.-7,22.3%.5-7*

@)y 22-52-77-112,3.5-11-13- 17
() 22-57-11%3,32.7°. 131

() 3-17-19*-23,5-7>-11:19-29

62. Find five integers that are relatively prime (when taken together) but such
that no two of the integers are relatively prime when taken separately.

63. Find each of the least common multiples below by using the Euclidean
algorithm and Theorem 1.19.

(a) [221,323]
(b) [257,419]
(c) [313,1252]

. (d) [1911,9702]

,mm Find all pairs of positive integers a and b such that (a, b} = 12 and
[a, B] = 360.

65. Definition: Let a;,a2,...,a,e4 with.a,, as, ..., a, nonzero. The least
common multiple of a,, a4, ..., a,, denoted [a,,a.,...,a,], is the least
positive integer m such that ¢; _ mi=12...,n
Find the least common multiples below.

60
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(a) [10,12,15] <

®) [9,13,16]

(c) [6,7,8,9]

Why is I excluded as a prime number?

(@) Let neZ with n > 1. Prove that n is a perfect square if and only if all
exponents in the prime factorization of n are even.

() Let neZ with n > 0. Prove that n is the product of a perfect square
and (possibly zero) distinet prime numbers.

Let 1 e Z with n > (. Prove that there mmwmﬁ k, m ¢ Z with m odd such that

n = 2"m. :

Definition: Let neZ with n > 1. Then #n is said to be powerful if all

exponents in the priine factorization of n are at least 2.

Prove that a powerful number is the product of a perfect square and a

perfect cube.

. Prove or disprove the following statements. Ly’

<

(a) fa,beZ,a,b >0, anda®|b° thena|b. V'

(b} Ifa,beZ,a,b >0, and a* | b7, then a | b. N

(© IfaeZ, a >0, pisa prime number, and p* | 4, then p? | .

Let », a, and b be positive integers such that ab = n® If (g, b) = 1, prove

that there exist positive integers ¢ and d such that ¢ = ¢* and b = 4>

Definition: Let n and a be positive integers and let p be a prime number.

Then p° is said to exactly divide n, denoted p* || n, if p* |n and p***  n.

Assume that p® || m and p° || a.

(2) What power of p exactly divides m + n? Prove your assertion.

(b) What power of p exactly divides mn? Prove your assertion.

(c) What power of p exactly divides m"? Prove your assertion.

Let neZ with n > 0. Find the largest integer guaranteed to divide all

products of n consecutive integers and prove your assertion. (Hint:

Consider several small values of n and lock for a pattern.)

Find all positive integers a and b such that a® = b".

(Note: You may wish to review Exercise 14 before attempting this

problem.)

(a) Find the number of positive integers not exceeding 500 that are
divisible by 2 and by 3.

(b} Find the number of positive integers not esceeding 500 that are
divisible by neither 2 nor 3.

(¢) Find the number of positive integers not exceeding 500 that are
divisible by 2 but not by 3.

(2) Let neZ with n > 1, and let p be a prime number. If p | n!, prove that
the exponent of p in the prime factorization of n! is [r/p] + [n/p?] +
[n/p*] +--+. (Note that this sum is finite, since [n/p™] =0 if
p™ > n)

() Use part (a) above to find the prime factorization of 20!

(¢) Find the number of zeros with which the decimal representation of
100! terminates.

(The following exercise develops a number system that does not possess

unique factorization and thus no Fundamental Theorem of Arithmetic.)

Let Z[V-10] denote the set of all complex numbers of the form

78.
7!

80,
81.

82,

83.

84.

85,

Section 1.5 The Fundamental Theorem of Arithmetic =~ 35

a + bV-10 with g, b eZ under the usual operations of addition and
multiplication of complex numbers. Define an element & + 5V—10 of
Z[V—10] to be irreducible if a + bV—10 cannot be expressed as a product
of two elements of Z[V—10] except as the trivial factorizations

a + bV-=10 = (1)a + bV-10)

a + bV=I0 = (-1)(—a — bV=10)

(a) Prove that 2 and 7 are irreducible elements in Z[V-10].

(b) Prove that 2 + V—10 and 2 — V—10 are irreducible elements in
Z[V—-10]. [Hinr: For 2+ V-10, assume that 2+ V10 = (g +
bV—10)c + dV—-10) with a,b,c,deZ. Then 2 - V-10= (g —
bV -—-10)c — dV—10) (why?). Now multiply the left-hand sides and
the right-hand sides of the two equations and prove that the factoriza-
tion of 2 + V—10 must be a trivial factorization.]

(¢) Prove that Z[V~10] does not possess unique factorization into
irreducible elements. [Hint: In Z[V~10], we have 14 =2-7=(2 +
V—10)(2 — V-—-10).]

letneZ withn > 1. Provethat 1 + 2+ 3+ .- + L ¢ Z,

Let 2 and b be positive integers.

(a) Prove that (a, b} | [a, b].

{b) Find and prove a necessary and sufficient condition that {g, b) = [a, b}.

Let a, b, and ¢ be positive integers. Prove that [ca, cb] = ¢[g, b].

Let @y, a,, . . ., a, be positive integers. Prove that

or

TNT hnu hm. DI} Qau - _“mauu QNU_u A3y .uy Qku_.

('This method can be used generally to compute the least common multiple
of more than two integers.) Use this method to compute the least common
multiple of each set of integers in Exercise 65.

Let aq, 45, ..., a,, and ¢ be positive integers. Prove that

[cas, cas, cas, - .., ca,) = ¢lay, az, a5, .. ., a,)

Iet g, beZ with a,b >0 and (g, b) = 1. Prove that the arithmetic
progression .
a,a+b,a+2b...,a+nb ...

contains infinitely many composite numbers.

Let ke Z with & > 0. Prove that there are infinitely many prime numbers

ending in &k 1’s.

{a) Prove that any integer is expressible in the form 4n, 4n + 1, 4n + 2,
or 4n + 3 where » is an integer.

(b) Prove that any odd number is expressible in the form 4n + 1 or
4n + 3 where n is an integer.

Prove that the analogue of Lemma 1.23 is not true for numbers of the form

4n + 3 where » is an integer.

(@) Let a, b eZ. Prove that if @ and b are ‘expressible in the form én + 1,
where # is an integer, then ab is also expressible in that form.

(b) Prove that there are infinitely many prime numbers of the form 6n + 5
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where n is an integer. (Hint: Assume, by way of contradiction, that
there are .only finitely many prime numbers of the desired form and
ingeniously comstruct a number N that will eventually lead to a
contradiction. In other words, parallel the proof of Proposition 1.22.)

Concluding Remarks

The importance of divisibility and factorization in elementary number theory
cannot be overestimated; the concepts and ideas presented in this chapter will
appear again and again in succeeding chapters. The repercussions of the
Fundamental Theorem of Arithmetic will be monumental. (Moral: Learn these
concepts and ideas now!) The ultimate simplicity of these concepts has its
disadvantages; Many of the open problems in elementary number theory are
easily stated but maddeningly difficult to prove. (Go back and look at the
conjectures in this chapter. How many of these conjectures would you have
guessed still require proofs or counterexamples?) The simple nature of
elementary number theory seemingly does not give us adequate techniques for
attacking these questions; most mathematicians focus on more advanced
algebraic and analytic techniques in their attempts to find solutions to these
probiems. It is perhaps unexpected (but certainly fascinating!) that the integers
apparently contain 50 many secrets waiting to be discovered. ,

Student Projects

1. (Programming project for calculator or computer)

{a) Given positive integers g and b, compute (g, b) by using the Euclidean
algorithm.

() Given positive integers a and b, express (g, b) as an integral linear
combination of & and b.

2. Prove or disprove the following conjectures.

Conjecture: If n is a nonnegative integer, then n? — 79n + 1601 is a prime
number.

Conjecture: If n is a nonnegative integer, then n’+n+ 41 is a prime
number.

{A discussion of prime-producing polynomials of the form n* 4+ n + casin
the second conjecture above) may be found in Daniel Fendel, “Prime-
producing Polynomials and Principal Ideal Domains,” Mathematics
Magazine, 58 (1985}, 204-210.]

3. (@) Let p, denote the nth prime number. Prove that the infinite series
> W diverges. (A short proof of this fact can be found in Apostol, 1976).
n=1lpFn

(b) Do some research to find the behavior of the series Mw. where p
ranges over all twin primes. » P
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ﬁw.v Two integers m and »n between 2 and 100 inclusive are chosen. The sum of
the two integers is given to one mathematician, Sam, and the product of the
two integers is given to another mathematician, Prudence. Suppose that,
after some thought, the two mathematicians exchange the following
dialogue:
Prudence: “I don’t know your sum, Sam.”
Sam: “I knew that you didn’t, Prudence.”
Prudence: “Now I know your sum.”
Sam: “And now I know your product.”
What are m and n?
[A discussion of the problem above and similar problems may be found in
John O. Kiltinen & Peter B. Young, “Goldbach, Lemoine, and a
Know/Don’t Know Problem,” Mathematics Magazine, 58 (1985), 195-203.]
5. Answer the problem posed by Archimedes Andrews at the conclusion of
the following article: Barry A. Cipra, “Archimedes Andrews and the
Euclidean Time Bomb,” Mathematical Intelligencer, 9 (1987), 44-47.
6. For positive integral n, consider the function
n , .
) =4 2’ if n is even
3n+1, ifnisodd

.Q?nm n, one may iterate the function #(r) to obtain a sequence of positive
integers {n, h(n), h(k{n)), h(A(h(n))),...}. For example, the sequence
associated with the starting integer 6 is {6,3,10,5,16,8,4,2,1,...}. By
experimenting with various starting values of n, formulate a conjecture
concerning the behavior of the associated sequences.

[There is a famous unsolved problem concerning the function s({n) that you
may have formulated above as a conjecture. For further discussion of this
problem, consult section 11.3 of the following book: Clifford A. Pickover,
Computers, Pattern, Chaos and Beauty (New York: St. Martin’s Press,
1990).]

7. Find the next term in the following sequence:

2, 12, 360, 75600, 174636000, ...

[This sequence, created by Paul Chernoff, is discussed in Chapter 66 of the
following book: Clifford A. Pickover, Mazes for the Mind: Computers and
the Unexpected (New York: St. Martin’s Press, 1992).]



