MA502 Linear Algebra W. J. Martin November 16, 2017

MA502 Assignment 6

DUE DATE: Tuesday November 28, 2017, at the beginning of class.

Please carefully read and observe the presentation rules for assignments in this course.

1.) Prove that every Hermitian matrix M can be expressed as the difference M = A - B of two positive semidefinite matrices (i.e., $A, B \succeq O$). Is it always possible to choose $A, B \succ O$?

2.) Let M be an $n \times n$ complex Hermitian matrix and let $W \subseteq \mathbb{C}^n$ be a τ_M -invariant subspace. Prove that the Rayleigh quotient $R_M(\mathbf{v}) = \frac{\langle \mathbf{v}, M \mathbf{v} \rangle}{\langle \mathbf{v}, \mathbf{v} \rangle}$ (where $\mathbf{v} \neq \mathbf{0}$) takes both its maximum and minimum values on W at eigenvectors of M. Show that the max and min are eigenvalues of M.

3.) Let M be an $n \times n$ complex Hermitian matrix and let $W \subseteq \mathbb{C}^n$ be a *j*-dimensional subspace. If the eigenvalues of M are $\lambda_1 \geq \lambda_2 \geq \cdots \geq \lambda_n$, prove that W contains a non-zero vector \mathbf{v} with $R_M(\mathbf{v}) \leq \lambda_j$. [HINT: Consider the subspace U spanned by eigenvectors $\mathbf{v}_j, \mathbf{v}_{j+1}, \ldots, \mathbf{v}_n$ where $M\mathbf{v}_\ell = \lambda_\ell \mathbf{v}_\ell$.]

4.) Let M be an $n \times n$ real symmetric matrix and suppose we are trying to find the eigenvectors and eigenvalues of M. Given an "approximate" eigenvector \mathbf{v} , we consider the best possible approximation to the corresponding eigenvalue to be the real number λ which minimizes the norm $||M\mathbf{v} - \lambda \mathbf{v}||$. By instead minimizing the squared norm $||M\mathbf{v} - \lambda \mathbf{v}||^2 = \langle M\mathbf{v} - \lambda \mathbf{v}, M\mathbf{v} - \lambda \mathbf{v} \rangle$, derive an expression for λ using elementary calculus. [NOTE: Both M and \mathbf{v} are constants here, so we have a quadratic function of one real variable λ and the minimum is obtained by setting the derivative equal to zero.]

5.) Let $\tau : V \to V$ be a normal operator on the finite-dimensional inner product space V over \mathbb{C} and let τ^* denote the adjoint operator. Prove: if $\lambda \in \mathbb{C}$ is an eigenvalue of τ with corresponding eigenspace V_{λ} , then $\overline{\lambda}$ is an eigenvalue of τ^* and the corresponding eigenspace is V_{λ} . [HINT: For a complex number λ , what is another way to say that λ is <u>not</u> an eigenvalue of τ ?]