Solution to Homework 4

MA502 Linear Algebra

Problem 1.

Use elementary row operation to compute the determinants of following matrices.

(a)
$$
A = \begin{bmatrix} i & i & i \\ 1 & -1 & 0 \\ -i & 1 & 0 \end{bmatrix}
$$

SOLUTION:

SOLUTION:

$$
A \xrightarrow{(1) \times i+ (2)} \begin{bmatrix} i & i & i \\ 0 & -2 & -1 \\ 0 & 1+i & i \end{bmatrix} \xrightarrow{(2) \times \frac{1+i}{2} + (3)} \begin{bmatrix} i & i & i \\ 0 & -2 & -1 \\ 0 & 0 & -\frac{1-i}{2} \end{bmatrix} := A_1
$$

Then, $det(A) = det(A_1) = i \cdot (-2) \cdot (-\frac{1-i}{2}) = 1 + i$.

$$
B = \begin{bmatrix} 0 & 0 & 0 & \frac{1}{2} & -\frac{1}{5} \\ 1 & -\frac{1}{2} & 0 & 2 & 0 \\ 1 & 1 & 0 & 0 & \frac{1}{4} \\ 2 & -1 & 1 & 1 & 1 \\ 1 & 1 & 0 & 0 & 1 \end{bmatrix}
$$

SOLUTION:

1 1 0 0 1

 (b)

$$
B \xrightarrow{(1) \leftrightarrow (5)} \begin{bmatrix} 1 & 1 & 0 & 0 & 1 \\ 1 & -\frac{1}{2} & 0 & 2 & 0 \\ 1 & 1 & 0 & 0 & \frac{1}{4} \\ 2 & -1 & 1 & 1 & 1 \\ 0 & 0 & 0 & \frac{1}{2} & -\frac{1}{5} \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 1 & 0 & 0 & 1 \\ 0 & -\frac{3}{2} & 0 & 2 & -1 \\ 0 & 0 & 0 & 0 & -\frac{3}{4} \\ 0 & -3 & 1 & 1 & -1 \\ 0 & 0 & 0 & \frac{1}{2} & -\frac{1}{5} \end{bmatrix}
$$
\n
$$
\xrightarrow{(3) \leftrightarrow (4)} \begin{bmatrix} 1 & 1 & 0 & 0 & 1 \\ 0 & -\frac{3}{2} & 0 & 2 & -1 \\ 0 & -\frac{3}{2} & 0 & 2 & -1 \\ 0 & -3 & 1 & 1 & -1 \\ 0 & 0 & 0 & \frac{1}{2} & -\frac{1}{5} \\ 0 & 0 & 0 & 0 & -\frac{3}{4} \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 1 & 0 & 0 & 1 \\ 0 & -\frac{3}{2} & 0 & 2 & -1 \\ 0 & -\frac{3}{2} & 0 & 2 & -1 \\ 0 & 0 & 1 & -3 & 1 \\ 0 & 0 & 0 & \frac{1}{2} & -\frac{1}{5} \\ 0 & 0 & 0 & 0 & -\frac{3}{4} \end{bmatrix} := B_1
$$
\nHence, $det(B) = -det(B_1) = -\frac{9}{16}$. (1)

(c)
$$
C = \begin{bmatrix} 2 & 3 \\ 3 & 2 \end{bmatrix}
$$
 in \mathbb{F}_5
SOLUTION:

$$
C \xrightarrow{(2)-(1)\times 4} \begin{bmatrix} 2 & 3 \\ 0 & 0 \end{bmatrix} := C_1
$$

Hence, $det(C) = det(C_1) = 0$

Problem 3.

Let $A = [a_{ij}]$ be an $n \times n$ upper-triangular matrix. Prove that the characteristic polynomial of A is

$$
\chi_A(z)=(z-a_{11})\cdots(z-a_{nn})
$$

Proof. Let $\lambda = a_{nn}$. Since $A - \lambda I$ has a row of zeros, it has non-zero kernel. More specifically, there exists a vector \mathbf{v}_n with $A\mathbf{v}_n = \lambda \mathbf{v}_n$ and the last entry of \mathbf{v}_n is non-zero. Let \hat{A} denote the matrix obtained by deleting the last row and column of A. The same argument gives us a vector \mathbf{w}_{n-1} with nonzero $(n-1)$ st entry such that $\hat{A}\mathbf{w}_{n-1} = a_{n-1,n-1}\mathbf{w}_{n-1}$. Extending this with one zero gives us a vector \mathbf{v}_{n-1} with nonzero $(n-1)$ st entry such that $A**v**_{n-1} = a_{n-1,n-1}**v**_{n-1}.$ Not finished. \Box

Problem 4.

 ζ

Problem 10.10 on Page 249 in Hobart's notes.

Proof. We first compute the characteristic polynomial by row reduction. We note that a row swaps just change the sign of the determinant and this can be ignored when computing the polynomial. So we proceed:

$$
A - \lambda I = \begin{bmatrix} 6 - \lambda & 3/2 & 0 & 3/2 \\ -1 & 6 - \lambda & 1 & 0 \\ 0 & 3/2 & 6 - \lambda & 3/2 \\ 1 & 0 & -1 & 6 - \lambda \end{bmatrix} \xrightarrow{\text{(1)} \leftrightarrow \text{(4)}} \begin{bmatrix} 1 & 0 & -1 & 6 - \lambda \\ -1 & 6 - \lambda & 1 & 0 \\ 0 & 3/2 & 6 - \lambda & 3/2 \\ 6 - \lambda & 3/2 & 0 & 3/2 \end{bmatrix}
$$

$$
\xrightarrow{\text{(1)} \leftrightarrow \text{(4)}} \begin{bmatrix} 1 & 0 & -1 & 6 - \lambda \\ -1 & 6 - \lambda & 1 & 0 \\ 0 & 3/2 & 6 - \lambda & 3/2 \\ 6 - \lambda & 3/2 & 0 & 3/2 \end{bmatrix}
$$

We can find by simple row reduction that the only eigenvalue is $\lambda = 6$. Hence,

$$
A - \lambda I = \begin{bmatrix} 0 & 1.5 & 0 & 1.5 \\ -1 & 0 & 1 & 0 \\ 0 & 1.5 & 0 & 1.5 \\ 1 & 0 & -1 & 0 \end{bmatrix} \rightarrow \begin{bmatrix} 0 & 1 & 0 & 1 \\ -1 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}, (A - \lambda I)^2 = 0
$$

We need to find independent vectors that is not in the kernel of $A - \lambda I$, and belongs to kernel of $(A - \lambda I)^2$. Such vectors can be as the following:

$$
v_1 = \begin{bmatrix} 0 & 1 & 0 & 1 \end{bmatrix}^T, v_2 = \begin{bmatrix} 1 & 0 & -1 & 0 \end{bmatrix}^T
$$

Hence, $v_{11} = (A - \lambda I)v_1 = \begin{bmatrix} 3 & 0 & 3 & 0 \end{bmatrix}^T$, $v_{22} = (A - \lambda I)v_2 = \begin{bmatrix} 0 & -2 & 0 & 2 \end{bmatrix}^T$. Hence, we $\begin{bmatrix} 6 & 1 & 0 & 0 \end{bmatrix}$ 0 6 0 0 1

can have
$$
S = [v_{11} \quad v_1 \quad v_{22} \quad v_2]^{-1}
$$
, and $J = \begin{bmatrix} 0 & 6 & 0 & 0 \\ 0 & 0 & 6 & 1 \\ 0 & 0 & 0 & 6 \end{bmatrix}$, such that $A = S^{-1}JS$.

Problem 5. Problem 10.15 on Page 249 in Hobart's notes.

(a) Proof. For A, we have invertible matrix P, and Jordan matrix J such that $A = PJP^{-1}$. Then for an eigenvalue μ with order t, we have that for a generalized eigenvector v

$$
(A - \mu I)^t v = (PJP^{-1} - \mu I)^t v = (P(J - \mu I)P^{-1})^t v = P(J - \mu I)^t P^{-1} v = 0
$$

$$
(A - \mu I)^{t-1} v = P(J - \mu I)^{t-1} P^{-1} v \neq 0
$$

Meanwhile, since B is similar to A, we can find invertible matrix P_1 such that $B =$ $P_1AP_1^{-1}$. Then, $B = (P_1P)J(P_1P)^{-1}$, and choose $v_1 = P_1v.(v_1 \text{ cannot be 0, since})$ otherwise, column space of P_1 is linearly dependent, contradicting with invertibility of P_1 .) We will show that v_1 is a generalized eigenvector.

$$
(B - \mu I)^{t} v_{1} = P_{1} P (J - \mu I)^{t} P^{-1} P_{1}^{-1} v_{1} = P_{1} P (J - \mu I)^{t} P^{-1} v = 0
$$

$$
(B - \mu I)^{t-1} v_{1} = P_{1} P (J - \mu I)^{t-1} P^{-1} v \neq 0
$$

The second equation is due to the fact that P_1 is invertible, so column space is linear independent. Then we prove that for the same μ , A and B have the same order. Meanwhile, any generalized eigenvector of B with eigenvalue μ is linear combination of $\{P_1v : v$ is generalized eigenvector of A with $\mu\}$. If not, suppose v_2 is not in the span of $\{P_1v\}$, and then we can find $P_1^{-1}v_2$, which is generalized eigenvector of A. Contradiction!

 \Box

(b) *Proof.* The above statement is equivalent to "If for eigenvalue μ , A and B has different order of generalized eigenvector, then they are not similar matrices." Hence, we only need to prove that they have different order.

$$
(C - 5I)^{2} = \begin{bmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} \text{ and } (C - 5I)^{3} = 0
$$

$$
D - 5I = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix} \text{ and } (D - 5I)^{2} = 0
$$

Hence, C has order 3, and D has order 2, and they are not similar matrices. \Box