MA502 Linear Algebra W. J. Martin November 9, 2017

MA502 Assignment 5

DUE DATE: Thursday November 16, 2017, at the beginning of class.

Please carefully read and observe the presentation rules for assignments in this course.

1(a) Suppose A is a 6×6 matrix with complex entries whose Jordan canonical form is

J =	3	1	0	0	0	0]
	0	3	1	0	0	0
	0	0	3	0	0	0
	0	0	0	2	1	0
	0	0	0	0	2	0
	0	0	0	0	0	-4

Find the Jordan canonical form for A^2 . Explain.

- **2.)** Define $\tau \in \mathcal{L}(\mathbb{F}^4)$ via $\tau : (x_1, x_2, x_3, x_4) \mapsto (0, x + 2 + x_4, x_3, x_4).$
 - (a) Determine the minimal polynomial of τ . (Do not use a computer.) [HINT: Show that τ and τ^2 have the same kernel.]
 - (b) Determine the characteristic polynomial of τ . (Ditto.)
 - (c) Determine the Jordan canonical form for τ .
- 3.) Prove that any $n \times n$ matrix A with complex entries is similar to its transpose.

4.) Classify, up to similarity, all $n \times n$ matrices A with complex entries satisfying $A^3 = I$.

5.) τ be a linear operator on the complex vector space V of dimension n with eigenvalue λ . Let C_1, \ldots, C_k be cycles of generalized eigenvectors for τ corresponding to eigenvalue λ . Let z_j be the initial vector of C_j . Prove: If $\{z_1, \ldots, z_k\}$ is a linearly independent set, then $C_1 \cup \cdots \cup C_k$ is also linearly independent.