Solution to Homework 3

MA502 Linear Algebra

Problem 1.

An $n \times n$ matrix A with entries from field \mathbb{F} is diagonalizable over \mathbb{F} if there exists an invertible matrix P and a diagonal matrix D such that $A = PDP^{-1}$.

(a) Prove that A is diagonalizable over field \mathbb{F} if and only if $V = \mathbb{F}^n$ admits a basis each vector of which is an eigenvector for A.

Proof.

 $(\Rightarrow): \text{ Suppose } A \text{ is diagonalizable, then there exists an invertible } P \text{ and a diagonal } D$ such that $A = PDP^{-1}$. Write $P = \begin{bmatrix} \mathbf{p}_1 & \mathbf{p}_2 & \cdots & \mathbf{p}_n \end{bmatrix}$, where \mathbf{p}_i is i^{th} column vector of P. Meanwhile, we can write $D = \begin{bmatrix} \lambda_1 & & \\ & \ddots & \\ & & \lambda_n \end{bmatrix}$. Then, we have AP = PD, which we may write $A \begin{bmatrix} \mathbf{p}_1 & \mathbf{p}_2 & \cdots & \mathbf{p}_n \end{bmatrix} = \begin{bmatrix} \mathbf{p}_1 & \mathbf{p}_2 & \cdots & \mathbf{p}_n \end{bmatrix} \begin{bmatrix} \lambda_1 & & \\ & \ddots & \\ & & \lambda_n \end{bmatrix}$.

Extracting the i^{th} column of both sides of this equation, we find $A\mathbf{p}_i = \lambda_i \mathbf{p}_i$ (where λ_i could equal λ_j for $i \neq j$.) This means that each \mathbf{p}_i (obviously non-zero since P is invertible) is an eigenvector for A with corresponding eigenvalue λ_i . Meanwhile, since P is invertible, then rank(P) = n. Hence its set of columns $\{\mathbf{p}_i\}_{i=1}^n$ form a basis of eigenvectors for \mathbb{F}^n .

(\Leftarrow): Suppose we have a basis $\mathcal{B} = \{\mathbf{p}_1, \dots, \mathbf{p}_n\}$ for \mathbb{F}^n consisting entirely of eigenvectors for A. Then there exist scalars (eigenvalues) $\lambda_1, \dots, \lambda_n$ in \mathbb{F} such that $A\mathbf{p}_j = \lambda_j \mathbf{p}_j$ for $1 \leq j \leq n$. Stacking the n vectors \mathbf{p}_j together as columns of a square matrix P, we get

$$A \begin{bmatrix} \mathbf{p}_1 & \mathbf{p}_2 & \cdots & \mathbf{p}_n \end{bmatrix} = \begin{bmatrix} \lambda_1 \mathbf{p}_1 & \lambda_2 \mathbf{p}_2 & \cdots & \lambda_n \mathbf{p}_n \end{bmatrix}$$
$$= \begin{bmatrix} \mathbf{p}_1 & \mathbf{p}_2 & \cdots & \mathbf{p}_n \end{bmatrix} \begin{bmatrix} \lambda_1 & & \\ & \ddots & \\ & & & \lambda_n \end{bmatrix}$$

Since $\{\mathbf{p}_1, \ldots, \mathbf{p}_n\}$ is a basis, the $n \times n$ matrix $P = \begin{bmatrix} \mathbf{p}_1 & \mathbf{p}_2 & \cdots & \mathbf{p}_n \end{bmatrix}$ is invertible. Defining D to be the diagonal matrix with (j, j)-entry λ_j , we have AP = PD. Hence, $A = PDP^{-1}$, and A is diagonalizable.

(b) Prove: If A is diagonalizable, then tr(A) is the sum of all eigenvalues of A, counting multiplicities.

Proof. Since A is diagonalizable, then there exists invertible P and diagonal D such that $A = PDP^{-1}$. We find

$$\operatorname{tr}(A) = \operatorname{tr}(PDP^{-1}) = \operatorname{tr}(P^{-1}PD) = \operatorname{tr}(D)$$

using the fact that $\operatorname{tr}(MN) = \operatorname{tr}(NM)$. Suppose $D = \begin{bmatrix} \lambda_1 & & \\ & \ddots & \\ & & \lambda_n \end{bmatrix}$, where the

scalars λ_j are the eigenvalues of A by the construction above, counting multiplicities. Hence, $\operatorname{tr}(A) = \lambda_1 + \lambda_2 + \cdots + \lambda_n$.

Problem 2. We compute the spectral decomposition of the matrix $A = \begin{bmatrix} 0 & 1 & 1 \\ 1 & 0 & -1 \\ 1 & -1 & 0 \end{bmatrix}$.

(a) Find and orthonormal basis for the eigenspace belonging to eigenvalue $\lambda = 1$.

$$\mathbf{v}_1 = \frac{1}{\sqrt{2}} \begin{bmatrix} 1\\0\\1 \end{bmatrix}, \quad \mathbf{v}_2 = \frac{1}{\sqrt{6}} \begin{bmatrix} 1\\2\\-1 \end{bmatrix}.$$

Hence, $\{\mathbf{v}_1, \mathbf{v}_2\}$ is an orthonormal basis for the eigenspace associated to $\lambda = 1$.

(b) Find an orthogonal matrix P and a diagonal matrix D such that $A = PDP^{-1}$.

Proof. Since A has trace zero, our remaining eigenvalue must be -2, and its eigenvector is easily found to be $\begin{bmatrix} -1 & 1 & 1 \end{bmatrix}^{\top}$. Since A is symmetric, this is already orthogonal to our previously-discovered eigenvectors. So we normalize to obtain

$$\mathbf{v}_3 = \frac{1}{\sqrt{3}} \begin{bmatrix} -1\\ 1\\ 1 \end{bmatrix}$$

Then we have
$$P = \begin{bmatrix} \mathbf{v}_1 & \mathbf{v}_2 & \mathbf{v}_3 \end{bmatrix} = \frac{1}{\sqrt{6}} \begin{bmatrix} \sqrt{3} & 1 & -\sqrt{2} \\ 0 & 2 & \sqrt{2} \\ \sqrt{3} & -1 & \sqrt{2} \end{bmatrix}, D = \begin{bmatrix} 1 & & \\ & 1 & \\ & & -2 \end{bmatrix}$$
, and $A = PDP^{-1}$.

(c) Compute the orthogonal projection matrix E_{λ} from \mathbb{R}^3 onto the eigenspace V_{λ} for each eigenvalue λ of A and compute $\sum_{\lambda} \lambda E_{\lambda}$. Explain.

Proof. Based on the construction above, we have P^{\top} as orthogonal matrix, which means $P^{-1} = P^{T}$.

$$A = \begin{bmatrix} \mathbf{v}_{1} & \mathbf{v}_{2} & \mathbf{v}_{3} \end{bmatrix} \begin{bmatrix} 1 & & \\ & 1 & \\ & & -2 \end{bmatrix} \begin{bmatrix} \mathbf{v}_{1}^{\mathsf{T}} \\ \mathbf{v}_{2}^{\mathsf{T}} \\ \mathbf{v}_{3}^{\mathsf{T}} \end{bmatrix}$$
$$= \begin{bmatrix} \mathbf{v}_{1} & \mathbf{v}_{2} & \mathbf{v}_{3} \end{bmatrix} \begin{bmatrix} 1 & & \\ & 1 & \\ & & 0 \end{bmatrix} \begin{bmatrix} \mathbf{v}_{1}^{\mathsf{T}} \\ \mathbf{v}_{2}^{\mathsf{T}} \\ \mathbf{v}_{3}^{\mathsf{T}} \end{bmatrix} + \begin{bmatrix} \mathbf{v}_{1} & \mathbf{v}_{2} & \mathbf{v}_{3} \end{bmatrix} \begin{bmatrix} 0 & & \\ & 0 & \\ & & -2 \end{bmatrix} \begin{bmatrix} \mathbf{v}_{1}^{\mathsf{T}} \\ \mathbf{v}_{2}^{\mathsf{T}} \\ \mathbf{v}_{3}^{\mathsf{T}} \end{bmatrix}$$
$$= \begin{bmatrix} \mathbf{v}_{1} & \mathbf{v}_{2} & 0 \end{bmatrix} \begin{bmatrix} \mathbf{v}_{1}^{\mathsf{T}} \\ \mathbf{v}_{2}^{\mathsf{T}} \\ 0 \end{bmatrix} + (-2) \cdot \begin{bmatrix} 0 & 0 & \mathbf{v}_{3} \end{bmatrix} \begin{bmatrix} 0 \\ 0 \\ \mathbf{v}_{3}^{\mathsf{T}} \end{bmatrix}$$
$$= 1 \cdot (\mathbf{v}_{1}\mathbf{v}_{1}^{\mathsf{T}} + \mathbf{v}_{2}\mathbf{v}_{2}^{\mathsf{T}}) + (-2) \cdot \mathbf{v}_{3}\mathbf{v}_{3}^{\mathsf{T}}$$
(1)

Since $\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\}$ are orthonormal basis, we have $\mathbf{v}_1 \mathbf{v}_1^\top + \mathbf{v}_2 \mathbf{v}_2^\top$ and $\mathbf{v}_3 \mathbf{v}_3^\top$ are projection matrices. (The second one is obvious, and the first one is due to $\langle \mathbf{v}_1, \mathbf{v}_2 \rangle = 0$.) For $\lambda = 1$ and $\mu = -2$, the projection matrices are

$$P_{\lambda} = \frac{1}{3} \begin{bmatrix} 2 & 1 & 1 \\ 1 & 2 & -1 \\ 1 & -1 & 2 \end{bmatrix}, \qquad P_{\mu} = \frac{1}{3} \begin{bmatrix} 1 & -1 & -1 \\ -1 & 1 & 1 \\ -1 & 1 & 1 \end{bmatrix}.$$

(d) Use part (b) to compute A^9 .

Proof. Since $A = PDP^{-1}$, $A^n = PDP^{-1}PDP^{-1} \dots PDP^{-1} = PD^nP^{-1}$. Clearly the diagonal entries of D^9 are 1, 1, and $(-2)^9 = -512$. So

$$A^{9} = \begin{bmatrix} \mathbf{v}_{1} & \mathbf{v}_{2} & \mathbf{v}_{3} \end{bmatrix} \begin{bmatrix} 1 & & \\ & 1 & \\ & & -2^{9} \end{bmatrix} \begin{bmatrix} \mathbf{v}_{1}^{\top} \\ \mathbf{v}_{2}^{\top} \\ \mathbf{v}_{3}^{\top} \end{bmatrix} = \begin{bmatrix} -170 & 171 & 171 \\ 171 & -170 & -171 \\ 171 & -171 & -170 \end{bmatrix}.$$

(Note that we can also obtain this using part (c): since $A = \lambda P_{\lambda} + \mu P_{\mu}$ and $P_{\lambda}P_{\mu} = 0$, we have $A^9 = 1^9 P_{\lambda} + (-2)^9 P_{\mu}$.)

Problem 3.

Consider the vector space $V = \mathcal{C}([0, \pi])$ of real-valued continuous functions on the interval $[0, \pi]$. Any bivariate continuous function A(x, y) determines a linear operator $\tau: V \to V$ given by

$$\tau f(x) = \int_0^{\pi/2} A(x, y) f(y) dy$$

In this exercise, we study $A(x, y) = \cos(x + y)$.

(a) Find all eigenfunctions f(x) for τ that lie in the two-dimensional subspace

$$S = \{a \sin x + b \cos x \mid a, b \in \mathbb{R}\}.$$

Proof. For some $f(x) = a \sin x + b \cos x$ in S, we need to find a, b and λ such that $\tau f = \lambda f$. We need

$$\int_0^{\pi/2} \cos(x+y)(a\sin y + b\cos y)dy = \lambda(a\sin x + b\cos x)$$

We immediately see that, since

$$\cos(x+y) = \cos x \cos y - \sin x \sin y,$$

we can simplify the left-hand side to

$$\int_{0}^{\pi/2} \cos(x+y)(a\sin y+b\cos y)dy = -\sin x \left[\int_{0}^{\pi/2} \sin(y)(a\sin y+b\cos y)dy \right] + \cos x \left[\int_{0}^{\pi/2} \cos(y)(a\sin y+b\cos y)dy \right].$$

(This is called a "separable kernel": A(x, y) is expressible as a sum of products p(x)q(y).) Since

$$\int_{0}^{\pi/2} \sin(y) (a \sin y + b \cos y) dy = \frac{1}{4} (2b + \pi a)$$
$$\int_{0}^{\pi/2} \cos(y) (a \sin y + b \cos y) dy = \frac{1}{4} (2a + \pi b)$$

we must solve the system of equations

$$\left\{\frac{1}{4}(2b+\pi a) = -\mu a, \quad \frac{1}{4}(2a+\pi b) = \mu b\right\}.$$

For $\mu = \pm \frac{1}{4}\sqrt{\pi^2 - 4}$ (sorry for the typo!), we have eigenvectors (or "eigenfunctions")

$$f(x) = -\left(\frac{b\mu}{2}\right)\sin x + b \cos x$$

So we have two distinct eigenvalues and a one-dimensional eigenspace corresponding to each choice of μ .

(b) Consider the subspace W of V spanned by $\{\cos(nx), \sin(nx)\}_{n=1}^{\infty}$. Is W a τ -invariant subspace? Explain.

Proof. We now know, from our trig identity that allowed us to separate A(x, y), that any f(x) which is continuous on $[0, \pi/2]$ gives us $\tau f \in \text{span}\{\sin x, \cos x\}$. So, yes, this space is τ -invariant: for an arbitrary linear combination of basis elements

$$f(x) = \sum_{k=1}^{M} a_k \sin(n_k x) + b_k \cos(n_k x)$$

we have

$$\tau f(x) = -\sin x \left[\int_0^{\pi/2} \sin(y) f(y) dy \right] + \cos x \left[\int_0^{\pi/2} \cos(y) f(y) dy \right]$$

where the coefficients of $\sin x$ and $\cos x$ are some real constants that we don't care about. So subspace W is τ -invariant (and much more!).

Problem 4.

Consider the vector space V spanned by the following complex-valued functions on the interval $[-\pi,\pi]$: $\mathbf{v}_1 = e^z + \cos z$, $\mathbf{v}_2 = e^z + \sin z$, $\mathbf{v}_3 = \sin z$. This space V is invariant under the differential operator $\tau \in \mathcal{L}(V)$ given by $\tau f = \frac{df}{dz}$.

(a) Compute the matrix $[\tau]_{\mathcal{B}}$ of τ with respect to basis $\mathcal{B} = \{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\}$.

Proof. Since

$$\tau \mathbf{v}_{1} = e^{z} - \sin z = \mathbf{v}_{2} - 2\mathbf{v}_{3}$$

$$\tau \mathbf{v}_{2} = e^{z} + \cos z = \mathbf{v}_{1}$$

$$\tau \mathbf{v}_{3} = \cos z = \mathbf{v}_{1} - \mathbf{v}_{2} + \mathbf{v}_{3}$$

we have $A = [\tau]_{\mathcal{B}} = \begin{bmatrix} 0 & 1 & 1 \\ 1 & 0 & -1 \\ -2 & 0 & 1 \end{bmatrix}$. \Box

(b) Let us write $A = [\tau]_{\mathcal{B}}$. Using a computer, if necessary, find the eigenvalues of τ and determine a basis of eigenfunctions $\mathcal{C} = \{\mathbf{w}_1, \mathbf{w}_2, \mathbf{w}_3\}$. Write down the matrix $[\tau]_{\mathcal{C}}$.

Proof. Eigenvalues for A are $1, \pm i$. When $\lambda_1 = 1$, we require $\frac{df}{dz} = f$, and hence we choose $\mathbf{w}_1 = e^z$. For $\lambda_2 = i$, we seek $\frac{df}{dz} = if$, and hence we take $\mathbf{w}_2 = \cos(z) + i\sin(z)$. For $\lambda_3 = -i$, we need $\frac{df}{dz} = -if$ so we choose $\mathbf{w}_3 = \cos(z) - i\sin(z)$. So, for $\mathcal{C} = \{\mathbf{w}_1, \mathbf{w}_2, \mathbf{w}_3\}, [\tau]_{\mathcal{C}} = \begin{bmatrix} 1 & i \\ & -i \end{bmatrix}$. (c) Can you choose an inner product on space V with respect to which operator τ is self-adjoint? Explain.

Proof. No, we cannot have such a inner product. If τ were self-adjoint, then all eigenvalues of τ would be real. However, in part (b), we already find that its eigenvalues include $\pm i$. \square

Problem 5.

(a) For which $n \times n$ matrices is the minimal polynomial linear? Explain.

Proof. Claim: A should be in the form of λI ($\lambda \in \mathbb{C}, \lambda \neq 0$)

We know the minimal polynomial is a monic polynomial of lowest degree which, when evaluated at A, gives the zero matrix. If $m_A(t) = t - c_0$ is the minimal polynomial for A, then

$$A - c_0 I = 0$$

or $A = c_0 I$. So A is just a non-zero scalar multiple of the identity matrix.

(b) Find a 3×3 matrix with real entries which is not diagonalizable yet whose minimal polynomial is quadratic.

Proof. From our knowledge of generalized eigenspaces, we see that A must have just one eigenvalue, if we ignore multiplicities. Let $A = \begin{bmatrix} 2 & 1 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 2 \end{bmatrix}$. Then, we have $A^{2} = \begin{bmatrix} 4 & 4 & 0 \\ 0 & 4 & 0 \\ 0 & 0 & 4 \end{bmatrix} = 4A - 4I$ and A has minimal polynomial $m_A(t) = (t-2)^2$.

Problem 6.

Let S be a subspace of \mathbb{R}^n with basis $\mathcal{B} = \{\mathbf{v}_1, \dots, \mathbf{v}_k\}$ and let U be the $n \times k$ matrix with j^{th} column \mathbf{v}_{i} . In class, we showed that, when \mathcal{B} is an orthonormal basis, $P = UU^{\top}$ is the matrix representing orthogonal projection of \mathbb{R}^n onto S with respect to the standard basis.

(a) No longer assume that \mathcal{B} is orthonormal, but that it is just any basis for S. Prove that the projection operator $\rho_{S,S^{\perp}}$ is represented by the matrix $P = U(U^{\top}U)^{-1}U^{\top}$.

Proof. By direct computation, it is easy to see that $P^2 = P$. So P is idempotent. We need to prove that $\forall \mathbf{v} \in S$, $P\mathbf{v} = \mathbf{v}$, and $\forall \mathbf{v} \in S^{\perp}$, $P\mathbf{v} = 0$.

Given $\mathbf{v} \in S$, since $\{\mathbf{v}_1, \dots, \mathbf{v}_k\}$ is a basis, we can write $\mathbf{v} = \sum_{k=1}^n a_k \mathbf{v}_k = U\mathbf{a}$, where $\mathbf{a} = \begin{bmatrix} a_1 & \dots & a_k \end{bmatrix}^\top$. Then,

$$P\mathbf{v} = U(U^{\top}U)^{-1}U^{\top}\mathbf{v}$$

= $U(U^{\top}U)^{-1}U^{\top}U\mathbf{a}$
= $U\mathbf{a} = \mathbf{v}$ (3)

On the other hand, for $\mathbf{w} \in S^{\perp}$, we have $\mathbf{v}_i^{\top} \mathbf{w} = 0$ for $1 \leq j \leq k$ so $U^{\top} \mathbf{w} = 0$. Then $P \mathbf{w} = U(U^{\top}U)^{-1}U^{\top} \mathbf{w} = 0$

This proves that P is projection operator $\rho_{S,S^{\perp}}$.

[NOTE: We just assumed that $U^{\top}U$ is invertible. If not, then there would be a nonzero vector **a** with $(U^{\top}U)\mathbf{a} = 0$. But, as we've just seen $U\mathbf{a}$ is a vector in subspace S and the only vector **s** in S which can be orthogonal to every vector in a basis is the zero vector: $U^{\top}\mathbf{s} = 0$ implies $\mathbf{s} = 0$.]

(b) Does the matrix $P = UU^{\top}$ represent $\rho_{S,T}$ for some T? Explain.

Proof. We show that P is a projection matrix if and only if $U^{\top}U = I_k$. Indeed, if $\mathbf{s} \in S$, then there is a vector \mathbf{a} of length k with $\mathbf{s} = U\mathbf{a}$. If P is the matrix representing $\rho_{S,T}$, then $P\mathbf{s} = \mathbf{s}$ So $UU^{\top}U\mathbf{a} = U\mathbf{a}$ for every possible vector \mathbf{a} of length k. We multiply both sides on the left by U^{\top} to find

$$(U^{\top}U)(U^{\top}U)\mathbf{a} = (U^{\top}U)\mathbf{a}$$
.

We just showed that $U^{\top}U$ is invertible. So we may multiply both sides on the left by its inverse to see that

$$(U^{\top}U)\mathbf{a} = I\mathbf{a}$$

for every $\mathbf{a} \in \mathbb{R}^k$. Since the two matrices have the same action, they are equal: $U^{\top}U = I$.

(c) Now let V be the real vector space of polynomial functions $c_0 + c_1 x + \cdots + c_n x_n$ on the interval [0, 1] with inner product $\langle f, g \rangle = \int_0^1 f(x)g(x) dx$ and let S be the space spanned by $\{1, x\}$. Find a simple expression for the orthogonal projection of V onto S with respect to this inner product.

Proof. First, we need to make the basis orthonormal. Hence, by Gram-Schmidt orthogonalization, we have $f_1 = 1$, and

$$\bar{f}_2 = x - \langle 1, x \rangle \cdot 1 = x - \int_0^1 x \, dx = x - \frac{1}{2}$$

Then normalize \overline{f}_2 to get $f_2 = \sqrt{12}(x - \frac{1}{2})$, and then, for any $g \in V$, our projection is given by

$$P(g) = \langle g, 1 \rangle \cdot 1 + \langle g, f_2 \rangle \cdot f_2$$