Solution to Homework 3

MAB502 Linear Algebra

Problem 1.
An n x n matrix A with entries from field F is diagonalizable over F if there exists an
invertible matrix P and a diagonal matrix D such that A = PDP~!,

(a) Prove that A is diagonalizable over field F if and only if V' = F" admits a basis each
vector of which is an eigenvector for A.

Proof.

(=>):fSuppose A is diagonalizable, then there exists an invertible P and a diagonal D
such that A = PDP~!. Write P = [ P1 P2 ' DPn ], where p; is ™ column vector
A1
of P. Meanwhile, we can write D = . Then, we have AP = PD,

An
which we may write
A1
A[Pl P2 .- pn]:[pl P2 ... pn]

An

Extracting the i*" column of both sides of this equation, we find Ap; = \;p; (where
Ai could equal A; for i # j.) This means that each p; (obviously non-zero since P is
invertible) is an eigenvector for A with corresponding eigenvalue \;. Meanwhile, since
P is invertible, then rank(P) = n. Hence its set of columns {p;}? ; form a basis of
eigenvectors for F".

(<): Suppose we have a basis B = {p1,...,pn} for F" consisting entirely of eigenvec-
tors for A. Then there exist scalars (eigenvalues) Ay, ..., A\, in F such that Ap; = \;p;
for 1 < j < n. Stacking the n vectors p; together as columns of a square matrix P,
we get

Al Pt P2 -+ Pn = AMP1 AeP2 o AuPn

— )\1
— pl p2 o .. pn




Since {p1,...,Pn} is a basis, the n X n matrix P = [ Pi P2 - Pn } is invertible.
Defining D to be the diagonal matrix with (j, j)-entry \;, we have AP = PD. Hence,
A= PDP~! and A is diagonalizable. [

Prove: If A is diagonalizable, then tr(A) is the sum of all eigenvalues of A, counting
multiplicities.

Proof. Since A is diagonalizable, then there exists invertible P and diagonal D such
that A = PDP~!. We find

tr(A) = tr(PDP™') = tr(P~'PD) = tr(D)

At
using the fact that tr(MN) = tr(NM). Suppose D = , where the
)\n
scalars \; are the eigenvalues of A by the construction above, counting multiplicities.
Hence, tr(A) = A\ + Ao + -+ + A, O
0 1
Problem 2. We compute the spectral decomposition of the matrix A= | 1 0 —1
1 =1 0

(a)

Find and orthonormal basis for the eigenspace belonging to eigenvalue A\ = 1.

-1 1 1 1 -1 -1
Proof. When A =1, A — A\ = 1 -1 =1 |~ {0 0 0 [. This reduced
1 -1 -1 0 0 O
1 1
row echelon form allows us to read off a basis for the eigenspace: 01,1
1 0
We apply Gram-Schmidt orthogonalization to find
[ [
Vi = —F= s Vo = —=
Vi |
Hence, {vy, vo} is an orthonormal basis for the eigenspace associated to A = 1. O]

Find an orthogonal matrix P and a diagonal matrix D such that A = PDP~!.

Proof. Since A has trace zero, our remaining eigenvalue must be —2, and its eigenvector

is easily found to be [ -1 11 }T. Since A is symmetric, this is already orthogonal
to our previously-discovered eigenvectors. So we normalize to obtain

-1
1
1

V3 =

Sl

[\



V3 1 =2 1
0 2 V2 |,D= 1
V3 -1 V2

Then we have P = [ Vi Vg V3 }

5

A=PDPL

Compute the orthogonal projection matrix £ from R3 onto the eigenspace V) for each
eigenvalue A of A and compute ), AE). Explain.

Proof. Based on the construction above, we have P' as orthogonal matrix, which
means P~ = PT.

[ 1 v
A = [ Vi Vo V3 ] 1 V;
i -2 Vi
1 v) 0 v]
:[Vl Vo Vg] 1 V2T —|—[V1 Vo Vg} 0 v2T
i 0 Vi -2 4
\2 0
=[vi v2 0] | vy [+(=2)-[0 0 v3] 0
-
V3
=1-(viv] +vavy) + (—=2) - vavy
(1)
.

Since {v1, vy, v3} are orthonormal basis, we have viv| +v,vy and vsv, are projection
matrices. (The second one is obvious, and the first one is due to (vi,ve) = 0.) For

A =1 and p = —2, the projection matrices are
1 2 1 1 1 1 -1 -1
=gl 2 -1}, F=g)-1 1 1
1 -1 2 -1 1 1

Use part (b) to compute A°.

Proof. Since A = PDP~!, A" = PDP-'PDP~'...PDP~! = PD"P~!. Clearly the
diagonal entries of D? are 1, 1, and (—2)? = —512. So

1 V) -170 171 171
A'=[vi vy v3 ] 1 vy | = 171 —170 —171
—2° Vi 171 —171 —170

(Note that we can also obtain this using part (c): since A = AP\ + pP, and P\P, = 0,
we have A% = 19P, + (=2)°P,.) O



Problem 3.

Consider the vector space V = C([0,7]) of real-valued continuous functions on the interval
[0,7]. Any bivariate continuous function A(x,y) determines a linear operator 7: V. — V
given by

In this exercise, we study A(z,y) = cos(z + y).

(a) Find all eigenfunctions f(x) for 7 that lie in the two-dimensional subspace
S ={asinx+bcosz | a,b e R}.

Proof. For some f(x) = asinz + bcosz in S, we need to find a,b and A such that
7f = Af. We need

w/2
/ cos(z + y)(asiny + beosy)dy = A(asinzx + bcosx).
0

We immediately see that, since
cos(r +y) = cosxcosy — sinzsiny,

we can simplify the left-hand side to

w/2
/ cos(z+y)(asiny+bcosy)dy =
0

w/2
—sinx [/ sin(y)(asiny + bcosy)dy
0

w/2
+cosx [/ cos(y)(asiny + bcosy)dy
0

(This is called a “separable kernel”: A(x,y) is expressible as a sum of products
p(z)q(y).) Since

/2 1
/ sin(y)(asiny + bcosy)dy = ) (2b+ ma)
0

w/2 1
/ cos(y)(asiny + beosy)dy = 2 (2a + 7b)
0

we must solve the system of equations

1 1
{Z<2b+ Ta) = —ua, Z(2a+7rb) = ,ub} :

For = i}l\/ 72 — 4 (sorry for the typo!), we have eigenvectors (or “eigenfunctions”)

f(x)=— (%) sinz + b cosz.

So we have two distinct eigenvalues and a one-dimensional eigenspace corresponding
to each choice of p. O



(b)

Consider the subspace W of V spanned by {cos(nz),sin(nz)}2,. Is W a 7-invariant
subspace? Explain.

Proof. We now know, from our trig identity that allowed us to separate A(z,y), that
any f(x) which is continuous on [0, 7/2] gives us 7f € span{sinz, cosz}. So, yes, this
space is T-invariant: for an arbitrary linear combination of basis elements

f(x) = Z ay sin(ngx) 4 by cos(ngx)

k=1

we have

/2
T7f(z) = —sinz [/o sin(y) f(y)dy

/2
+ cosx [/0 cos(y)f(y)dy]

where the coefficients of sinz and cosz are some real constants that we don’t care

about. So subspace W is 7-invariant (and much more!). ]
Problem 4.
Consider the vector space V spanned by the following complex-valued functions on the
interval [—m, 7w]: vi = e* 4 cosz, vy = € + sin 2, vy = sinz. This space V is

invariant under the differential operator 7 € L(V') given by 7f = %.

(a)

Compute the matrix [7]z of 7 with respect to basis B = {vy, vy, v3}.

Proof. Since

TV] = €° —sinz = vg — 2v3
TVy =€” 4+ cosz = vy (2)

TV3 = COSZ = V] — Vg + V3

0 1 1
we have A = [1]p = 1 0 —-1]. O
-2 0 1

Let us write A = [7]s. Using a computer, if necessary, find the eigenvalues of 7 and
determine a basis of eigenfunctions C = {wy, wo, w3}. Write down the matrix [7]c.

Proof. Eigenvalues for A are 1, 4.
When \; = 1, we require % = f, and hence we choose w; = €.
For Ay = i, we seek dd—J; = if, and hence we take wy = cos(z) + isin(z).
For A3 = —i, we need % = —if so we choose w3 = cos(z) — isin(z).
1
So, for C = {wy, wo, W3}, [T]c = 7 ) O



(c) Can you choose an inner product on space V with respect to which operator 7 is
self-adjoint? Explain.

Proof. No, we cannot have such a inner product. If 7 were self-adjoint, then all eigen-
values of 7 would be real. However, in part (b), we already find that its eigenvalues
include =2. O

Problem 5.

(a) For which n x n matrices is the minimal polynomial linear? Explain.

Proof. Claim: A should be in the form of A\I (A € C, A #0)

We know the minimal polynomial is a monic polynomial of lowest degree which, when
evaluated at A, gives the zero matrix. If m4(f) =t — ¢o is the minimal polynomial for
A, then

A— C()] =0

or A =cygl. So A is just a non-zero scalar multiple of the identity matrix. O

(b) Find a 3 x 3 matrix with real entries which is not diagonalizable yet whose minimal
polynomial is quadratic.

Proof. From our knowledge of generalized eigenspaces, we see that A must have just

210
one eigenvalue, if we ignore multiplicities. Let A= | 0 2 0 |. Then, we have
00 2
4 4 0
A2=10 4 0| =44A-41
0 0 4
and A has minimal polynomial m(t) = (t — 2). O

Problem 6.

Let S be a subspace of R™ with basis B = {vy,..., v} and let U be the n X k matrix with
J™ column v;. In class, we showed that, when B is an orthonormal basis, P = UU " is the
matrix representing orthogonal projection of R™ onto S with respect to the standard basis.

(a) No longer assume that B is orthonormal, but that it is just any basis for S. Prove that
the projection operator pgg. is represented by the matrix P = U(U'U)~'U".

Proof. By direct computation, it is easy to see that P? = P. So P is idempotent. We
need to prove that Vv € S, Pv =v, and Vv € S*, Pv = 0.



Given v € S, since {vy,...,Vv;} is a basis, we can write v =), axv; = Ua, where
T
a= [ a, ... ag ] . Then,

Pv=UU'U)'Uv
=UWU'U)'UUa (3)
=Ua=v
On the other hand, for w € S+, we have v.!w =0 for 1 < j < k so U'w = 0. Then
Pw=UU"U)'UTw=0

This proves that P is projection operator pgg.. O]

[NOTE: We just assumed that U U is invertible. If not, then there would be a nonzero
vector a with (U"U)a = 0. But, as we've just seen Ua is a vector in subspace S and
the only vector s in S which can be orthogonal to every vector in a basis is the zero
vector: U's = 0 implies s = 0.]

Does the matrix P = UU " represent pgr for some T' ? Explain.

Proof. We show that P is a projection matrix if and only if UTU = I;. Indeed, if s € S,
then there is a vector a of length k with s = Ua. If P is the matrix representing pgr,

then Ps = s So UU'Ua = Ua for every possible vector a of length k. We multiply
both sides on the left by U to find

UTHY(UT)a=(U'U)a .

We just showed that U U is invertible. So we may multiply both sides on the left by
its inverse to see that

(UTU)a=Ia

for every a € RF. Since the two matrices have the same action, they are equal:

U'U =1. []

Now let V' be the real vector space of polynomial functions c¢q + c1x + - -+ + ¢,x, on
the interval [0, 1] with inner product (f,g) = fol f(x)g(x)dx and let S be the space
spanned by {1,z}. Find a simple expression for the orthogonal projection of V' onto
S with respect to this inner product.

Proof. First, we need to make the basis orthonormal. Hence, by Gram-Schmidt or-
thogonalization, we have f; = 1, and

1

1
f2:x_<1737>‘1:$—/ rdr =1 — =
0 2

Then normalize fy to get fo = V12(z — %), and then, for any g € V, our projection is
given by
P(g) = (9, 1) -1+ g, fa) - f2



