MA502 Linear Algebra W. J. Martin September 26, 2017

MA502 Assignment 3

DUE DATE: Thursday, October 5, 2017, at the beginning of class.

Please carefully read and observe the presentation rules for assignments in this course.

1.) An $n \times n$ matrix A with entries from field \mathbb{F} is *diagonalizable* over \mathbb{F} if there exists an invertible matrix P and a diagonal matrix D such that $A = PDP^{-1}$.

(a) Prove that A is diagonalizable over field \mathbb{F} if and only if $V = \mathbb{F}^n$ admits a basis each vector of which is an eigenvector for A.

(b) Using the fact that tr(MN) = tr(NM) whenever M is an $m \times n$ matrix and N is an $n \times m$ matrix, prove: If A is diagonalizable, then tr A is the sum of all eigenvalues of A, counting multiplicities.

2.) We compute the spectral decomposition of the matrix $A = \begin{bmatrix} 0 & 1 & 1 \\ 1 & 0 & -1 \\ 1 & -1 & 0 \end{bmatrix}$.

(a) Find and orthonormal basis for the eigenspace belonging to eigenvalue $\lambda = 1$.

(b) Find an orthogonal matrix P and a diagonal matrix D such that $A = PDP^{-1}$.

(c) Compute the orthogonal projection matrix E_{λ} from \mathbb{R}^3 onto the eigenspace V_{λ} for each eigenvalue λ of A and compute $\sum_{\lambda} \lambda E_{\lambda}$. Explain.

(d) Use part (b) to compute A^9 .

3.) Consider the vector space $V = \mathcal{C}([0, \frac{\pi}{2}])$ of real-valued continuous functions on the interval $[0, \frac{\pi}{2}]$. Any bivariate continuous function A(x, y) determines a linear operator $\tau: V \to V$ given by

$$au f(x) = \int_0^{\pi/2} A(x,y) f(y) \, dy \; .$$

In this exercise, we study $A(x, y) = \cos(x + y)$.

(a) Find all eigenfunctions f(x) for τ that lie in the two-dimensional subspace

$$S = \{a \sin x + b \cos x \mid a, b \in \mathbb{R}\}.$$

[For this problem, use μ for the value $\frac{1}{4}(\pi^2 - 4)$.]

(b) Consider the subspace W of V spanned by $\{\cos(nx), \sin(nx)\}_{n=1}^{\infty}$. Is W a τ -invariant subspace? Explain. (You may need to look up some integration formulas from first-year calculus.)

4.) Consider the complex vector space V spanned by the following functions on the interval $[-\pi, \pi]$:

$$v_1 = e^x + \cos x, \quad v_2 = e^x + \sin x, \quad v_3 = \sin x.$$

(I.e., V consists of all functions of the form $c_1\mathbf{v}_1 + c_2\mathbf{v}_2 + c_3\mathbf{v}_3$ where c_1, c_2, c_3 are complex numbers.) This space V is invariant under the differential operator $\tau \in \mathcal{L}(V)$ given by $\tau f = \frac{df}{dx}$.

(a) Compute the matrix $[\tau]_{\mathcal{B}}$ of τ with respect to basis $\mathcal{B} = \{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\}$.

(b) Let us write $A = [\tau]_{\mathcal{B}}$. Using a computer, if necessary, find the eigenvalues of τ and determine a basis of eigenfunctions $\mathcal{C} = \{\mathbf{w}_1, \mathbf{w}_2, \mathbf{w}_3\}$. Write down the matrix $[\tau]_{\mathcal{C}}$.

(c) Can you choose an inner product on space V with respect to which operator τ is self-adjoint? Explain.

5(a) For which $n \times n$ matrices is the minimal polynomial linear? Explain.

(b) Find a 3×3 matrix with real entries which is not diagonalizable yet whose minimal polynomial is quadratic. [HINT: You may assume the matrix is upper triangular. (Why?)]

6.) Let S be a subspace of \mathbb{R}^n with basis $\mathcal{B} = \{\mathbf{v}_1, \ldots, \mathbf{v}_k\}$ and let U be the $n \times k$ matrix with j^{th} column \mathbf{v}_j . In class, we showed that, when \mathcal{B} is an orthonormal basis, $P = UU^{\top}$ is the matrix representing orthogonal projection of \mathbb{R}^n onto S with respect to the standard basis.

(a) No longer assume that \mathcal{B} is orthonormal, but that it is just any basis for S. Prove that the projection operator $\rho_{S,S^{\perp}}$ is represented by the matrix $P = U(U^{\top}U)^{-1}U^{\top}$.

(b) Does the matrix $P = UU^{\top}$ represent $\rho_{S,T}$ for some T? Explain.

(c) Now let V be the real vector space of polynomial functions $c_0 + c_1 x + \cdots + c_n x^n$ on the interval [0, 1] with inner product $\langle f, g \rangle = \int_0^1 f(x)g(x)dx$ and let S be the space spanned by $\{1, x\}$. Find a simple expression for the orthogonal projection of V onto S with respect to this inner product.