
Homework 1 Solution

October 8, 2017

1. Roman P42 Question 1

? Prove that the sum
∑

i∈Λ Si = {v1 + · · ·+ vn | vj ∈ ∪i∈ΛSi} of any col-
lection {Si}i∈Λ of subspaces of a vector space V is a subspace.

We know that T :=
∑

i∈Λ Si consists of all finite sums of vectors in the union ∪i∈ΛSi of
the spaces. Looking at such a sum

v = s1 + · · ·+ sn,

it doesn’t matter whether si and sj come from the same – or different – subspaces in the
collection. So if w = s′1 + · · ·+ s′m we have

v + w = s1 + · · ·+ sn + s′1 + · · ·+ s′m

where each of the n+m terms is a vector in ∪i∈ΛSi. By definition of the sum of subspaces,
this, too, is a vector in T .

Next let a ∈ F be any scalar and let v = s1 + · · · + sn be any vector in the sum of
subspaces, since each si belongs to at least one subspace Sji in the collection, the scaled
vector asi also belongs to Sji (it is a subspace, after all). So the vector

av = (as1) + · · · (asn)

is a finite sum of vectors each of which is in ∪i∈ΛSi. This shows that av belongs to T .
Since T =

∑
i∈Λ Si is closed under addition and scalar multiplication (and, taking

n = 1, s1 = 0, it obviously contains the zero vector so is non-empty), we see that this is
indeed a subspace using Theorem 1.1.

? Show that
∑

i∈Λ Si is the least upper bound of the set {Si}i∈Λ where
subspaces are ordered under inclusion.
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We must show that this is a subspace containing all of the subspaces Si (which is evident);
that there is a unique “smallest” subspace containing all of the Si; and that this is the one.

First note that the definition of T allows us to choose any s ∈ Sj for any j ∈ Λ and
select v = s. So Sj ⊆ T for every j ∈ Λ. This proves that T is indeed an upper bound for
the collection {Sj | j ∈ Λ}.

Now to prove that it is the “smallest” subspace containing all of the Sj , we simply prove
that it contains any subspace W of V with ∪j∈ΛSj ⊆ W . Let W be any such subspace.
Let v be any vector in T . Then there exist vectors s1, . . . , sn chosen from ∪j∈ΛSj such that
v = s1 + · · ·+ sn. By hypothesis, each of these vectors si belongs to W since W contains
the subspace it is chosen from (among those indexed by Λ). Since W is a subspace, W
must contain the sum v = s1 + · · · + sn of these vectors; so v ∈ W . This proves that
T ⊆W .

Since T is a subspace containing all of the Sj , AND T is contained in any subspace W
that contains all Sj , T is indeed the “smallest”, the least upper bound of the set {Si}i∈Λ,
where subspaces are ordered by inclusion. �

2. Roman p57, Question 17
An affine subspace is a subset of vector space V of the form v+S for some vector subspace
S of V , where v + S = {v + s | s ∈ S}.

? (a) An affine subspace v + S is a subspace of V if and only if v ∈ S.

(⇒) Assume S is a subspace of V and v ∈ V such that v + S is again a subspace of V .
Then v + S contains the zero vector, so there is some w ∈ S such that

v + w = 0.

Clearly w = −v. So S contains −v and, as S is closed under scalar multiplication, S
contains (−1)w = (−1)(−v) = v as well.
(⇐) On the other hand, if S is a subspace and v ∈ S, then v + S = S is again a subspace.
To see this, note that every element s ∈ S is uniquely expressible as s = v + w for some
w ∈ S (namely w = s−v). So whenever v belongs to S, the affine subspace is a subspace;
in fact it is just S.

? (b) Any two affine subspaces of the form v + S and w + S (same S) are
either equal or disjoint.

Suppose that v + S is not disjoint from w + S. Then they have a vector in common. Let
u ∈ (v + S) ∩ (w + S). Then there exist vectors v′ and w′ in S with

u = v + v′, u = w + w′.
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But then we have v −w ∈ S since

v −w = w′ − v′ ∈ S.

So w belongs to v + S, say w = v + s, and

w + S = (v + s) + S = v + (s + S) = v + S

since s + S = S. (Check this on your own!)

3. Prove that every bijective linear transformation is a vector space isomor-
phism.

Let τ : V → W be a bijective linear transformation. Since τ is a bijection, we know that
τ−1 is a function: it is defined by τ−1(w) = v if and only if τ(v) = w.

Let τ−1(w1) = v1 and τ−1(w2) = v2. Then, by definition, τ(v1) = w1 and τ(v2) = w2.
Since τ is a linear transformation, we have

τ(v1 + v2) = τ(v1) + τ(v2) = w1 + w2

so that
τ−1(w1 + w2) = v1 + v2 = τ−1(w1) + τ−1(w2).

Likewise, if τ−1(w) = v and a ∈ F, then τ(v) = w, τ(av) = aτ(v) = aw giving us

τ−1(aw) = av = aτ−1(w). �

4. Prove that every matrix may be uniquely expressed as a sum of a symmetric
matrix and skew-symmetric matrix. Express this statement as a direct sum
decomposition of the space.

Proof: Existence:
Assume 1 + 1 6= 0 and, given M ∈Mn(F), define A = 1

2(M +M>), and B = 1
2(M −M>).

Then, M = A+B and A = A>, and −B = B>.

Uniqueness:
Suppose that ∃A1, A2 symmetric, and B1, B2 skew-symmetric, and M = A1+B1 = A2+B2.
Then, defining C = A1 −A2 we find C = B2 −B1. Since the Aj are symmetric, we have

C> = (A1 −A2)> = A>1 −A>2 = A1 −A2 = C
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and yet, since the Bj are skew-symmetrix, we have

C> = (B1 −B2)> = B>1 −B>2 = −B1 +B2 = −C.

So C> = C and C> = −C forcing C = −C. Since 1 + 1 6= 0, this forces C to be the zero
matrix. So A1 = A2, B1 = B2 and the decomposition is unique. �

Let Sn(F) denote the subspace of symmetric n× n matrices and let SSn(F) denote the
subspace of skew-symmetric n× n matrices. We have shown

Mn(F) = Sn(F)⊕ SSn(F).

5. Determine all subsets of S which forms bases for W .
(a) W =

{
a cos2 t+ b sin2 t+ cet | a, b, c ∈ R

}
bases: {v1,v2,v3}, {v1,v3,v4}, {v2,v3,v4}.

(b) W =
{
at2 + b | a, b ∈ Q

}
bases: {v1,v2}, {v1,v4}, {v2,v4}

(c) W =M2,2(Z2)
bases: {v1,v2,v3,v4}.
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