

## Codes Assignment 1

DUE DATE: Thursday, April 2, by 11:59pm sent to me (as a single readable PDF file) via email.

Please carefully read the presentation rules below. The problem statements begin below the rules at the bottom of the page.

### BASIC RULES FOR MA4891 ASSIGNMENTS

- I)** Each student must compose his/her assignments independently. However, rough work may be done in groups;
- II)** Write legibly and use only one side of each sheet of paper;
- III)** Show your work. Explain your answers using FULL SENTENCES;
- IV)** Scan the pages and submit the assignment as a single PDF document via email. (Pro tip: Learn how to do this ASAP, not at the deadline.)

Please complete the following five problems.

1. Working over the finite field  $\mathbb{F}_7$ ,

(a) find the inverse of the matrix  $M = \begin{bmatrix} 1 & x \\ 0 & 2 \end{bmatrix}$  where  $a \in \mathbb{F}_7$  is arbitrary.

(b) find the inverse of

$$N = \begin{bmatrix} 4 & 0 & 2 \\ 2 & 4 & 0 \\ 0 & 2 & 4 \end{bmatrix}$$

(c) perform the appropriate row operations to bring the following matrix into reduced row echelon form (RREF):

$$A = \begin{bmatrix} 1 & 1 & 4 & 0 & 0 \\ 1 & 6 & 1 & 1 & 3 \\ 5 & 1 & 0 & 1 & 4 \\ 0 & 0 & 0 & 3 & 6 \end{bmatrix}.$$

2. Let  $C \subset \mathbb{F}_q^n$  be any non-empty code and let  $C^+ \subseteq \mathbb{F}_q^{n+1}$  be the *extended code*<sup>1</sup> of  $C$ :

$$C^+ = \left\{ \mathbf{x} \in \mathbb{F}_q^{n+1} \mid (x_1, \dots, x_n) \in C, \sum_{i=1}^{n+1} x_i = 0 \right\}.$$

Prove:

- (a)  $|C^+| = |C|$
- (b)  $d_{\min}(C^+) = d_{\min}(C)$  or  $d_{\min}(C^+) = d_{\min}(C) + 1$ .  
(When does the second case occur?)
- (c)  $C^+$  is additive (resp., linear) if and only if  $C$  is additive (resp., linear)

3. The *International Standard Book Number* (ISBN) employs an error-detecting code.

- (a) Using the internet, give the matrix  $H$  whose null space is the set of valid ISBN-10 numbers. (HINT: This is a  $1 \times 10$  matrix over  $\mathbb{F}_{11}$ .)
- (b) Briefly describe the two classes of errors this code is designed to detect and explain why it works.
- (c) The modern ISBN-13 does not use a vector space. Why? (I.e., what about it does not satisfy the definition of a vector space?)

4. Consider the following channel  $\mathbb{P}$  with input alphabet  $X = \{0, 3, 6\}$  and output alphabet  $Y = \{0, 1, \dots, 6\}$ :

|          |     |     |      |      |     |      |      |     |  |
|----------|-----|-----|------|------|-----|------|------|-----|--|
| $\Pr(x)$ | $x$ | 0   | 1    | 2    | 3   | 4    | 5    | 6   |  |
| 0.3      | 0   | 0.8 | 0.15 | 0.05 |     |      |      |     |  |
| 0.1      | 3   |     | 0.2  | 0.2  | 0.2 | 0.2  | 0.2  |     |  |
| 0.6      | 6   |     |      |      |     | 0.05 | 0.15 | 0.8 |  |

$= \mathbb{P}$

- (a) Give the maximum likelihood decoding **MLD** algorithm for this channel as a lookup table.
- (b) If you were to adjust this to **IMLD**, what are the first two changes you would make and why?
- (c) Give the maximum *a posteriori* decoding **MAP** algorithm for this channel as a lookup table.

5. Suppose your input and output alphabets are both  $\mathbb{F}_2^6$ ; so you are sending binary 6-tuples. Suppose that, in your channel model, the only errors that occur are a 1 occasionally falling to a zero. (But zeros are never changed to ones.) What is the largest single-error-correcting code you can find in this setting?

---

<sup>1</sup>On p71, Hall gives a more general concept than what we use here.