
MA3231 Linear Programming
W. J. Martin
August 30, 2018

Summary of the Simplex Method

Overview
The Simplex Method is covered in our text (Chapter 2) and has been presented in class.
But, as my notation differs slightly from Vanderbei’s notation, I want to summarize the
basic algorithm here in these notes for you. First we run through it mechanically and then
we go through things again, introducing important notation and ideas and addressing the
central issues in developing a working version of the basic method.

Mechanics of a Pivot
Suppose we are at some point in the algorithm where we have a feasible dictionary in front
of us. The variables are partitioned into basic and non-basic variables and the previous pivot
has left us with the dictionary

ζ = ζ̄ +
∑
j∈N

c̄jxj

xi = b̄i −
∑
j∈N

āijxj (i ∈ B)

Based on this data, our pivot proceeds in four simple steps. We assume the dictionary is
feasible and that our objective function is to be maximized over the feasible region.

Enter: Find j ∈ N such that c̄j > 0. (Say j = r works.) This xr is the “entering
variable”. If there is no such non-basic variable, then stop: the current
dictionary is OPTIMAL; by setting all non-basic variables to zero
and solving for the basic variables (xi = b̄i for i ∈ B), we obtain
an optimal solution x∗ with optimal objective value ζ∗ = ζ̄.

Ratios: Compute min
{

b̄i
āir
| i ∈ B, āir > 0

}
; this is the upper feasible

limit on the value of the entering variable xr
(If this set is empty, then stop; the problem is UNBOUNDED)

Leave: Choose h ∈ B such that b̄h/āhr is equal to the above minimum.
(If there is a tie, I choose the one with smallest subscript h.)
This variable xh is the “leaving variable”.

New Dictionary: In the current dictionary, the equation xh = b̄h −
∑

k āhkxk is
called the “pivot equation”. We solve this equation for the en-
tering variable xr and then substitute this expression for xr into
all other rows of the dictionary to obtain our new dictionary.

1

The last step is conceptual; the computation is already done since the dictionary tells us
which variables are basic.

Re-Partition: Since xr enters the basis and xh leaves the basis, we have a new

basis B̂ = (B \ {h}) ∪ {r} and the new dictionary has non-basic

variables N̂ = (N \ {r}) ∪ {h}.

Since our goal in this course is not simply to robotically follow instructions, but to
understand structure and ideas, we will shortly go through the entire sequence again, seeing
why each step is as it is and seeing what might go wrong with such a simple approach.
But first we need to think carefully about notation. How do we get to an initial feasible
dictionary? How do we define unified notation that captures all situations? Let’s first look
at the transition from standard form to a first dictionary.

Notation and Set-Up
In our first version of the simplex method, we assume that an initial feasible dictionary is
readily available. For example, assume we are first given an LP in standard form1:

max d>x

subject to Mx ≤ b

x ≥ 0

Suppose this problem involves k variables x1, . . . , xk and m inequalities

k∑
j=1

mijxj ≤ bi (1 ≤ i ≤ m)

determined by matrix M = [mij]i,j and right-hand side vector b = [bi]i, I will immediately
add a slack variable to each inequality constraint, thereby converting each to an equation2

k∑
j=1

mijxj + xk+i = bi (1 ≤ i ≤ m).

If we define n = k + m, then the total number of variables plus constraints in the original
problem is n. Thus the equality form obtained by tossing in slack variables has exactly n
variables. For some vector c of length n and some m × n matrix A, this new problem has
form

max c>x

s.t. Ax = b (1)

x ≥ 0

1Sorry for using d and M in place of the usual c and A. But you’ll see why in a moment.
2The fact that the unmodified constraint is of “≤” form is then captured by a new requirement that the

corresponding slack variable must be non-negative.

2

where, now, x = (x1, . . . , xn). In fact, we know c and A; we can express them in terms of
the data we already have using the notation of partitioned matrices from linear algebra:

c =

[
d
0

]
, A =

[
M

... I

]
.

That identity submatrix on the right is very important to the simplex method.
If we partition the variables into two sets

B = {k + 1, k + 2, . . . , n}, N = {1, 2, . . . , k},

then we can write x> = [x>N
...x>B] and AN = M , AB = I so that

A =

[
AN

...AB

]
.

and the problem (1) can be expressed (check!)

max c>xN + 0>xB

ANxN + ABxB = b

xN ≥ 0, xB ≥ 0

(It makes a lot of sense to call this initial basis/non-basis pair S and D instead of B and N
since the initial set of basic variables are exactly the slack variables and the decision variables,
respectively.) Since AB is an identity matrix, it is easy to solve the set of constraint equations
for the basic variables

xB = IxB = b− ANxN .

This gives us our initial dictionary for the simplex method:

ζ = 0 + c>xN

xB = b − ANxN

The Basics of Pivoting
As discussed in class and in the text, our simplex algorithm has us not only move along the
boundary of the feasible region by increasing one profitable non-basic variable as much as is
feasibly possible, but also has us migrate from one dictionary to the next. Since the data at
some arbitrary point in the algorithm may be quite different from the initial data, we use
bars on all the values. That is how our above description of a simplex pivot captures both
the original data (c̄j = cj, etc.) but also any crazy dictionary that comes our way as the
algorithm progresses.

Suppose we are at some point in the algorithm where the set {1, . . . , n} of variable indices
is partitioned into basic and non-basic variables. While it is more inituitive to define B and

3

N to be sets of variables, the notation leads us to instead define them as sets of indices.
For example, while we may prefer to think that B = {x4, x1, x5}, the algorithm below uses
B = {4, 1, 5}.

Partitioned Matrices
This is where it is so crucial to forget the convention that the columns of matrix A come
in some specific order. This habit, forced upon us by our two-dimensional view of things,
makes understanding various algorithms like the simplex method so much harder. So please,
for the remainder of these notes, just view a matrix (or vector) having its columns indexed
by some set such as {1, 2, . . . , n} and not in any particular order. The same goes for the
rows, but these are going to be indexed by a subset B of the variables in just a moment.

At any point in the simplex algorithm, our n variables are partitioned into basic and
non-basic variables:

B ∪N = {1, 2, . . . , n}, B ∩N = ∅ .

As in the above case where slack variables are introduced, the columns of matrix A and rows
of vectors c and x, each indexed by the variables, are partitioned accordingly:

c> = [c>B
... c>N]

x> = [x>B
...x>N]

A = [AB
...AN]

A = [B
...AN]

You’ll notice that I have introduced a new symbol; since we use the submatrix AB so much,
we call it simply B. (Vanderbei also abbreviates AN to N , and you are free to do that, but
I prefer AN .) It is extremely important to keep track of where we are: the submatrix B of
our constraint matrix A depends on the basis B and changes with each pivot. In fact

Definition: A subset B of the variables (indices) is a basis for the problem max /min c>x
subject to Ax = b, x ≥ 0 if the corresponding submatrix B of the constraint matrix A is
invertible (hence square).

It is now clear that all bases for a given problem have the same size; the size of a basis is
equal to the number of rows of A. If A has m rows, then not all sets of m variables are bases3

and, as we have seen in class, not all bases are feasible. The linear algebra student cannot
resist to comment that a subset B of {1, 2, . . . , n} is a “basis” if and only if the corresponding
columns of A form a basis for the column space of A. (It is a good idea to try to prove this
for yourself right now.)

Assume at our current point in the algorithm, we have partitioned the variables into B
3In fact, if the matrix A itself does not have full row rank, then there are no bases at all! We would first

row reduce in this case to eliminate redundant constraints.

4

and N and have partitioned A and c as above. Then the problem (1) can be expressed

max c>BxB + c>NxN

BxB + ANxN = b (2)

xB, xN ≥ 0

When we discuss a given dictionary, it is convenient to have both notation for its individual
entries and expressions for these entries in terms of the original data. As in the introduction,
we use the “bar” notation to refer to the numbers before us as we look at the dictionary:

ζ = ζ̄ +
∑
j∈N

c̄jxj

xi = b̄i −
∑
j∈N

āijxj (i ∈ B)

There are m + 1 = |B| + 1 equations here: the objective function above the separating line
and one for each basic variable below this line.

But how do we compute all of these values b̄i, c̄j, āij from the original data? Using the
constraint equation from (2), we solve for the set of basic variables:

BxB + ANxN = b

BxB = b− ANxN
xB = B−1b−B−1ANxN

which is valid since we are assuming that B is an invertible matrix.
We then substitute this expression for xB into the first equation from (2) and collect like

terms to arrive at the standard matrix form of a simplex dictionary:

ζ = c>BB
−1b +

(
c>N − c>BB−1AN

)
xN

xB = B−1b − B−1ANxN

These two expressions for a dictionary are very important in this course. In principal,
we could memorize each entry of the dictionary in terms of the original data, but most of
these are tedious:

• current objective value ζ̄ = c>BB
−1b

• “reduced costs” c̄j = cj −
∑

i∈B
∑m

h=1 ci (B−1)ih ahj

• RHS values b̄i =
∑m

h=1 (B−1)ih bh

5

• āij =
∑m

h=1 (B−1)ih ahj
(Observe: this is the same as with a matrix A and its row-reduced version B−1A in
MA2071)

Recovering the Inverse
As the above unpleasant formulas suggest, it is important to know how to recover the matrix
B−1 from a given dictionary, just by knowing the basis and the original data. In the case
where the original problem was in standard form and the slack variables xS formed the first
basis. We look at the derivation of our dictionary in two ways:

BxB + ANxN = b

BxB = b− ANxN
xB = B−1b−B−1ANxN

MxD + IxS = b

B−1MxD +B−1xS = B−1b

We stop calculating here because the next step is better seen without messy notation. When
we move the non-basic variables to the right-hand side, some of these may be slack variables
and some of them may be decision variables. Nevertheless, each slack variable appearing in
the current dictionary carries with it a column of the matrix B−1. We never want to invert
a large matrix when we don’t have to – such calculations are computationally taxing.

Here’s an example. Suppose we begin with the problem

maximize 50x1 − 70x2 + 90x3

subject to −x1 + 2x3 ≤ 18

x1 − 2x2 + 2x3 ≤ 12

3x2 − 6x3 ≤ 21

3x1 − 4x2 + x3 ≤ 15

x1, x2, x3 ≥ 0

We introduce slack variables x4, x5, x6, x7 as usual and obtain the initial dictionary

zeta = 0 + 50 x1 - 70 x2 + 90 x3

--

x4 = 18 + x1 - 2 x3

x5 = 12 - x1 + 2 x2 - 2 x3

x6 = 21 - 3 x2 + 6 x3

x7 = 15 - 3 x1 + 4 x2 - x3

After a few pivots, we arrive at the dictionary

6

zeta = 558.0 + 26.0 x2 - 44.0 x5 - 2.0 x7

x4 = 13.2 + 0.4 x2 + 1.4 x5 - 0.8 x7

x3 = 4.2 + 0.4 x2 - 0.6 x5 + 0.2 x7

x6 = 46.2 - 0.6 x2 - 3.6 x5 + 1.2 x7

x1 = 3.6 + 1.2 x2 + 0.2 x5 - 0.4 x7

This allows us to piece together the four columns of B−1, two coming from the LHS (the
first and third column spacially, labeled 4 and 6 respectively) and two coming from the data
on the RHS:

col4 =


1
0
0
0

 , col5 =


−1.4

0.6
3.6
−0.2

 , col6 =


0
0
1
0

 , col7 =


0.8
−0.2
−1.2

0.4

 .
Of course, B is just the square submatrix of the original constraint matrix formed by columns
4, 3, 6, 1. So we have, for this example,

B =


1 2 0 −1
0 2 0 1
0 −6 1 0
0 1 0 3

 , B−1 =


1 −7/5 0 4/5
0 3/5 0 −1/5
0 18/5 1 −6/5
0 −1/5 0 2/5

 .

In general, when the equality-form problem is obtained from an LP in standard form by
introducing one slack variable for each constraint, the slack variables become the initial basis
and we apply this technique to recover B−1, column by column, from the final dictionary
— the ith column of B−1 is the column of the final dictionary corresponding to the ith slack
variable, where we multiply by −1 in the case that the variable is non-basic and the column
is simply the ith column of the identity matrix if the slack variable is basic in row i of the
dictionary.

Seeing the Pivot in Matrix Form
Now let us finish this discussion where we started. We have before us a dictionary

ζ = c>BB
−1b +

(
c>N − c>BB−1AN

)
xN

xB = B−1b − B−1ANxN

and we choose as entering variable some non-basic variable xr with strictly positive c̄r:

cr > c>BB
−1ar

where we use ar to denote column r of the submatrix AN .

7

Next we move in direction −B−1ar until we violate feasibility:

xB = B−1b− tB−1ar , xr = t .

The “ratios” computation simply finds the largest value of t which keeps all these entries
non-negative.

It is possible that, as this parameter t increases, all entries of xB remain non-negative,
either increasing along with t or staying fixed independent of t. In this case, the problem
is unbounded; we can increase “profit” to arbitrarily large values without compromising
feasibility. But is it more typical that, when we maximize this parameter t, at least one
variable will become zero. Since xr is entering the basis and the basis must stay the same
size, one of these variables must leave the basis to become non-basic (and thus have value
zero) in the next dictionary. It is a nice exercise to prove that this swap ensures that the
next submatrix B will again be invertible.

There is a lot more to say here, but that will have to wait for another day. It is so very
important that you be able to derive the matrix form of a dictionary as displayed in the box
above. If you cannot derive it, at least memorize it. All of this material will come in handy
later when we discuss duality, sensitivity analysis, and interior point methods.

8

