

Practice Problems – Convexity

AN ASSORTMENT OF PROBLEMS IN CONVEX ANALYSIS

MA3231, William J. Martin, WPI

1. Isabella has to decide which among the following sets is convex. You have kindly offered to help her. But first ...
 - (a) Let S be a subset of the Euclidean plane R^2 . What, precisely, does it mean to say that S is “convex”.
 - (b) For each of the following sets S , determine whether or not S is convex. If not, give a convincing and precise argument that it is not convex.
 - (i) $S = \{(x, y) \in \mathbb{R}^2 : x + y \leq 7 \text{ and } x > 2y + 1\}$
 - (ii) $S = \{(x, y) \in \mathbb{R}^2 : x^2 + y^2 \geq 16\}$
 - (iii) $S = \{(x, y) \in \mathbb{R}^2 : -2 \leq x \leq 3 \text{ and } y^2 = 1\}$
 - (iv) $S = \{(x, y) \in \mathbb{R}^2 \mid 2x + y \leq 20 \text{ and } y > x^2 + 5\}$
 - (v) $S = \mathbb{R}^2$
2. Show, by concrete example, that it is possible to have two convex sets C_1 and C_2 whose union $C = C_1 \cup C_2$ is not convex.
3. Tamara is considering a linear programming problem in standard form:

$$\begin{array}{ll}
 \max & c^T x \\
 \text{subject to} & Ax \leq b \\
 & x \geq 0
 \end{array}$$

Prove for her that the feasible region

$$\mathcal{P} = \{x \in \mathbb{R}^n \mid Ax \leq b, x \geq 0\}$$

is a convex set. (Be complete and be mathematically precise.)

4. Let S be a non-empty subset of \mathbb{R}^n . Prove that $\text{conv}(S)$ is equal to the set of all convex combinations of points from S .
5. State and prove Carathéodory's Theorem.
6. State and prove the Separation Theorem for polyhedra.
7. Let $\mathcal{C} = \{C_j \mid j = 1, 2, 3, \dots\}$ be a (possibly infinite) collection of convex subsets of \mathbb{R}^n . Let S be the intersection of all these sets (i.e., S includes just those points of \mathbb{R}^n that belong to every single C_j). Prove that $S = \cap_j C_j$ is convex.
8. Prove that a linear function on a line segment in \mathbb{R}^n is maximized at (at least) one of the endpoints.
9. Prove that a linear function $f(\mathbf{x}) = c^\top \mathbf{x}$ defined on a bounded convex set C achieves its maximum on the boundary of C : that is, prove that there is some $\mathbf{y} \in C$ such that $\mathbf{y} \notin \text{conv}(C - \{\mathbf{y}\})$ with $c^\top \mathbf{y} \geq c^\top \mathbf{x}$ for all \mathbf{x} in C . [This is hard.]