
MA3231 Linear Programming
W. J. Martin
October 9, 2018

The Affine Scaling Method

Overview
Given a linear programming problem in equality form with full rank constraint matrix and
a strictly positive feasible solution x0, we transform the problem to a new one with feasible
solution 1 = [1, 1, · · · , 1]>. The original problem and scaled problem

Original: Scaled:
max c>x max ĉ>x

s. t. Ax = b s. t. Âx = b
x ≥ 0 x ≥ 0

are related as follows: X0 is the diagonal matrix with the entries of x0 down the diagonal;
Â = AX0; and ĉ = X0c.

In the scaled problem, we

• project the gradient ĉ onto the subspace Âx = 0 to obtain a search direction d;

• find the largest scalar β such that 1 + βd is still non-negative (the other feasibility
conditions are already guaranteed by choice of d);

• obtain new (scaled) solution x̂ = 1 + rβd where 0 < r < 1 is a global constant;

• update our solution x0 to the next solution x1 = X0x̂.

This process is repeated, as needed, until we are sufficiently close to an optimal solu-
tion (e.g., as one may check by solving for a dual vector using complementary slackness
conditions).

1



One iteration of the affine scaling method
We assume we have an m × n matrix A with full row rank, an m-vector b and an n-vector
c. (If A does not have full row rank, first row reduce, and if Ax = b is feasible, then replace
A by a smaller matrix.) We also have a fixed step size r, 0 < r < 1.

Given a strictly positive feasible solution x0 to the problem (so Ax0 = b), we obtain a
better strictly positive feasible solution x1 as follows:

Step 1: (Scale) Let Â = AX0 and ĉ = X0c where X0 is the diagonal matrix with
entries from x0 down the diagonal. (Now we have a scaled problem with 1 as a feasible
solution.)

Step 2: (Find projection) Compute the projection matrix onto the nullspace of Â:

P = I − Â> (ÂÂ>)−1 Â

Step 3: (Find search direction) The search direction (in the scaled problem) is then

d = P ĉ.

Step 4: (Compute ratios) Let β = min
{
− 1

dj
: dj < 0

}
. (If this set is empty, the

problem is unbounded.)

Step 5: (Scaled update) The improved solution in the scaled problem is

x̂ = 1 + rβd

where r is the prescribed step size (0 < r < 1).

Step 6: (Next iterate) Now scale back to the original problem and take

x1 = X0x̂.

Note that the above algorithm brings us from x0 to x1. To obtain further improved
solutions, we iterate this with x0 replaced by the current solution. The general step is
described with only a slight change of notation and is given at the end of these notes, just
before the exercises.

2



Some explanations
In Step 1, we simply write down the data (Â, ĉ) for the scaled problem. Note that the
right-hand side vector does not change. But that’s okay because

Â1 = (AX0)1 = A(X01) = Ax0 = b

so 1 is indeed a feasible solution to the scaled problem and it is “far away” from the bound-
aries xj = 0. Moreover, X0 is a diagonal matrix, so it is symmetric: (X0)> = X0. Thus

ĉ>1 = (X0c)>1 = (c>(X0)>)1 = c>(X01) = c>x0.

More generally, the objective value of any solution x̂ to the scaled problem is equal to the
objective value of the corresponding solution x = X0x̂ in the original problem.

In Step 2, we do the most work. We need to project the gradient ĉ onto the subspace
{x : Âx = 0} in order to have a feasible search direction. As we worked out in class, the
projection matrix P does just the trick.

In Step 3, we take d = P ĉ so that Âd = 0 and, for any scalar β, the vector x̂ = 1 + βd
satisfies

Âx̂ = Â(1 + βd) = Â1 + βÂd = Â1 = b

as established above. So, no matter how far we travel in this direction, the equality con-
straints will still be satisfied.

From this, we know in Step 4 that any vector of the form x̂ = 1+βd satisfies the equality
constraints. So in order to stay feasible, we simply need 1+βd ≥ 0. This requires 1+βdj ≥ 0
for all j. Since we are going to take β positive (to improve the objective value), the only
coordinates j that concern us are those with dj < 0, and each of these gives us an upper
limit β ≤ −1/dj.

In Step 5, we finally use our global step size r. We know that 1+βd ≥ 0 and is otherwise
feasible. But we need a strictly positive feasible solution. So we only move a fraction of the
maximum possible distance. For example, with r = 0.9, we only go “90% of the way to the
wall”. Thus our update is 1 + r(βd).

The transformed problem has now served its purpose of pushing the search direction
away from the boundaries. We discard it and transform the solution x̂ back to the original
LP to get the next iterate x1. As explained in Step 1, this is simply achieved through scaling
by X0.

3



Example 1: Consider the problem

max 3 x1 + x2
s.t. 5 x1 +2 x2 + x3 = 2

x1 +2 x2 + x4 = 2
x1, x2, x3, x4 ≥ 0

with initial feasible solution x0 =
(
1
5
, 2
5
, 1
5
, 1
)
. So our current objective value is ζ = 1.

We have

A =

[
5 2 1 0
1 2 0 1

]
, b =

[
2
2

]
, c =


3
1
0
0

 , x0 =


1/5
2/5
1/5
1

 .
Step 1: Scale the problem:

X0 =


1/5 0 0 0
0 2/5 0 0
0 0 1/5 0
0 0 0 1

 , Â = AX0 =

[
1 4/5 1/5 0

1/5 4/5 0 1

]
, ĉ = X0c =


3/5
2/5
0
0

 .
Step 2: Compute P :

P = I − Â>
(
ÂÂ>

)−1
Â.

ÂÂ> =
21

25

[
2 1
1 2

]
,
(
ÂÂ>

)−1
=

25

63

[
2 −1
−1 2

]
.

We eliminate fractions where possible to write

Â>
(
ÂÂ>

)−1
=

5

63


5 1
4 4
1 0
0 5

[ 2 −1
−1 2

]
=

5

63


9 −3
4 4
2 −1
−5 10


so that

Â>
(
ÂÂ>

)−1
Â =

1

63


9 −3
4 4
2 −1
−5 10

[ 5 4 1 0
1 4 0 5

]
=

1

63


42 24 9 −15
24 32 4 20
9 4 2 −5

−15 20 −5 50

 .
Let’s call this last matrix Q. Then we have

P − I −Q =
1

63


21 −24 −9 15
−24 31 −4 −20
−9 −4 61 5
15 −20 5 13

 .
4



Step 3: Find search direction d:

d = P ĉ =
1

63


21 −24 −9 15
−24 31 −4 −20
−9 −4 61 5
15 −20 5 13




3/5
2/5
0
0

 =
1

315


15
−10
−35

5


which simplifies to d = 1

63
( 3, −2, −7, 1).

Step 4: Ratios:

β = min

{
−1

dj
: dj < 0

}
= min

{
63

7
,
63

2

}
= 9.

So β = 9.

Step 5: Scaled update (using step size r = 1/2):

x̂ = 1 + rβd =
1

14


14
14
14
14

+
1

14


3
−2
−7

1

 =
1

14


17
12
7

15


using rβ · 1

63
= ·1

2
· 9 · 1

63
= 1

14
.

Step 6: Next iterate:
Now we go back to the original problem using X0:

x1 = X0x̂ =


1/5 0 0 0
0 2/5 0 0
0 0 1/5 0
0 0 0 1




17/14
12/14
7/14
15/14

 =
1

70


17
24
7

75


with objective value ζ = 15/14. As you can see, the numbers will get worse after this, so we
use a computer if we want to go further.

Example 2: Consider the problem

max x1 − x2
2x1 + x2 = 4

x1, x2 ≥ 0

with initial feasible solution x0 = (1, 2) and step size r = 1/2.
We have

A =
[

2 1
]
, b =

[
4
]
, c =

[
1
−1

]
, x0 =

[
1
2

]
.

5



Step 1: Scale the problem:

X0 =

[
1 0
0 2

]
, Â = AX0 =

[
2 2

]
, ĉ = X0c =

[
1
−2

]
.

Step 2: Compute P = I − Â>
(
ÂÂ>

)−1
Â:

ÂÂ> =
[

2 2
] [ 2

2

]
=
[

8
]
, P =

[
1 0
0 1

]
−
[

2
2

] [
1/8

] [
2 2

]
=

[
1 0
0 1

]
−1

8

[
4 4
4 4

]

P =

[
1/2 −1/2
−1/2 1/2

]

Step 3: Find search direction d:

d = P ĉ =
1

2

[
1 −1
−1 1

] [
1
−2

]
=

1

2

[
3
−3

]
=

[
3/2
−3/2

]

Step 4: Ratios:

β = min

{
−1

dj
: dj < 0

}
=

2

3
.

Step 5: Scaled update:

x̂ = 1 + rβd =

[
1
1

]
+

1

2
· 2

3
· 1

2
·
[

3
−3

]
=

[
3/2
1/2

]

Step 6: Next iterate:

x1 = X0x̂ =

[
1 0
0 2

] [
3/2
1/2

]
=

[
3/2
1

]
.

In this iteration, our objective value has improved from −1 to +1/2.
Pictorial Example

The advantage of interior point methods is that they tend to avoid the combinatorial
complexity of basic feasible solutions. One can imagine a high-dimensional polyhedron hav-
ing large clusters of nearby vertices all of which are suboptimal. The simplex method can
only move from one vertex to a neighbor, possibly contributing to inefficiency.

6



To illustrate how an interior point approach can “smooth out” all these corners, let’s
look at a simple two-dimensional example with three nearby basic feasible solutions far away
from optimality:

maximize 2x1

subject to 2x1 − x2 ≤ 20

x1 − x2 ≤ 9

x1 − 2x2 ≤ 8

x2 ≤ 8

x1, x2 ≥ 0

We will skip the conversion to equality form. After introducing slack variables x3, . . . , x6,
the initial strictly feasible solution (4, 1

2
) gives us x0 = (4, 1

2
, 15

2
, 10

2
, 11

2
, 25

2
). The objective

direction c is horizontal, pointing directly to the right. But the optimal solution is at (14, 8).
Here we give the first eight iterates x1, . . . , x8 of the affine scaling method with two choices
of step size, r = 1/2 and r = 3/4.

x0
c

bottom green curve r = 3
4

top red curve r = 1
2

7



Initially, we showed how to move from initial solution x0 to a better solution x1. A
generic iteration looks like this:

Step 1: (Scale) Let Â = AXk and ĉ = Xkc where Xk is the diagonal matrix with

entries from the most recent solution xk down the diagonal. (Now we have a scaled
problem with 1 as a feasible solution.)

Step 2: (Find projection) Compute the projection matrix onto the nullspace of Â:

P = I − Â> (ÂÂ>)−1 Â

Step 3: (Find search direction) The search direction (in the scaled problem) is then

d = P ĉ.

Step 4: (Compute ratios) Let β = min
{
− 1

dj
: dj < 0

}
. (If this set is empty, the

problem is unbounded.)

Step 5: (Scaled update) The improved solution in the scaled problem is

x̂ = 1 + rβd

where r is the prescribed step size (0 < r < 1).

Step 6: (Next iterate) Now scale back to the original problem to obtain the next
iterate

xk+1 = Xkx̂.

Exercises
1.) Consider the linear programming problem

max − x1 − x2 subject to x1 + 2x2 ≤ 2, x1, x2 ≥ 0.

(i) Starting with x0 = (1/2, 1/4), apply two iterations of the affine scaling method using
r = 1/2. (First, convert to equality form.) For each iteration, give

• the constraint matrix Â and objective vector ĉ for the scaled problem;

• the projection matrix P and search direction d for this iteration;

• the ratio computation from Step 4;

8



• the next iterate, both in scaled form x̂ and as a solution xk+1 to the original problem
above. (So you will be finding x1 and x2.)

(ii) On a sheet of graph paper, make a careful (and large!) drawing of the feasible region
in R2. For x0 and each of the next two iterates, x1, and x2, plot both the gradient of the
objective function (namely c> = [−1 − 1]) at that point as well as the scaled step direction
xk+1 − xk.

2.) Repeat the steps of Exercise 1 (again with r = 1/2) for the linear programming problem

max x1 + 2x2 subject to 0 ≤ x1 ≤ 1, 0 ≤ x2 ≤ 1.

starting with x0 = (3/4, 1/4) (a column vector). (You may wish to use MAPLE to check
your computations and to follow the trajectory further.)

3.) Perform two iterations of the affine scaling method for the problem

maximize x1 + 2x2 + 2x3

subject to x1 − x2 = 0

x1 + x2 +
√

2x3 = 4

x1, x2, x3 ≥ 0

with step size r = 1/2 and initial solution x0 = (1, 1,
√

2).

4.) Perform two iterations of the affine scaling method for the problem max x1 subject to
x1 + x2 = 7, x1, x2 ≥ 0 with step size r = 3

4
and initial solution x0 = (3, 4).

5.) Perform two iterations of the affine scaling method for the problem max x1 − x2 + 3x3
subject to x1 + 2x2 + x3 = 5 (all variables nonnegative) with step size r = 1

2
and initial

solution x0 = (1, 1, 2).

6.) Perform two iterations of the affine scaling method for the problem max c>x s.t. Ax = b,
x ≥ 0 with step size r = 1/2 and initial solution x0 = (5, 3, 2) where

A =

[
1 0 0
0 1 2

]
, b =

[
5
7

]
, c = (2, 2,−1).

7.) Perform two iterations of the affine scaling method for the problem

maximize x2 − x3

subject to x1 + 4x2 − 4x3 = −2

2x1 + 2x2 + x3 = 8

x1, x2, x3 ≥ 0

with step size r = 1/2 and initial solution x0 = (2, 1, 2).

9



8.) Perform two iterations of the affine scaling method for the problem

max− x1 + 2x2 s.t. 2x1 + 5x2 = 3 x1, x2 ≥ 0

with step size r = 0.75 and initial solution x0 = (1, 0.2).

9.) Perform two iterations of the affine scaling method for the problem

maximize 2x1 − x3

subject to 2x1 − x2 = 0

x2 + 1
2
x3 = 2

x1, x2, x3 ≥ 0

with step size r = 1/2 and initial solution x0 = (1
2
, 1, 2).

10.) Perform two iterations of the affine scaling method for the problem min −2x1−x2 s.t.
3x1 + 5x2 = 13, x1, x2 ≥ 0 with step size r = 1/2 and initial solution x0 = (1, 2).

11.) Perform two iterations of the affine scaling method for the problem

maximize x1 + 2x2 + 2x3

subject to x1 − x2 = 0

x1 + x2 +
√

2x3 = 4

x1, x2, x3 ≥ 0

with step size r = 1/2 and initial solution x0 = (1, 1,
√

2).

12.) More generically, consider the n-dimensional optimization problem with one equality
constraint

∑n
j=1 xj = 1, objective function max c>x, step size r = 1/2, and initial solution

x0 with positive entries summing to one. For convenience, also assume that
∑n

`=1 c`(x
0
`)

2 =
‖x0‖2 and that the variables are ordered in such a way that c1 ≥ c2 ≥ · · · ≥ cn. Compare the
next iterate x1 produced by the affine scaling method against the corresponding unscaled
update x0+ 1

2
β′c′ where c′ is the projection of the objective gradient c onto the affine subspace

containing the feasible region and β′ is computed so as to prevent any entry of x0 +β′c′ from
going negative.

10


