

Linear Algebra Quiz 5
 SAMPLE SOLUTIONS

Use elementary row operations to compute the determinant $\det A$ of the following matrix:

$$A = \begin{bmatrix} 2 & -1 & 3 & 0 & 6 & 1 \\ 2 & -1 & 3 & 0 & 6 & 6 \\ 4 & -2 & 5 & 1 & 13 & 3 \\ -2 & 1 & -3 & 1 & -6 & -1 \\ -6 & 3 & -9 & 0 & -13 & 2 \\ 2 & 1 & 5 & 2 & 8 & 3 \end{bmatrix}$$

SOLUTION: We make up a name for the determinant of A , call it Δ , and we keep track of the determinant as we row reduce to upper-triangular form:

$$A = \begin{bmatrix} 2 & -1 & 3 & 0 & 6 & 1 \\ 2 & -1 & 3 & 0 & 6 & 6 \\ 4 & -2 & 5 & 1 & 13 & 3 \\ -2 & 1 & -3 & 1 & -6 & -1 \\ -6 & 3 & -9 & 0 & -13 & 2 \\ 2 & 1 & 5 & 2 & 8 & 3 \end{bmatrix} \quad \det = \Delta$$

$$\sim \begin{bmatrix} 2 & -1 & 3 & 0 & 6 & 1 \\ 0 & 0 & 0 & 0 & 0 & 5 \\ 0 & 0 & -1 & 1 & 1 & 1 \\ 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 5 & 5 \\ 0 & 2 & 2 & 2 & 2 & 2 \end{bmatrix} \quad \begin{array}{l} (R1) \\ (R2) - (R1) \\ (R3) - 2(R1) \\ (R4) + (R1) \\ (R5) + 3(R1) \\ (R6) - (R1) \end{array} \quad \det = \Delta \quad (\text{no change})$$

$$\sim \begin{bmatrix} 2 & -1 & 3 & 0 & 6 & 1 \\ 0 & 2 & 2 & 2 & 2 & 2 \\ 0 & 0 & -1 & 1 & 1 & 1 \\ 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 5 & 5 \\ 0 & 0 & 0 & 0 & 0 & 5 \end{bmatrix} \quad \begin{array}{l} (R6) \\ (R2) \end{array} \quad \det = -\Delta \quad (\text{row swap})$$

Now we have arrived at an upper-triangular matrix. We know that its determinant is just the product of its diagonal entries. So this last matrix has determinant

$$\begin{aligned} 2 \cdot 2 \cdot (-1) \cdot 1 \cdot 5 \cdot 5 &= -100 \\ -\Delta &= -100 \\ \Delta &= 100 \end{aligned}$$

So we have found $\det A = 100$.