

Linear Algebra Quiz 3
 SAMPLE SOLUTIONS

For each of the following functions from \mathbb{R}^3 to \mathbb{R}^2 , decide whether or not T is a linear transformation. If you conclude that T is a linear transformation, then give the images of $\mathbf{e}_1 = (1, 0, 0)$, $\mathbf{e}_2 = (0, 1, 0)$ and $\mathbf{e}_3 = (0, 0, 1)$, under T . If you conclude that T is not a linear transformation, then give explicit values where the function fails to satisfy the definition of a linear transformation.

1.) $T(x, y, z) = (2x + y, 0)$

SOLUTION: Since each term in the function's output is a linear expression (with zero constant term), this is a linear transformation. We have

$$T(\mathbf{e}_1) = (2, 0), \quad T(\mathbf{e}_2) = (1, 0), \quad T(\mathbf{e}_3) = (0, 0).$$

2.) $T(x, y, z) = (y - 10z, \sin x)$

SOLUTION: The first component of the output looks fine, but there is no way $\sin x$ can be linear. (Right??) Let's make this clear. Take $\mathbf{u} = (\frac{\pi}{2}, 0, 0)$ and $\mathbf{v} = (\frac{\pi}{2}, 0, 0)$. Then $\mathbf{u} + \mathbf{v} = (\pi, 0, 0)$. So

$$T(\mathbf{u} + \mathbf{v}) = T(\pi, 0, 0) = (0, 0)$$

while

$$\begin{aligned} T(\mathbf{u}) + T(\mathbf{v}) &= T(\frac{\pi}{2}, 0, 0) + T(\frac{\pi}{2}, 0, 0) \\ &= (1, 0) + (1, 0) \\ &= (2, 0) \end{aligned}$$

since $\sin \frac{\pi}{2} = 1$ while $\sin \pi = 0$. So $T(\mathbf{u} + \mathbf{v}) \neq T(\mathbf{u}) + T(\mathbf{v})$ and the definition fails: T is **not** a linear transformation.

3.) $T(x, y, z) = (yz, 0)$

SOLUTION: This time, the first component is the suspicious one. Take $\mathbf{u} = (0, 1, 0)$ and $\mathbf{v} = (0, 0, 1)$. Then $\mathbf{u} + \mathbf{v} = (0, 1, 1)$. So

$$T(\mathbf{u} + \mathbf{v}) = T(0, 1, 1) = (1, 0)$$

while

$$\begin{aligned} T(\mathbf{u}) + T(\mathbf{v}) &= T(0, 1, 0) + T(0, 0, 1) \\ &= (0, 0) + (0, 0) \\ &= (0, 0) \end{aligned}$$

So $T(\mathbf{u} + \mathbf{v}) \neq T(\mathbf{u}) + T(\mathbf{v})$ and the definition fails: T is **not** a linear transformation.

4.) $T(x, y, z) = (4x - 3y + z, x + 9z)$

SOLUTION: Since each term in the function's output is a linear expression (with zero constant term), this is a linear transformation. We have

$$\begin{aligned} T(\mathbf{e}_1) &= T\left(\begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}\right) = \begin{bmatrix} 4 \\ 1 \\ 0 \end{bmatrix}, & T(\mathbf{e}_2) &= T\left(\begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}\right) = \begin{bmatrix} -3 \\ 0 \\ 0 \end{bmatrix}, \\ T(\mathbf{e}_3) &= T\left(\begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}\right) = \begin{bmatrix} 1 \\ 9 \\ 0 \end{bmatrix}. \end{aligned}$$

(Note here that writing the vectors in their ordinary form – as 3×1 matrices – takes up more space than the abbreviations such as $\mathbf{e}_1 = (1, 0, 0)$ that we used in earlier problems.)