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Solutions: Computing Eigenvalues

note: The solutions themselves begin on the third page.

The big picture

Suppose we have a linear transformation from a vector space to itself. We view T : V → V
as a sort of process that moves each vector x to a destination T (x). We view the vector
space V together with this transformation as a “system” and we want to locate “stability”
in this system.

Of course, we now know that, in the case where V has finite dimension n, the linear trans-
formation T is entirely defined by an n× n matrix. We just fix any basis B = {b1, . . . ,bn}
for T and take the matrix

A =

 [b1]B [b2]B · · · · · · [bn]B

 .

Then the eigenvalues of T are just the eigenvalues of matrix A and the eigenvectors are also
in one-to-one correspondence via x 7→ [x]B.

Now we see that a good choice of basis B is necessary. If we choose a nice basis, then the
matrix A may have very simple form and may reveal the essential nature of the transform
T ; if our of choice of basis is entirely random or uninformed, then the matrix A can very
messy and unilluminating. That’s our last goal in the course: finding the best basis.

Recalling the Definitions

Let A be an n× n matrix. A non-zero vector v in Rn is an eigenvector of A if the vector
Av is parallel to v:

Av = λv

for some scalar λ. This scalar is called the eigenvalue of A associated to v. (We will only
consider real eigenvalues and eigenvectors in this course; the complex case is entirely similar
and is typically what arises in applications.)

Of course, if v is the zero vector, then Av = λv for every possible λ. So the zero vector
clouds the issue. For this reason, we always require eigenvectors to be non-zero. (But zero
is perfect fine as an eigenvalue.)
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Our goal, given a square matrix A, is to find all possible eigenvalues and all eigenvectors
of A. We’ve already had practice at the second task. Once we know λ, the set of all
eigenvectors associated to λ is almost exactly the null space of the matrix A − λI. (I say
“almost” because the null space also includes the zero vector. But it’s a shame to have all
the ingredients of a vector space except a zero vector. So we will define the “eigenspace of
A associated to λ” as Nul (A− λI).) We learned this connection as follows:

• if Av = λv . . .

• then Av = λ(Iv) since Iv is the same as v for any vector v

• so Av = (λI)v by part (d) of Theorem 2 on p113

• Now subtract the vector on the right from both sides: Av − (λI)v = 0

• We can now factor out the v on the right (part (c) of that same theorem in Chapter
2): (A− λI)v = 0

• so every eigenvector associated to λ lives in the null space of A− λI

• Now we can reverse all of the steps: if v is any vector in the null space of A − λI —
except the zero vector — then v is also an eigenvector of A with eigenvalue λ

So I wanted you to understand, early on in the course, that your ability to solve these
simple homogeneous linear systems automatically enables you to find eigenvectors.

But how to find the eigenvalues λ in the first place? That’s where determinants come in
to do their job.

Computing Eigenvalues

Let A be an n × n matrix. A scalar θ is an eigenvalue of A if and only if there is some
non-zero vector v satisfying Av = θv.

So θ is an eigenvalue of A precisely when A − θI has non-trivial null space. Now the
Invertible Matrix Theorem gives us over a dozen different ways to proceed from here: A−θI
has fewer than n pivots; the columns are linearly dependent; the linear transformation
x 7→ (A− θI)x is not one-to-one; and so on. In any given application, any one of these tests
may be useful. But we stick with the traditional test: A− θI is non-invertible if and only if
its determinant is zero.

So we need to find all numbers θ for which det(A− θI) = 0. The trick is to use a bit of
abstraction and replace θ by a symbol. In the next few paragraphs, let λ be a real variable.
Then for any n× n matrix A,

fA(λ) := det(A− λI)

is a polynomial of degree n in variable λ. And the eigenvalues are just the roots of this
polynomial!
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So we need all of our mathematical skills, not just from linear algebra, but also from high
school. We need to compute determinants, factor polynomials, and find roots. This requires
serious practice.

The 2× 2 case

Let’s start with 2×2 matrices. Recall that the matrix

[
a b
c d

]
has determinant ad− bc.

Example 1: Find all the eigenvalues of A =

[
1 1
1 1

]

Solution: We have A− λI =

[
1− λ 1

1 1− λ

]
with determinant

fA(λ) = (1− λ)(1− λ)− 1

= (λ− 1)2 − 1

= λ2 − 2λ

fA(λ) = λ(λ− 2)

So the eigenvalues of A are λ1 = 2 and λ2 = 0. (It is conventional to give them in non-
increasing order.)

The alert reader can easily find a basis of eigenvectors. Our methods from Chapter 1
give the basis B = {(1, 1), (1,−1)}.

Example 2: Find all the eigenvalues of A =

[
3 2
8 3

]

Solution: We have A− λI =

[
3− λ 2

8 3− λ

]
with determinant

fA(λ) = (3− λ)(3− λ)− 16

= (λ− 3)2 − 16

= λ2 − 6λ− 7

fA(λ) = (λ− 7)(λ + 1)

So the eigenvalues of A are λ1 = 7 and λ2 = −1. The corresponding eigenvectors are (1, 2)
and (1,−2).

Example 3: Now let’s try A =

[
−1 4

4 5

]
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Solution: We have A− λI =

[
−1− λ 4

4 5− λ

]
with determinant

fA(λ) = (−1− λ)(5− λ)− 16

= (λ + 1)(λ− 5)− 16 I hate those minus signs!

= λ2 − 4λ− 21

fA(λ) = (λ− 7)(λ + 3)

So the eigenvalues of A are λ1 = 7 and λ2 = −3. One can easily compute the corresponding
eigenvectors: they are (1, 2) and (−2, 1). (It’s a cool theorem that, when the matrix is
symmetric, the eigenvectors associated to different eigenvalues must be orthogonal to one
another.)

Okay, those were simple enough. But I don’t want to give you the impression that
all matrices are so cooperative. Let’s explore some anomalies.

Example 4: Here’s an easy one: A =

[
−15 0

0 −15

]

Solution: We have A− λI =

[
−15− λ 0

0 −15− λ

]
with determinant

fA(λ) = (−15− λ)(−15− λ)

fA(λ) = (λ + 15)2

So the eigenvalues of A are λ1 = −15 and λ2 = −15. (We have an eigenvalue of “multiplicity”
two.) Every non-zero vector in R2 is an eigenvector with this eigenvalue.

Example 5: This one looks easy at first: A =

[
1 3
0 1

]

Solution: We have A− λI =

[
1− λ 3

0 1− λ

]
with determinant

fA(λ) = (1− λ)(1− λ)

fA(λ) = (λ− 1)2

So the eigenvalues of A are λ1 = 1 and λ2 = 1. (We again have an eigenvalue of multiplicity
two.) But when we row reduce A− I, we find a null space of dimension one only. So do not
get a basis of eigenvectors in this case.
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Example 6: Find all the eigenvalues of A =

[
5 −2
3 5

]

Solution: We have A− λI =

[
5− λ −2

3 5− λ

]
with determinant

fA(λ) = (5− λ)(5− λ) + 6

= (λ− 5)2 + 6

fA(λ) = λ2 − 10λ + 31

But this stinks: the discriminant b2 − 4ac = (−10)2 − 4 · 1 · 31 < 100− 120 is negative. So
the eigenvalues are not real, but complex. We don’t handle this case in this course, even
though it is the typical case.

The 3× 3 case

In order to compute eigenvalues of 3× 3 matrices, we need to be able to compute these
determinants. As we discussed in class, while the row reduction method gives the fastest
method for finding eigenvalues of large matrices, the straightforward calculation from the
definition is often most efficient (or least error-prone) for small matrices.

Here is a general 3 × 3 matrix and its determinant (all letters a-i are just placeholders
for the nine entries:

A =

 a b c
d e f
g h i

 , det A =

∣∣∣∣∣∣
a b c
d e f
g h i

∣∣∣∣∣∣ = (aei) + (bfg) + (cdh)− (gec)− (hfa)− (idb).

Example 7: Find all the eigenvalues of A =

 1 3 2
1 3 2
0 5 1



Solution: We have A− λI =

 1− λ 3 2
1 3− λ 2
0 5 1− λ

 with determinant

fA(λ) = (1− λ)(3− λ)(1− λ) + 3 · 2 · 0 + 2 · 1 · 5− 0 · (3− λ) · 2− 5 · 2 · (1− λ)− (1− λ) · 1 · 3
= −(λ− 1)(λ− 3)(λ− 1) + 0 + 10− 0 + 10(λ− 1) + 3(λ− 1)

Let’s pause here to point out how critical it is to make creative use of your high school
algebra. When you see the common factor λ − 1, always keep it factored that way for as
long as you can. Resist the temptation to “multiply everything out”. On the other hand,

5



from the IMT, we know that A, having two identical rows, will have θ = 0 as an eigenvalue,
so we expect a factor of λ to appear:

fA(λ) = (λ− 1) [−(λ− 3)(λ− 1)] + 3(λ− 1) + 10λ

= (λ− 1)
[
−λ2 + 4λ− 3

]
+ 3(λ− 1) + 10λ

= (λ− 1)
[
−λ2 + 4λ

]
+ 10λ

= λ [(λ− 1)(−λ + 4)] + 10λ

= −λ
[
λ2 − 5λ− 6

]
fA(λ) = −λ(λ− 6)(λ + 1)

So the eigenvalues of A are λ1 = 6, λ2 = 0 and λ3 = −1. A few quick row reductions gives
us the corresponding eigenvectors: v1 = (1, 1, 1), v2 = (−7

5
,−1

5
, 1) and v3 = (−2

5
,−2

5
, 1).

(Of course, I’d rather choose basis {(1, 1, 1), (7, 1,−5), (2, 2,−5)} since I avoid fractions.)

Example 8: Find all the eigenvalues of A =

 0 1 1
1 0 −1
1 −1 0



Solution: We have A− λI =

 −λ 1 1
1 −λ −1
1 −1 −λ

 with determinant

fA(λ) = −λ3 − 1− 1 + λ + λ + λ

= −
(
λ3 − 3λ + 2

)
Okay, now we need to factor a cubic polynomial. That’s a nasty problem in general, but you
know that your professor gives you examples that come out nice. So look for integer roots
of λ3 − 3λ + 2. From the basic theory of polynomials, you know that the sum of the roots is
zero (the negative of the coefficient of λ2) and the product of the roots is −2 (the negative
of the constant term, since we ignored the −1 in front of λ3.) So we try θ = −2,−1, 1, 2 and
find that λ1 = 1 and λ3 = −2 are both eigenvalues. Since the eigenvalues must sum to zero
here, we recover λ2 = 1 also:

fA(λ) = −(λ + 2)(λ− 1)(λ− 1).

So we have one eigenvalue of multiplicity one:

• λ3 = −2 with corresponding eigenvector (−1, 1, 1)

and one eigenvalue of algebraic multiplicity two:

• λ1 = λ2 = 1 with linearly independent eigenvectors (1, 1, 0) and (1, 0, 1).
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IMPORTANT: Once we compute the characteristic polynomial fA(λ) (a polynomial
in λ of degree n), we often benefit from remembering that

• the coefficient of λn−1 is always −1 times the sum of all n eigenvalues:

trace A = λ1 + λ2 + . . . + λn

• the constant term is always the product of all n eigenvalues:

det A = λ1λ2 . . . λn

Since we found a total of three linearly independent eigenvectors for this 3× 3 matrix, this
matrix is diagonalizable.

Example 9: Find all the eigenvalues of A =

 3 0 7
1 8 −6
1 0 9

 [HINT: What is special about

the second column?]

Solution: We first see that e2 is an eigenvector Ae2 is just the second column of A. So
Ae2 = 8e2 and we have one eigenvalue: let’s say λ3 = 8 (even though we don’t know yet
whether it is biggest or smallest or neither).

As usual, we could compute A− λI =

 3− λ 0 7
1 8− λ −6
1 0 9− λ

 and grind out its deter-

minant. But we instead use the two critical facts about eigenvalues in the box above. We
have

trace A = 20 = λ1 + λ2 + λ3

det A = 3 · 8 · 9 + 0 + 0− 1 · 8 · 7− 0− 0

= 8 · (3 · 9− 1 · 7)

8 · 20 = λ1λ2λ3

So the two missing eigenvalues satisfy

λ1 + λ2 = 12, λ1λ2 = 20.

It is now elementary to see that the eigenvalues, in decreasing order, are

λ1 = 10, λ2 = 8, λ3 = 2.
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Example 10: Find all the eigenvalues of

A =


1 2 3 4
0 2 3 4
0 0 3 4
0 0 0 4


Solution: The eigenvalues are just the entries on the main diagonal. we sort them in
decreasing order:

λ1 = 4, λ2 = 3, λ3 = 2, λ4 = 1 .

Example 11: Find all the eigenvalues of

A =


1 2 −1 0 1 0
0 5 5 1 2 3
0 0 1 0 1 −1
0 0 0 0 4 4
0 0 0 0 4 2
0 0 0 0 0 5


Solution: Again, for an upper- or lower-triangular matrix, the eigenvalues are exactly the
entries on the main diagonal:

λ1 = λ2 = 5, λ3 = 4, λ4 = λ5 = 1, λ6 = 0 .

Example 12: Find all the eigenvalues of

A =


3 1 0 0 0 0
0 3 0 0 0 0
0 0 5 1 0 0
0 0 0 5 1 0
0 0 0 0 5 0
0 0 0 0 0 7


Solution: The eigenvalues are just the entries on the main diagonal:

λ1 = 7, λ2 = λ3 = λ4 = 5, λ5 = λ6 = 3 .

(I include this example because this matrix, in “almost diagonal form”, is in “Jordan canon-
ical form”. This basic form is very important in the theory of eigenvectors and eigenvalues
of linear transformations.)
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