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Examples: Change-of-Coordinate Matrices

Here, we collect a few examples of change-of-coordinates matrices.
Let V be a vector space of dimension n and let B and C be two bases for V . Then the

change-of-coordinates matrix
P
C←B is defined by the equation

P
C←B [x]B = [x]C .

That is, it is the unique matrix that transforms any coordinate vector relative to basis B
into the coordinate vector of the same element x relative to basis C. It is not too hard to
prove that, if B = {b1,b2, . . . ,bn}, then

P
C←B = [[b1]C |[b2]C | · · · | [bn]C] .

This gets really simple when B = C: for any basis B, we see that
P

B←B = I.
Example 1: Let’s start with V = R2, with standard basis S = {e1 = (1, 0), e2 = (0, 1)}
and second basis

B =

{
v1 =

[
1

−4

]
, v2 =

[
2

−7

]}
Since v1 = e1 − 4e2 and v2 = 2e1 − 7e2, we have

[v1]S =

[
1

−4

]
, [v2]S =

[
2

−7

]
so

P
S←B =

[
1 2

−4 −7

]
.

Okay, so it’s really easy when we are “converting” things into the standard basis.

Now we compute
P

B←S. We have

e1 = −7v1 + 4v2, e2 = −2v1 + v2 .

So
P

B←S = [[e1]B|[e2]B] =

[
−7 −2

4 1

]
.
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This illustrates the general principle (
P
C←B

)−1

=
P
B←C

Example 2: Let B = {(1,−4), (2,−7)} as in the previous example and let

C =

{[
5

−18

]
,

[
7

−25

]}
.

Since [
5

−18

]
= v1 + 2v2,

[
7

−25

]
= v1 + 3v2,

we have
P
B←C =

[
1 1
2 3

]
.

Since
v1 = 3 · (5,−18) − 2 · (7,−25), v2 = (−1) · (5,−18) + (7,−25),

we have
P
C←B =

[
3 −1

−2 1

]
which, as we expected, is the inverse of

P
B←C.

Example 3: If B, S and C are three bases for a finite-dimensional vector space V , then we
observe a relationship between the various change-of-coordinates matrices between them.

Intuitively, it is clear that changing coordinates from basis B to basis S and then changing
from there to coordinates relative to basis C is equivalent to changing coordinates directly
from basis B to basis C:

[x]C =
P
C←S [x]S =

P
C←S

(
P

S←B [x]B

)
=

P
C←B [x]B.

The point here is that we have the fundamental equation

P
C←S

P
S←B =

P
C←B

for any three bases B, S and C.
Now this gives us an algorithm to find any change-of-basis matrix when there is an easy-

to-use natural basis available to us. If S is some kind of “standard” basis (as we have for

Rn, Pn and Mm×n) for V , then computing
P
S←C and

P
S←B is trivial. So we need only compute

P
C←B =

P
C←S

P
S←B =

(
P
S←C

)−1
P

S←B .
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We can acheive this by row reducing the partitioned matrix[
P
S←C

P
S←B

]
∼

[
I

(
P
S←C

)−1
P

S←B

]
=

[
I

P
C←S

P
S←B

]
=

[
I

P
C←B

]
for any three bases B, S and C.

In our example, B = {(1,−4), (2,−7)}, S = {(1, 0), (0, 1)} and C = {(5,−18), (7,−25)}.
we have

P
S←C =

[
5 7

−18 −25

]
,

P
S←B =

[
1 2

−4 −7

]
and, indeed, [

P
S←C

P
S←B

]
=

[
5 7 1 2

−18 −25 −4 −7

]
∼

[
1 0 3 −1
0 1 −2 1

]
=

[
I

P
C←B

]
as expected.

Now let’s use these tools to look at other examples.

Example 4: In the vector space M2×2, consider the bases

B =

{[
1 2
3 4

]
,

[
1 2
3 0

]
,

[
1 2
0 0

]
,

[
1 0
0 0

]}
and

C =

{[
0 0
0 1

]
,

[
0 0
1 1

]
,

[
0 1
1 1

]
,

[
1 1
1 1

]}
.

We want to compute
P
C←B and

P
B←C.

We do this using the standard basis for M2×2:

S =

{[
1 0
0 0

]
,

[
0 1
0 0

]
,

[
0 0
1 0

]
,

[
0 0
0 1

]}
.
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It is easy to compute

P
S←B =


1 1 1 1
2 2 2 0
3 3 0 0
4 0 0 0

 and
P
S←C =


0 0 0 1
0 0 1 1
0 1 1 1
1 1 1 1

 .

Now we use row reduction:

[
P
S←C

P
S←B

]
∼


0 0 0 1 1 1 1 1
0 0 1 1 2 2 2 0
0 1 1 1 3 3 0 0
1 1 1 1 4 0 0 0



∼


1 1 1 1 4 0 0 0
0 1 1 1 3 3 0 0
0 0 1 1 2 2 2 0
0 0 0 1 1 1 1 1



∼


1 0 0 0 1 −3 0 0
0 1 0 0 1 1 −2 0
0 0 1 0 1 1 1 −1
0 0 0 1 1 1 1 1


We can also invert the matrices

P
S←B and

P
S←C to obtain

P
B←S =

1

12


0 0 0 3
0 0 4 −3
0 6 −4 0

12 −6 0 0

 and
P
C←S =


0 0 −1 1
0 −1 1 0

−1 1 0 0
1 0 0 0

 .

Example 5: In the vector space P3, consider the two bases

B =
{
1 + 2t + 3t2 + 4t3, 1 + 2t + 3t2, 1 + 2t, 1

}
and

C =
{
t3, t2 + t3, t + t2 + t3, 1 + t + t2 + t3

}
.

Let’s compute the change-of-coordinates matrices
P
C←B and

P
B←C.

We do this using the standard basis for P3:

S =
{
1, t, t2, t3

}
.

These change-of-coordinates matrices are automatic:

P
S←B =


1 1 1 1
2 2 2 0
3 3 0 0
4 0 0 0

 and
P
S←C =


0 0 0 1
0 0 1 1
0 1 1 1
1 1 1 1

 .
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Again we use row reduction to find
P
C←B:

[
P
S←C

P
S←B

]
∼


0 0 0 1 1 1 1 1
0 0 1 1 2 2 2 0
0 1 1 1 3 3 0 0
1 1 1 1 4 0 0 0



∼


1 1 1 1 4 0 0 0
0 1 1 1 3 3 0 0
0 0 1 1 2 2 2 0
0 0 0 1 1 1 1 1



∼


1 0 0 0 1 −3 0 0
0 1 0 0 1 1 −2 0
0 0 1 0 1 1 1 −1
0 0 0 1 1 1 1 1


=

[
I

P
C←B

]
.

The inverses of the matrices
P

S←B and
P
S←C give us

P
B←S =

1

12


0 0 0 3
0 0 4 −3
0 6 −4 0

12 −6 0 0

 and
P
C←S =


0 0 −1 1
0 −1 1 0

−1 1 0 0
1 0 0 0


just as in the case of vector spaces of matrices.

The nature of the objects becomes irrelevant. Once we have a standard basis, any four-
dimensional vector space looks just like R4 and we can use ordinary matrix theory to compute
in that vector space.
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