

EXAMPLES: CHANGE-OF-COORDINATE MATRICES

Here, we collect a few examples of change-of-coordinates matrices.

Let V be a vector space of dimension n and let \mathcal{B} and \mathcal{C} be two bases for V . Then the change-of-coordinates matrix ${}_{\mathcal{C}}^{\mathcal{B}} P$ is defined by the equation

$${}_{\mathcal{C}}^{\mathcal{B}} P \quad [\mathbf{x}]_{\mathcal{B}} = [\mathbf{x}]_{\mathcal{C}} .$$

That is, it is the unique matrix that transforms any coordinate vector relative to basis \mathcal{B} into the coordinate vector of the same element \mathbf{x} relative to basis \mathcal{C} . It is not too hard to prove that, if $\mathcal{B} = \{\mathbf{b}_1, \mathbf{b}_2, \dots, \mathbf{b}_n\}$, then

$${}_{\mathcal{C}}^{\mathcal{B}} P = [[\mathbf{b}_1]_{\mathcal{C}} \mid [\mathbf{b}_2]_{\mathcal{C}} \mid \cdots \mid [\mathbf{b}_n]_{\mathcal{C}}] .$$

This gets really simple when $\mathcal{B} = \mathcal{C}$: for any basis \mathcal{B} , we see that ${}_{\mathcal{B}}^{\mathcal{B}} P = I$.

Example 1: Let's start with $V = \mathbb{R}^2$, with standard basis $\mathcal{S} = \{\mathbf{e}_1 = (1, 0), \mathbf{e}_2 = (0, 1)\}$ and second basis

$$\mathcal{B} = \left\{ \mathbf{v}_1 = \begin{bmatrix} 1 \\ -4 \end{bmatrix}, \mathbf{v}_2 = \begin{bmatrix} 2 \\ -7 \end{bmatrix} \right\}$$

Since $\mathbf{v}_1 = \mathbf{e}_1 - 4\mathbf{e}_2$ and $\mathbf{v}_2 = 2\mathbf{e}_1 - 7\mathbf{e}_2$, we have

$$[\mathbf{v}_1]_{\mathcal{S}} = \begin{bmatrix} 1 \\ -4 \end{bmatrix}, \quad [\mathbf{v}_2]_{\mathcal{S}} = \begin{bmatrix} 2 \\ -7 \end{bmatrix}$$

so

$${}_{\mathcal{S}}^{\mathcal{B}} P = \begin{bmatrix} 1 & 2 \\ -4 & -7 \end{bmatrix} .$$

Okay, so it's really easy when we are "converting" things into the standard basis.

Now we compute ${}_{\mathcal{B}}^{\mathcal{S}} P$. We have

$$\mathbf{e}_1 = -7\mathbf{v}_1 + 4\mathbf{v}_2, \quad \mathbf{e}_2 = -2\mathbf{v}_1 + \mathbf{v}_2 .$$

So

$${}_{\mathcal{B}}^{\mathcal{S}} P = [[\mathbf{e}_1]_{\mathcal{B}} \mid [\mathbf{e}_2]_{\mathcal{B}}] = \begin{bmatrix} -7 & -2 \\ 4 & 1 \end{bmatrix} .$$

This illustrates the general principle

$$\left(\begin{smallmatrix} P \\ c \leftarrow \mathcal{B} \end{smallmatrix} \right)^{-1} = \begin{smallmatrix} P \\ \mathcal{B} \leftarrow c \end{smallmatrix}$$

Example 2: Let $\mathcal{B} = \{(1, -4), (2, -7)\}$ as in the previous example and let

$$\mathcal{C} = \left\{ \left[\begin{array}{c} 5 \\ -18 \end{array} \right], \left[\begin{array}{c} 7 \\ -25 \end{array} \right] \right\}.$$

Since

$$\left[\begin{array}{c} 5 \\ -18 \end{array} \right] = \mathbf{v}_1 + 2\mathbf{v}_2, \quad \left[\begin{array}{c} 7 \\ -25 \end{array} \right] = \mathbf{v}_1 + 3\mathbf{v}_2,$$

we have

$$\begin{smallmatrix} P \\ \mathcal{B} \leftarrow c \end{smallmatrix} = \left[\begin{array}{cc} 1 & 1 \\ 2 & 3 \end{array} \right].$$

Since

$$\mathbf{v}_1 = 3 \cdot (5, -18) - 2 \cdot (7, -25), \quad \mathbf{v}_2 = (-1) \cdot (5, -18) + (7, -25),$$

we have

$$\begin{smallmatrix} P \\ c \leftarrow \mathcal{B} \end{smallmatrix} = \left[\begin{array}{cc} 3 & -1 \\ -2 & 1 \end{array} \right]$$

which, as we expected, is the inverse of $\begin{smallmatrix} P \\ \mathcal{B} \leftarrow c \end{smallmatrix}$.

Example 3: If \mathcal{B} , \mathcal{S} and \mathcal{C} are three bases for a finite-dimensional vector space V , then we observe a relationship between the various change-of-coordinates matrices between them.

Intuitively, it is clear that changing coordinates from basis \mathcal{B} to basis \mathcal{S} and then changing from there to coordinates relative to basis \mathcal{C} is equivalent to changing coordinates directly from basis \mathcal{B} to basis \mathcal{C} :

$$[\mathbf{x}]_{\mathcal{C}} = \begin{smallmatrix} P \\ c \leftarrow \mathcal{S} \end{smallmatrix} [\mathbf{x}]_{\mathcal{S}} = \begin{smallmatrix} P \\ c \leftarrow \mathcal{S} \end{smallmatrix} \left(\begin{smallmatrix} P \\ s \leftarrow \mathcal{B} \end{smallmatrix} [\mathbf{x}]_{\mathcal{B}} \right) = \begin{smallmatrix} P \\ c \leftarrow \mathcal{B} \end{smallmatrix} [\mathbf{x}]_{\mathcal{B}}.$$

The point here is that we have the fundamental equation

$$\begin{smallmatrix} P \\ c \leftarrow \mathcal{S} \end{smallmatrix} \begin{smallmatrix} P \\ s \leftarrow \mathcal{B} \end{smallmatrix} = \begin{smallmatrix} P \\ c \leftarrow \mathcal{B} \end{smallmatrix}$$

for any three bases \mathcal{B} , \mathcal{S} and \mathcal{C} .

Now this gives us an algorithm to find any change-of-basis matrix when there is an easy-to-use natural basis available to us. If \mathcal{S} is some kind of “standard” basis (as we have for \mathbb{R}^n , \mathbb{P}_n and $M_{m \times n}$) for V , then computing $\begin{smallmatrix} P \\ s \leftarrow c \end{smallmatrix}$ and $\begin{smallmatrix} P \\ s \leftarrow \mathcal{B} \end{smallmatrix}$ is trivial. So we need only compute

$$\begin{smallmatrix} P \\ c \leftarrow \mathcal{B} \end{smallmatrix} = \begin{smallmatrix} P \\ c \leftarrow \mathcal{S} \end{smallmatrix} \begin{smallmatrix} P \\ s \leftarrow \mathcal{B} \end{smallmatrix} = \left(\begin{smallmatrix} P \\ s \leftarrow c \end{smallmatrix} \right)^{-1} \begin{smallmatrix} P \\ s \leftarrow \mathcal{B} \end{smallmatrix}.$$

We can achieve this by row reducing the partitioned matrix

$$\begin{aligned} \left[\begin{array}{c|c} P & P \\ \hline s \leftarrow c & s \leftarrow \mathcal{B} \end{array} \right] &\sim \left[\begin{array}{c|c} I & \left(\begin{array}{c} P \\ s \leftarrow c \end{array} \right)^{-1} P \\ \hline & s \leftarrow \mathcal{B} \end{array} \right] \\ &= \left[\begin{array}{c|c} I & P \\ \hline c \leftarrow s & s \leftarrow \mathcal{B} \end{array} \right] \\ &= \left[\begin{array}{c|c} I & P \\ \hline & c \leftarrow \mathcal{B} \end{array} \right] \end{aligned}$$

for any three bases \mathcal{B} , \mathcal{S} and \mathcal{C} .

In our example, $\mathcal{B} = \{(1, -4), (2, -7)\}$, $\mathcal{S} = \{(1, 0), (0, 1)\}$ and $\mathcal{C} = \{(5, -18), (7, -25)\}$. we have

$$P_{s \leftarrow c} = \begin{bmatrix} 5 & 7 \\ -18 & -25 \end{bmatrix}, \quad P_{s \leftarrow \mathcal{B}} = \begin{bmatrix} 1 & 2 \\ -4 & -7 \end{bmatrix}$$

and, indeed,

$$\begin{aligned} \left[\begin{array}{c|c} P & P \\ \hline s \leftarrow c & s \leftarrow \mathcal{B} \end{array} \right] &= \left[\begin{array}{cc|cc} 5 & 7 & 1 & 2 \\ -18 & -25 & -4 & -7 \end{array} \right] \\ &\sim \left[\begin{array}{cc|cc} 1 & 0 & 3 & -1 \\ 0 & 1 & -2 & 1 \end{array} \right] \\ &= \left[\begin{array}{c|c} I & P \\ \hline & c \leftarrow \mathcal{B} \end{array} \right] \end{aligned}$$

as expected.

Now let's use these tools to look at other examples.

Example 4: In the vector space $M_{2 \times 2}$, consider the bases

$$\mathcal{B} = \left\{ \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}, \begin{bmatrix} 1 & 2 \\ 3 & 0 \end{bmatrix}, \begin{bmatrix} 1 & 2 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} \right\}$$

and

$$\mathcal{C} = \left\{ \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 1 & 1 \end{bmatrix}, \begin{bmatrix} 0 & 1 \\ 1 & 1 \end{bmatrix}, \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix} \right\}.$$

We want to compute $P_{c \leftarrow \mathcal{B}}$ and $P_{\mathcal{B} \leftarrow c}$.

We do this using the standard basis for $M_{2 \times 2}$:

$$\mathcal{S} = \left\{ \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix} \right\}.$$

It is easy to compute

$$P_{s \leftarrow B} = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 2 & 2 & 2 & 0 \\ 3 & 3 & 0 & 0 \\ 4 & 0 & 0 & 0 \end{bmatrix} \quad \text{and} \quad P_{s \leftarrow C} = \begin{bmatrix} 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 1 \\ 0 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 \end{bmatrix}.$$

Now we use row reduction:

$$\begin{array}{c} \left[\begin{array}{c|c} P_{s \leftarrow C} & P_{s \leftarrow B} \end{array} \right] \sim \left[\begin{array}{cccc|ccccc} 0 & 0 & 0 & 1 & 1 & 1 & 1 & 1 \\ 0 & 0 & 1 & 1 & 2 & 2 & 2 & 0 \\ 0 & 1 & 1 & 1 & 3 & 3 & 0 & 0 \\ 1 & 1 & 1 & 1 & 4 & 0 & 0 & 0 \end{array} \right] \\ \sim \left[\begin{array}{cccc|ccccc} 1 & 1 & 1 & 1 & 4 & 0 & 0 & 0 \\ 0 & 1 & 1 & 1 & 3 & 3 & 0 & 0 \\ 0 & 0 & 1 & 1 & 2 & 2 & 2 & 0 \\ 0 & 0 & 0 & 1 & 1 & 1 & 1 & 1 \end{array} \right] \\ \sim \left[\begin{array}{cccc|ccccc} 1 & 0 & 0 & 0 & 1 & -3 & 0 & 0 \\ 0 & 1 & 0 & 0 & 1 & 1 & -2 & 0 \\ 0 & 0 & 1 & 0 & 1 & 1 & 1 & -1 \\ 0 & 0 & 0 & 1 & 1 & 1 & 1 & 1 \end{array} \right] \end{array}$$

We can also invert the matrices $P_{s \leftarrow B}$ and $P_{s \leftarrow C}$ to obtain

$$P_{B \leftarrow S} = \frac{1}{12} \begin{bmatrix} 0 & 0 & 0 & 3 \\ 0 & 0 & 4 & -3 \\ 0 & 6 & -4 & 0 \\ 12 & -6 & 0 & 0 \end{bmatrix} \quad \text{and} \quad P_{C \leftarrow S} = \begin{bmatrix} 0 & 0 & -1 & 1 \\ 0 & -1 & 1 & 0 \\ -1 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \end{bmatrix}.$$

Example 5: In the vector space \mathbb{P}_3 , consider the two bases

$$\mathcal{B} = \{1 + 2t + 3t^2 + 4t^3, \quad 1 + 2t + 3t^2, \quad 1 + 2t, \quad 1\}$$

and

$$\mathcal{C} = \{t^3, \quad t^2 + t^3, \quad t + t^2 + t^3, \quad 1 + t + t^2 + t^3\}.$$

Let's compute the change-of-coordinates matrices $P_{C \leftarrow B}$ and $P_{B \leftarrow C}$.

We do this using the standard basis for \mathbb{P}_3 :

$$\mathcal{S} = \{1, \quad t, \quad t^2, \quad t^3\}.$$

These change-of-coordinates matrices are automatic:

$$P_{s \leftarrow B} = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 2 & 2 & 2 & 0 \\ 3 & 3 & 0 & 0 \\ 4 & 0 & 0 & 0 \end{bmatrix} \quad \text{and} \quad P_{s \leftarrow C} = \begin{bmatrix} 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 1 \\ 0 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 \end{bmatrix}.$$

Again we use row reduction to find ${}_{c \leftarrow \mathcal{B}}^P$:

$$\begin{aligned}
 \left[\begin{array}{c|c} P & P \\ \hline s \leftarrow c & s \leftarrow \mathcal{B} \end{array} \right] &\sim \left[\begin{array}{cccc|cccc} 0 & 0 & 0 & 1 & 1 & 1 & 1 & 1 \\ 0 & 0 & 1 & 1 & 2 & 2 & 2 & 0 \\ 0 & 1 & 1 & 1 & 3 & 3 & 0 & 0 \\ 1 & 1 & 1 & 1 & 4 & 0 & 0 & 0 \end{array} \right] \\
 &\sim \left[\begin{array}{cccc|cccc} 1 & 1 & 1 & 1 & 4 & 0 & 0 & 0 \\ 0 & 1 & 1 & 1 & 3 & 3 & 0 & 0 \\ 0 & 0 & 1 & 1 & 2 & 2 & 2 & 0 \\ 0 & 0 & 0 & 1 & 1 & 1 & 1 & 1 \end{array} \right] \\
 &\sim \left[\begin{array}{cccc|cccc} 1 & 0 & 0 & 0 & 1 & -3 & 0 & 0 \\ 0 & 1 & 0 & 0 & 1 & 1 & -2 & 0 \\ 0 & 0 & 1 & 0 & 1 & 1 & 1 & -1 \\ 0 & 0 & 0 & 1 & 1 & 1 & 1 & 1 \end{array} \right] \\
 &= \left[\begin{array}{c|c} I & {}_{c \leftarrow \mathcal{B}}^P \end{array} \right].
 \end{aligned}$$

The inverses of the matrices ${}_{s \leftarrow \mathcal{B}}^P$ and ${}_{s \leftarrow c}^P$ give us

$${}_{\mathcal{B} \leftarrow s}^P = \frac{1}{12} \left[\begin{array}{cccc} 0 & 0 & 0 & 3 \\ 0 & 0 & 4 & -3 \\ 0 & 6 & -4 & 0 \\ 12 & -6 & 0 & 0 \end{array} \right] \quad \text{and} \quad {}_{c \leftarrow s}^P = \left[\begin{array}{cccc} 0 & 0 & -1 & 1 \\ 0 & -1 & 1 & 0 \\ -1 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \end{array} \right]$$

just as in the case of vector spaces of matrices.

The nature of the objects becomes irrelevant. Once we have a standard basis, any four-dimensional vector space looks just like \mathbb{R}^4 and we can use ordinary matrix theory to compute in that vector space.