
Linear Algebra
C Term, Sections C01-C04
W. J. Martin
February 8, 2010

The New French Curve

When I was in high school, drawing houses and space shuttles, we all used this cool
plastic stencil called a “french curve”. Here’s an example1 borrowed from geometrix.co.uk.

Figure 1: A pre-CAD/CAM French curve.

In 1968, Pierre Bézier, an engineer for Renault, developed a CAD/CAM system called
UNISURF. He needed a mechanism for constructing smooth curves that passed through given
points with given tangent lines. These “Bézier curves” are now fundamental in computer
graphics. It is interesting to note that Bézier was not a mathematician, but rather obtained
his mechanical engineering degree in 1930. Still, he remembered enough linear algebra at
the age of 58 to come up with this very beautiful invention.

In this short note, we will look only at a special case.
Let a, b, u and v be vectors in R2. We aim to find a parametric curve C = (px(t), py(t))

(here 0 ≤ t ≤ 1) in the plane which satisfies the following conditions

• C passes through a at time t = 0 ;

• C passes through b at time t = 1 ;

• the tangent line to C at point a is parallel to the vector u− a;

1Actually, this one is apparently a “spanish curve”, but I guess those Europeans are all pretty much
curved the same way.



• the tangent line to C at point b is parallel to the vector v − b.

To find this curve, we perform the following steps:

• let r1 be a point moving at constant velocity from a (at time t = 0) to u (at time
t = 1);

• let r2 be a point moving at constant velocity from u (at time t = 0) to v (at time
t = 1);

• likewise r3 is to be a point moving at constant velocity from v (at time t = 0) to b (at
time t = 1).

Now we introduce two more vectors s1 and s2:

• at time t, the vector s1 takes an intermediate position between the current r1 and the
current r2:

s1 = (1− t)r1 + tr2 ;

• at time t, the vector s2 takes an analogous intermediate position between the current
r2 and the current r3:

s2 = (1− t)r2 + tr3 ;

Finally, we get the vector we are interested in:

• the point p on the actual curve at time t is given by

p = (1− t)s1 + ts2.

Here’s how to represent these time-dependent vectors algebraically. At time t, we have
r1 expressed as a linear combination: r1 = (1− t)a + tu. The same sort of relationship will
hold for the remaining five vectors. We have

r1 = (1− t)a + tu

r2 = (1− t)u + tv

r3 = (1− t)v + tb

The next vectors are not moving at constant velocity, but have equally simple algebraic
expressions:

s1 = (1− t)r1 + tr2

s2 = (1− t)r2 + tr3

p = (1− t)s1 + ts2



From the above six equations, we use substitution and simplification to express the point
p as a linear combination of the original four vectors a, b, u and v. Each coefficient will be
some function of the parameter t.

p = (1− t)s1 + ts2

= (1− t)[(1− t)r1 + tr2] + t[(1− t)r2 + tr3]

= (1− t)2r1 + 2t(1− t)r2 + t2r3

= (1− t)2[(1− t)a + tu] + 2t(1− t)[(1− t)u + tv] + t2[(1− t)v + tb]

= (1− t)3a + 3t(1− t)2u + 3t2(1− t)v + t3b

So we obtain Bézier’s magic formula for the parametric curve:

p(t) = (1− t)3a + 3t(1− t)2u + 3t2(1− t)v + t3b.

At any point in time t, the vector p is a special linear combination of the four control points.
This generalizes naturally to more complicated Bézier curves where any number of control
points can be provided by the user.

Example 1: Suppose, in the above setup, that a = (0, 0), b = (2, 4), u = (2
3
, 0) and

v = (4
3
,−4). Let’s use the result above to find a parametric form for the Bézier curve.

Solution: We are given specific points:

a = (0, 0), u = (
2

3
, 0), v = (

4

3
,−4), b = (2, 4).

We substitute these values and find parametric equations

p = (1− t)3a + 3t(1− t)2u + 3t2(1− t)v + t3b

= (1− t)3

[
0
0

]
+ 3t(1− t)2

[
2/3

0

]
+ 3t2(1− t)

[
4/3
−4

]
+ t3

[
2
4

]
=

[
2t(1− t)2 + 4t2(1− t) + 2t3

−12t2(1− t) + 4t3

]
=

[
2t

−12t2 + 16t3

]
So, with the substitution t = x/2, we find that the curve has equation

y = 2x3 − 3x2.

Note that, we cannot always write the curve in this form. It just so happens that this
example has y as a function of x.



Example 2: Now suppose you start with control points

a = (0, 6), u = (6, 4), v = (0, 2), b = (6, 0).

Solution: Then the Bézier curve is

p(t) = (1− t)3a + 3t(1− t)2u + 3t2(1− t)v + t3b

px(t) = 0(1− t)3 + 3 · 6 · t(1− t)2 + 3 · 0 · t2(1− t) + 6t3

= 18t− 36t2 + 24t3

py(t) = 6(1− t)3 + 3 · 4 · t(1− t)2 + 3 · 2 · t2(1− t) + 0t3

= 6− 6t

so that, in this case, x can be expressed as a polynomial function of y. You can guess
that this is again very special; if you move b to (4, 6), for example, neither x nor y can be
expressed as a function of the other.

Example 3: Now suppose you start with points a = (−2, 4) and b = (3, 9) and you want
the Bézier curve to be exactly the curve y = x2. Can we use linear algebra to determine the
correct control points u = (u1, u2) and v = (v1, v2) in this case?


