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Sample Solutions
Linear Algebra Assignment 7

Problem 1: Consider the vector space P3 and the two ordered bases

B =
{
1, t + 1, t2 + 2t + 1, t3 + 3t2 + 3t + 1

}
and

C =
{
t3, t3 − 1, t3 − t, t3 − t2

}
for this space.

For each of the following vectors, find the coordinate vector of it relative to each of the
bases B and C. Show your work.

(i) u = 3 + 3t + t2 (find [u]B and [u]C)

(ii) v = t3 (find [v]B and [v]C)

(iii) w = 1 + t + t2 (find [w]B and [w]C)

Solution: (i) By definition of the coordinate vector, we have

[u]B =


r1

r2

r3

r4

 ⇔ u = r1b1 + r2b2 + r3b3 + r4b4.

The equation

3 + 3t + 1t2 + 0t3 = r1(1) + r2(1 + t) + r3(1 + 2t + t2) + r4(1 + 3t + 3t2 + t3)

gives us the linear system
3 = r1+ r2+ r3+ r4

3 = r2+ 2r3+ 3r4

1 = r3+ 3r4

0 = r4

with these implications

⇒ r4 = 0 ⇒ r3 = 1 ⇒ r2 = 1 ⇒ r1 = 1.
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So we have
[u]B = [1, 1, 1, 0]> .

Now we do the same thing for basis C.

[u]C =


s1

s2

s3

s4

 ⇔ u = s1c1 + s2c2 + s3c3 + s4c4.

The equation

3 + 3t + 1t2 + 0t3 = s1(t
3) + s2(t

3 − 1) + s3(t
3 − t) + s4(t

3 − t2)

gives us the linear system
3 = −s2

3 = −s3

1 = −s4

0 = s1+ s2+ s3+ s4

which quickly gives us
[u]C = [7, −3, −3, −1]> .

(ii) Now we carry out the same process for v to find

[v]B =


−1

3
−3

1

 , [v]C =


1
0
0
0

 ,

(iii) . . . and for w to determine

[w]B =


1
−1

1
0

 , [w]C =


3
−1
−1
−1

 .

Problem 2: (a) Derive the change-of-coordinates matrix from B to C, where B and C are
the bases given in Problem 1.

Solution: To do this, we build a matrix with four rows and eight columns. The vectors
on the left are the coordinate vectors of the vectors in basis C while the vectors on the right
are the coordinate vectors of the vectors in B. Once we have this matrix, we row reduce it
to obtain the desired matrix on the righthand side:[

PC PB
]
∼

[
I P

C←B

]
.
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
0 −1 0 0 1 1 1 1
0 0 −1 0 0 1 2 3
0 0 0 −1 0 0 1 3
1 1 1 1 0 0 0 1

 ∼


1 0 0 0 1 2 4 8
0 1 0 0 −1 −1 −1 −1
0 0 1 0 0 −1 −2 −3
0 0 0 1 0 0 −1 −3

 .

So

P

C ← B
=


1 2 4 8
−1 −1 −1 −1

0 −1 −2 −3
0 0 −1 −3

 .

(b) Using part (a), derive the change-of-coordinates matrix from C to B.

Solution: We use the fact that

P

B ← C
=

(
P

C ← B

)−1

.

Since 
1 2 4 8 1 0 0 0
−1 −1 −1 −1 0 1 0 0

0 −1 −2 −3 0 0 1 0
0 0 −1 −3 0 0 0 1

 ∼


1 0 0 0 −7 −8 −8 −8
0 1 0 0 −6 −6 −7 −7
0 0 1 0 −3 −3 −3 −4
0 0 0 1 1 1 1 1

 ,

we have

P

B ← C
=


−7 −8 −8 −8
−6 −6 −7 −7
−3 −3 −3 −4

1 1 1 1

 .

Problem 3: For each of the following matrices, compute the characteristic equation of the
given matrix and use this to find all eigenvalues of the matrix (including multiplicities).

(a) A =

[
1 −5
−2 4

]
Solution: We compute

|A− λI| =
∣∣∣∣ 1− λ −5
−2 4− λ

∣∣∣∣ = (1− λ)(4− λ)− 10

so that our characteristic equation is λ2 − 5λ − 6 = 0, i.e., (λ − 6)(λ + 1) = 0. So the
eigenvalues are 6 and −1, each with multiplicity one.
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(b) B =

[
−1 −1

1 −3

]
Solution: Again, we compute

|B − λI| =
∣∣∣∣ −1− λ −1

1 −3− λ

∣∣∣∣ = (−1− λ)(−3− λ) + 1

so that our characteristic equation is

λ2 + 4λ + 4 = 0,

i.e., (λ + 2)2 = 0. So the only eigenvalue is λ = −2, with multiplicity two.

(c) C =


2 0 −1 3
0 3 1 1
0 0 4 6
0 0 0 4


Solution: Since C is upper triangular, the determinant of C−λI is just the product of its
entries along the diagonal:

|C − λI| =

∣∣∣∣∣∣∣∣
2− λ 0 −1 3

0 3− λ 1 1
0 0 4− λ 6
0 0 0 4− λ

∣∣∣∣∣∣∣∣ = (2− λ)(3− λ)(4− λ)(4− λ)

so that our characteristic equation is

(2− λ)(3− λ)(4− λ)2 = 0

and the eigenvalues are λ1 = λ2 = 4 (multiplicity two) and λ3 = 3, λ4 = 2 (each with
multiplicity one).

(d) D =

 1 0 −2
5 0 0
−3 0 2


Solution: We compute

|D − λI| =

∣∣∣∣∣∣
1− λ 0 −2

5 −λ 0
−3 0 2− λ

∣∣∣∣∣∣ = (1− λ)(−λ)(2− λ) + 0 + 0 + 6λ− 0− 0

so that our characteristic equation is λ3 − 3λ2 − 4λ = 0, or λ(λ + 1)(λ − 4) = 0. We find
three eigenvalues all of multiplicity one:

λ1 = 4, λ2 = 0, λ3 = −1.
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Problem 4: For each matrix, find a basis for the eigenspace Vλ where λ = 5.

(a) A =


6 0 0 0
0 6 0 0
0 0 5 0
0 0 0 5


Solution: The matrix

A− 5I =


1 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0


is already in reduced row echelon form. So a basis for its null space is

B =
{
[0, 0, 1, 0]>, [0, 0, 0, 1]>

}
.

This is the desired basis for the eigenspace Vλ.

(b) B =


6 1 0 0
0 6 1 0
0 0 5 1
0 0 0 5


Solution: We row reduce

A− 5I =


1 1 0 0
0 1 1 0
0 0 0 1
0 0 0 0

 ∼


1 0 −1 0
0 1 1 0
0 0 0 1
0 0 0 0

 .

(We see only one free variable, even though the algebraic multiplicity is two.) A basis for
the null space is

B =
{
[1,−1, 1, 0]>

}
so the eigenspace Vλ has dimension only one.

(c) C =


5 54 −8 −46
0 −19 4 20
0 −30 5 30
0 −18 4 19


Solution: We row reduce

A− 5I =


0 54 −8 −46
0 −24 4 20
0 −30 0 30
0 −18 4 14

 ∼


0 1 0 −1
0 0 1 −1
0 0 0 0
0 0 0 0

 .
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A basis for the null space is

B =
{
[1, 0, 0, 0]>, [0, 1, 1, 1]>

}
so the eigenspace Vλ has dimension two.

Problem 5: Diagonalize the following matrix:

A =

 17 −12 36
24 −19 48
2 −2 3


(That is, find a diagonal matrix D and an invertible matrix P such that A = PDP−1.)

Solution: We are given the hint in class that the sum of the first two columns might be
interesting. We set v1 = (1, 1, 0) and compute

Av1 =

 17 −12 36
24 −19 48
2 −2 3

 1
1
0

 =

 5
5
0

 .

So we see that λ1 = 5 is one of our eigenvalues.
Now the trace and determinant should give us enough evidence to recover the other two

eigenvalues. We have
trace A = 17 + (−19) + 3 = 1,

so λ2 + λ3 = −4. Also, we have

det A = λ1λ2λ3 = 15

so we work out λ2 = −1 and λ3 = −3.
Then we solve (A− 5I)v1 = 0, (A + I)v2 = 0 and (A + 3I)v3 = 0 to find eigenvectors

v1 =

 1
1
0

 , v2 =

 2
0
−1

 , v3 =

 0
3
1

 .

that satisfy
Av1 = 5v1, Av2 = −v2, Av3 = −3v3.

So if we take

P =

 1 2 0
1 0 3
0 −1 1

 , D =

 5 0 0
0 −1 0
0 0 −3


then we have

AP = PD

or
A = PDP−1

which is exactly what we need.
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