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Sample Solutions
Linear Algebra Assignment 4

Problem 1: Show that A =

 a 0 0

b c 0

d e f

 is invertible if and only if a 6= 0 and c 6= 0 and

f 6= 0 and, in this case, find A−1.

Solution: We row reduce the augmented matrix, keeping track of invertibility conditions
as we go along. All we need to remember is IMT(c); if in the row reduction process, we ever
see a row of zeros, then we know that we will have less than three pivots and the matrix
will be singular. For example, if a = 0, then matrix A has a row of zeros and cannot be
invertible. So assume a 6= 0. a 0 0 1 0 0

b c 0 0 1 0
d e f 0 0 1

 ∼

 1 0 0 1
a

0 0
0 c 0 − b

a
1 0

0 e f −d
a

0 1

 1
a
(R1)

(R2) − b
a
(R1)

(R3) − d
a
(R1)

Now if c = 0, then we will have a row of zeros on the left and less than three pivots. So also
assume c 6= 0 and proceed

∼

 1 0 0 1
a

0 0
0 1 0 − b

ac
1
c

0
0 0 f − be−dc

ac
− e

c
1

 (R1)
1
c
(R2)

(R3) − e
c
(R2)

∼

 1 0 0 1
a

0 0
0 1 0 − b

ac
1
c

0
0 0 1 − be−dc

acf
− e

cf
1
f

 (R1)
(R2)

1
f
(R3)

where we have also been forced to assume that f 6= 0 for the same reasons as above.
Thus, we have derived the general inverse of a lower-triangular 3× 3 matrix: if a = 0 or

c = 0 or f = 0, then no inverse exists. Otherwise, we have

A =

 a 0 0

b c 0

d e f

 , A−1 =
1

acf

 cf 0 0
−bf af 0

be − dc −ae ac

 provided a, c, f all nonzero.

Problem 2: We are inverting Pascal’s Triangle. We have

A =

[
1 0
1 1

]
, B =

 1 0 0
1 1 0
1 2 1

 , C =


1 0 0 0
1 1 0 0
1 2 1 0
1 3 3 1

 .
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Solution: In part (a), we compute A−1 and B−1 as submatrices of C−1. So we only have
to row reduce

[C|I] =


1 0 0 0 1 0 0 0
1 1 0 0 0 1 0 0
1 2 1 0 0 0 1 0
1 3 3 1 0 0 0 1



∼


1 0 0 0 1 0 0 0
0 1 0 0 −1 1 0 0
0 2 1 0 −1 0 1 0
0 3 3 1 −1 0 0 1

 (found A−1 in top-left corner)

∼


1 0 0 0 1 0 0 0
0 1 0 0 −1 1 0 0
0 0 1 0 1 −2 1 0
0 0 3 1 2 −3 0 1

 (found B−1 in top-left corner)

∼


1 0 0 0 1 0 0 0
0 1 0 0 −1 1 0 0
0 0 1 0 1 −2 1 0
0 0 0 1 −1 3 −3 1


So, keeping track of the intermediate results, we have

A−1 =

[
1 0

−1 1

]
, B−1 =

 1 0 0
−1 1 0

1 −2 1

 , C−1 =


1 0 0 0

−1 1 0 0
1 −2 1 0

−1 3 −3 1

 .

(b) Seeing this pattern, we conjecture that the pattern continues for larger and larger chunks
of Pascal’s Triangle. And Theorem 2.6(c) tells us that the inverse of M> is the transpose of
M−1. So we claim

M =


1 1 1 1 1 1
0 1 2 3 4 5
0 0 1 3 6 10
0 0 0 1 4 10
0 0 0 0 1 5
0 0 0 0 0 1

 , M−1 =


1 −1 1 −1 1 −1
0 1 −2 3 −4 5
0 0 1 −3 6 −10
0 0 0 1 −4 10
0 0 0 0 1 −5
0 0 0 0 0 1

 .

This can be easily verified in MAPLE. It is a special case of the binomial identity

∞∑
k=0

(−1)k+j

(
i

k

)(
k

j

)
= δi,j

for any non-negative integers i and j where the Kronecker delta, δi,j, is the (i, j)-entry of the
identity matrix: one if i = j and zero otherwise.
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Problem 3: Let

A =

[
1 2

0 3

]
, B =

[
1 3 8

0 −1 9

]
, C =

 0 0 0

2 −2 0

7 −8 40

 ,

D =

 −1 0

0 0

0 −1

 , u =

[
3

3

]
, v =

 −2

−1

−1

 .

(a) Compute the following eight matrix products:

A2, BD, Au, Bv, B>A, CD, B>u, Cv.

Solution: We grind out

A2 =

[
1 8
0 9

]
, BD =

[
−1 −8

0 −9

]
, Au =

[
9
9

]
, Bv =

[
−13
−8

]
,

B>A =

 1 2
3 3
8 43

 , CD =

 0 0
−2 0
−7 −40

 , B>u =

 3
6

51

 , Cv =

 0
−2
−46

 .

(b) Use the results of part (a) to compute the product of the partitioned matrices M
and N given by

M =

[
A B
B> C

]
, N =

[
A u
D v

]
.

Solution: We compute

MN =

[
A B
B> C

] [
A u
D v

]
=

[
(A2 + BD) (Au + Bv)

(B>A + CD) (B>u + Cv)

]
.

So

MN =


0 0 −4
0 0 1
1 2 3
1 3 4
1 3 5

 .

Problem 4: Show that the partitioned matrix A =

[
A11 A12

0 A22

]
, with blocks A11 and A22

both square, is invertible if and only if both A11 and A22 are invertible.
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Solution: First, suppose that A11 and A22 are both invertible. Consider the matrix

B =

[
A−1

11 A−1
11 A12A

−1
22

0 A−1
22

]
.

We claim that B is the inverse of A. Let’s check:

AB =

[
A11 A12

0 A22

] [
A−1

11 A−1
11 A12A

−1
22

0 A−1
22

]
=

[
A11A

−1
11 A11

(
A−1

11 A12A
−1
22

)
+ A12

(
A−1

22

)
0 + 0 A22A

−1
22

]
=

[
I 0
0 I

]
Now the logical converse is: if A is invertible, then both of the square blocks A11 and A22

must be invertible. To show this, assume that A is invertible and write its inverse – let’s call
it B – in block form, conformable to the block structure of A:

B =

[
B11 B12

B21 B22

]
.

We compute

AB =

[
A11 A12

0 A22

] [
B11 B12

B21 B22

]
=

[
(A11B11 + A12B21) (A11B12 + A12B22)

A22B21 A22B22

]
=

[
I 0
0 I

]
since we are assuming that B = A−1. This gives us four equations for the blocks of B:

A11B11 + A12B21 = I

A11B12 + A12B22 = 0

A22B21 = 0

A22B22 = I

From the last one, we see that B22 is the inverse of A22, so A22 must be invertible. From the
third equation, we can now eliminate the invertible A22 as follows

A22B21 = 0

B22(A22B21) = B220

(B22A22)B21 = 0

IB21 = 0
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to find that B21 = 0 must hold. But then the first equation simplifies to A11B11 = I which
implies that the block A11 is also invertible. That’s what we wanted. So we’re done!

Problem 5(a): If A is an invertible n× n matrix and Ax = λx for some non-zero n-vector
x and some scalar λ, then

A−1x =
1

λ
x.

Solution: We multiply both sides of the above equation on the left by A−1:

Ax = λx

A−1(Ax) = A−1(λx)

(A−1A)x = λ(A−1x)

Ix = λ(A−1x)

x = λ(A−1x)

Now if λ = 0, then the vector on the right is the zero vector. But we are given that x 6= 0.
So we can conclude that λ 6= 0 and we can divide both sides by λ to get

1

λ
x = A−1x

which is what we wanted.

(b) Consider the matrix

B =

 7/6 −1/6 1/3
1/3 2/3 2/3

−1/2 1/2 0

 =
1

6

 7 −1 2
2 4 4

−3 3 0

 .

Find three linearly independent eigenvectors for B and their corresponding eigenvalues.

Solution: We first observe that B is the inverse of the matrix A appearing in Problem
5(b) on Assignment 2:

BA =
1

6
=

1

6

 7 −1 2
2 4 4

−3 3 0

 2 −1 2
2 −1 4

−3 3 −5

 =

1

6

 (7 · 2 − 1 · 2 + 2 · (−3)) (7 · (−1) − 1 · (−1) + 2 · 3) (7 · 2 − 1 · 4 + 2 · (−5))
(2 · 2 + 4 · 2 + 4 · (−3)) (2 · (−1) + 4 · (−1) + 4 · 3) (2 · 2 + 4 · 4 + 4 · (−5))

(−3 · 2 + 3 · 2) (−3 · (−1) + 3 · (−1)) (−3 · 2 + 3 · 4)

 = I3.

So we know from part (a) that each eigenvector of A is also an eigenvector of B. The solution
to Problem 5(b) on Assignment 2 then gives us two of the three eigenvectors that we need:

u = (1, 1, 0), Bu = 1u, v = (2, 0, 1), Bv = 1v.
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These are obtained by setting r = 1, s = 0 and r = 0, s = 1, respectively in the parametric
description of the solutions in 5(b). Clearly these two vectors are linearly independent.

Now we have eigenvalues λ1 = 1 and λ2 = 1 for these two vectors (these being the
reciprocals of the corresponding eigenvalues of A). The trace of B is

b11 + b22 + b33 =
7

6
+

4

6
+

0

6
=

11

6
.

We are given the general principle that the trace is equal to the sum of the eigenvalues:

11

6
= λ1 + λ2 + λ3 =

6

6
+

6

6
+ λ3

which gives us the last eigenvalue we need: λ3 = −1/6.
We find our last eigenvector by solving the homogeneous linear system (B − λ3I)w = 0:

[B +
1

6
I|0] ∼

 8 −1 2 0
2 5 4 0

−3 3 1 0


∼

 8 −1 2 0
0 21

4
7
2

0
0 21

8
7
4

0


∼

 1 0 1
3

0
0 1 2

3
0

0 0 0 0


So we get (with x3 = 3 to clear the denominators), w = (−1,−2, 3) and

{u,v,w}

is the linearly independent set of three eigenvectors we were looking for.
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