

Matrices and Linear Algebra I – Test 2

Sample Solutions

1.) The following two questions pertain to planes in 3-dimensional space.
 (a) [6 points] Find an equation describing the plane π passing through the points $(1, 0, -1)$, $(0, -1, -2)$ and $(-1, 4, 1)$.

Solution: We write down the general equation

$$\pi : ax + by + cz = d$$

and solve a system of equations to find a, b, c, d . The equations come from the insistence that the plane passes through all three of these points:

$$\begin{aligned} (1)a + (0)b + (-1)c - d &= 0 \\ (0)a + (-1)b + (-2)c - d &= 0 \\ (-1)a + (4)b + (1)c - d &= 0 \end{aligned}$$

We obtain a homogeneous linear system with augmented matrix

$$[A|\mathbf{0}] = \left[\begin{array}{cccc|c} 1 & 0 & -1 & -1 & 0 \\ 0 & -1 & -2 & -1 & 0 \\ -1 & 4 & 1 & -1 & 0 \end{array} \right]$$

After we row reduce this matrix, we obtain the matrix

$$[A|\mathbf{0}] \sim \left[\begin{array}{cccc|c} 1 & 0 & 0 & -1/4 & 0 \\ 0 & 1 & 0 & -1/2 & 0 \\ 0 & 0 & 1 & 3/4 & 0 \end{array} \right].$$

We want one simple non-trivial solution. So we take $d = 4$ and we find $a = 1$, $b = 2$, $c = -3$. An equation for our plane is then

$$\pi : x + 2y - 3z = 4.$$

(b) [4 points] Find an equation for the plane parallel to

$$\pi : 4x + 3y + 2z = -6$$

and passing through the point $(-2, 3, 0)$.

Solution: We know that parallel planes have the same normal vector. So the plane we seek has equation of the form

$$\sigma : 4x + 3y + 2z = d$$

for some d . To find d , we ensure that the plane passes through the given point: $4(-2) + 3(3) + 2(0) = 1$. So $d = 1$ and the answer is

$$4x + 3y + 2z = 1.$$

2.) For each of the following functions L , determine whether or not L is a linear transformation. In all cases, give justification.

(a) [3 points] $L : \mathbb{R}^3 \rightarrow \mathbb{R}^2$ via $L \left(\begin{bmatrix} u_1 \\ u_2 \\ u_3 \end{bmatrix} \right) = \begin{bmatrix} u_1 - 5u_3 \\ -u_2 \end{bmatrix}$

Solution: Yes, this is a linear transformation. Let

$$\mathbf{u} = \begin{bmatrix} u_1 \\ u_2 \\ u_3 \end{bmatrix} \quad \text{and} \quad \mathbf{v} = \begin{bmatrix} v_1 \\ v_2 \\ v_3 \end{bmatrix}.$$

Then $L(\mathbf{u} + \mathbf{v}) =$

$$\begin{aligned} & L \left(\begin{bmatrix} u_1 + v_1 \\ u_2 + v_2 \\ u_3 + v_3 \end{bmatrix} \right) \\ &= \begin{bmatrix} (u_1 + v_1) - 5(u_3 + v_3) \\ -(u_2 + v_2) \end{bmatrix} \\ &= \begin{bmatrix} (u_1 - 5u_3) + (v_1 - 5v_3) \\ (-u_2) + (-v_2) \end{bmatrix} \\ &= L(\mathbf{u}) + L(\mathbf{v}) \end{aligned}$$

and similarly, for any scalar c ,

$$L(c\mathbf{u}) = L \left(\begin{bmatrix} cu_1 \\ cu_2 \\ cu_3 \end{bmatrix} \right) = \begin{bmatrix} (cu_1) - 5(cu_3) \\ -(cu_2) \end{bmatrix} = \begin{bmatrix} c(u_1 - 5u_3) \\ c(-u_2) \end{bmatrix} = cL(\mathbf{u}).$$

(b) [3 points] $L : \mathbb{R}^2 \rightarrow \mathbb{R}^4$ via $L \left(\begin{bmatrix} u_1 \\ u_2 \end{bmatrix} \right) = \begin{bmatrix} 0 \\ 0 \\ u_1 - 1 \\ u_2 - 2 \end{bmatrix}$

Solution: This is NOT a linear transformation. One easy way to see it is to note that $L(\mathbf{0}) \neq \mathbf{0}$. Clearly,

$$L(\mathbf{0}) = \begin{bmatrix} 0 \\ 0 \\ -1 \\ -2 \end{bmatrix}$$

(c) [4 points] $L : \mathbb{R} \rightarrow \mathbb{R}^2$ via $L([u]) = \begin{bmatrix} u^2 \\ \log u \end{bmatrix}$

Solution: This is NOT a linear transformation. It is not even defined for $u < 0$ since you cannot take the logarithm of a negative number. To be clear, let $\mathbf{u} = [0]$. Then

$$L(\mathbf{0}) = \begin{bmatrix} 0 \\ \log 0 \end{bmatrix}$$

which doesn't exist.

3.) In each case, determine whether or not the given vector \mathbf{w} lies in the range of the given linear transformation L .

(a) [5 points] $L : \mathbb{R}^3 \rightarrow \mathbb{R}^3$ via

$$L \left(\begin{bmatrix} u_1 \\ u_2 \\ u_3 \end{bmatrix} \right) = \begin{bmatrix} u_1 - u_2 - u_3 \\ -u_2 - u_3 \\ 4u_3 \end{bmatrix} \quad \text{and} \quad \mathbf{w} = \begin{bmatrix} -1 \\ 0 \\ -4 \end{bmatrix}$$

Solution: We write down the augmented matrix $[A|\mathbf{w}]$ where A is the standard matrix representing L :

$$[A|\mathbf{w}] = \left[\begin{array}{ccc|c} 1 & -1 & -1 & -1 \\ 0 & -1 & -1 & 0 \\ 0 & 0 & 4 & 4 \end{array} \right]$$

and we row reduce to find a solution \mathbf{u} satisfying $L(\mathbf{u}) = \mathbf{w}$.

$$\begin{aligned} [A|\mathbf{w}] &\sim \left[\begin{array}{ccc|c} 1 & 0 & 0 & -1 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 4 & 4 \end{array} \right] \begin{array}{l} R1 - R2 \\ -R2 \\ R3 \end{array} \\ &\sim \left[\begin{array}{ccc|c} 1 & 0 & 0 & -1 \\ 0 & 1 & 0 & -1 \\ 0 & 0 & 1 & 1 \end{array} \right] \begin{array}{l} R1 \\ R2 - \frac{1}{4}R3 \\ \frac{1}{4}R3 \end{array} \end{aligned}$$

This matrix is in r.r.e.f. So we can see that “YES” \mathbf{w} is in the range of L . For if $\mathbf{u} = [-1, -1, 1]^\top$, then $L(\mathbf{u}) = \mathbf{w}$.

(b) [5 points] $L : \mathbb{R}^4 \rightarrow \mathbb{R}^2$ via

$$L \left(\begin{bmatrix} u_1 \\ u_2 \\ u_3 \\ u_4 \end{bmatrix} \right) = \begin{bmatrix} 4u_1 - u_2 - u_3 + 2u_4 \\ -2u_1 + \frac{1}{2}u_2 + \frac{1}{2}u_3 - u_4 \end{bmatrix} \quad \text{and} \quad \mathbf{w} = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$

Solution: We write down the augmented matrix $[A|\mathbf{w}]$ where A is the standard matrix representing L :

$$[A|\mathbf{w}] = \left[\begin{array}{cccc|c} 4 & -1 & -1 & 2 & 1 \\ -2 & \frac{1}{2} & \frac{1}{2} & -1 & 0 \end{array} \right]$$

and we row reduce to find a solution \mathbf{u} satisfying $L(\mathbf{u}) = \mathbf{w}$.

$$[A|\mathbf{w}] \sim \left[\begin{array}{cccc|c} 4 & -1 & -1 & 2 & 1 \\ 0 & 0 & 0 & 0 & \frac{1}{2} \end{array} \right] \begin{array}{l} R1 \\ R2 + \frac{1}{2}R1 \end{array}$$

We can stop here since it is now clear that the system admits no solution. We conclude “NO”, \mathbf{w} is not in the range of L .

4.) [10 points] In each case, determine whether or not V with the given operations is a vector space. If it **fails** to be a vector space, show explicitly some part of the definition which fails. If you think it **is** a vector space, write down the zero vector.

(a) $V = \left\{ \begin{bmatrix} a \\ b \end{bmatrix} : a, b \text{ any real numbers} \right\}$ with operations

$$\begin{bmatrix} a \\ b \end{bmatrix} \oplus \begin{bmatrix} c \\ d \end{bmatrix} = \begin{bmatrix} b+d \\ a+c \end{bmatrix} \quad \text{and} \quad r \odot \begin{bmatrix} a \\ b \end{bmatrix} = \begin{bmatrix} ra \\ rb \end{bmatrix}$$

Solution: This is **NOT** a vector space. For example, condition (f) fails: let $c = 2, d = 5$ and $\mathbf{u} = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$. Then

$$(c+d) \odot \mathbf{u} = 7 \odot \mathbf{u} = \begin{bmatrix} 7 \\ 0 \end{bmatrix}.$$

But

$$(c \odot \mathbf{u}) \oplus (d \odot \mathbf{u}) = (2 \odot \mathbf{u}) \oplus (5 \odot \mathbf{u}) = \begin{bmatrix} 2 \\ 0 \end{bmatrix} \oplus \begin{bmatrix} 5 \\ 0 \end{bmatrix} = \begin{bmatrix} 0 \\ 7 \end{bmatrix}.$$

So the condition

$$(c+d) \odot \mathbf{u} = (c \odot \mathbf{u}) \oplus (d \odot \mathbf{u})$$

fails in this case.

(b) $V = \left\{ \begin{bmatrix} a \\ b \end{bmatrix} : a > 0, b > 0 \right\}$ with operations

$$\begin{bmatrix} a \\ b \end{bmatrix} \oplus \begin{bmatrix} c \\ d \end{bmatrix} = \begin{bmatrix} ac \\ bd \end{bmatrix} \quad \text{and} \quad r \odot \begin{bmatrix} a \\ b \end{bmatrix} = \begin{bmatrix} a^r \\ b^r \end{bmatrix}$$

Solution: This one is a vector space. (I can't find any part of the definition that fails.) The zero vector is

$$\mathbf{0} = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$

Indeed, for any vector $\mathbf{u} = \begin{bmatrix} a \\ b \end{bmatrix}$, we have

$$\mathbf{0} \oplus \mathbf{u} = \begin{bmatrix} 1 \\ 1 \end{bmatrix} \oplus \begin{bmatrix} a \\ b \end{bmatrix} = \begin{bmatrix} 1a \\ 1b \end{bmatrix} = \begin{bmatrix} a \\ b \end{bmatrix} = \mathbf{u}$$

and $\mathbf{u} \oplus \mathbf{0} = \mathbf{u}$. (Note also that, since a and b are positive, the numbers $1/a$ and $1/b$ are positive. These have to be the entries of $-\mathbf{u}$. So $-\mathbf{u}$ is in V also.)