

Matrices and Linear Algebra I – Test 1

Sample Solutions

1.) [10 points] Consider the following system of linear equations:

$$\begin{array}{cccc|c} x_1 & -2x_2 & -5x_3 & -x_4 & = & 7 \\ -x_1 & & +x_3 & +x_4 & = & 3 \\ 2x_1 & +2x_2 & +2x_3 & & = & -4 \end{array}$$

(a) Write down the augmented matrix corresponding to this system.

$$\left[\begin{array}{cccc|c} 1 & -2 & -5 & -1 & 7 \\ -1 & 0 & 1 & 1 & 3 \\ 2 & 2 & 2 & 0 & -4 \end{array} \right]$$

(b) Perform Gauss-Jordan reduction on this matrix to obtain a matrix in **reduced row echelon form**.

$$\begin{aligned} \left[\begin{array}{cccc|c} 1 & -2 & -5 & -1 & 7 \\ -1 & 0 & 1 & 1 & 3 \\ 2 & 2 & 2 & 0 & -4 \end{array} \right] &\sim \left[\begin{array}{cccc|c} 1 & -2 & -5 & -1 & 7 \\ 0 & -2 & -4 & 0 & 10 \\ 0 & 6 & 12 & 2 & -18 \end{array} \right] \begin{array}{l} R1 \\ R2 + R1 \\ R3 - 2 \cdot R1 \end{array} \\ &\sim \left[\begin{array}{cccc|c} 1 & 0 & -1 & -1 & -3 \\ 0 & 1 & 2 & 0 & -5 \\ 0 & 0 & 0 & 2 & 12 \end{array} \right] \begin{array}{l} R1 - R2 \\ -\frac{1}{2} \cdot R2 \\ R3 + 3 \cdot R2 \end{array} \\ &\sim \left[\begin{array}{cccc|c} 1 & 0 & -1 & 0 & 3 \\ 0 & 1 & 2 & 0 & -5 \\ 0 & 0 & 0 & 1 & 6 \end{array} \right] \begin{array}{l} R1 + \frac{1}{2} \cdot R3 \\ R2 \\ \frac{1}{2} \cdot R3 \end{array} \end{aligned}$$

This final matrix is in r.r.e.f.

(c) Using part (b), find all solutions to the original linear system.

Here is a description of all possible solutions:

$$\begin{aligned} x_1 &= 3 + r, \\ x_2 &= -5 - 2r, \\ x_3 &= r, \text{ where } r \text{ is any real number} \\ x_4 &= 6. \end{aligned}$$

2.) [10 points] Consider the matrix

$$B = \begin{bmatrix} 1 & 2 \\ 2 & -1 \end{bmatrix}.$$

Clearly any matrix of the form rB commutes with B (where r is a real number) as do all matrices rI .

Find two matrices **not of this form** which commute with B .

Solution: Let $A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$. We want $AB = BA$. So we compute

$$AB = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \begin{bmatrix} 1 & 2 \\ 2 & -1 \end{bmatrix} = \begin{bmatrix} a+2b & 2a-b \\ c+2d & 2c-d \end{bmatrix}$$

and

$$BA = \begin{bmatrix} 1 & 2 \\ 2 & -1 \end{bmatrix} \begin{bmatrix} a & b \\ c & d \end{bmatrix} = \begin{bmatrix} a+2c & b+2d \\ 2a-c & 2b-d \end{bmatrix}.$$

We see that $b = c$ is forced. After that, there is only one equation really. It is

$$2a - b = b + 2d.$$

Let's take $b = d = 1$ and $a = 2$ for our first matrix:

$$A = \begin{bmatrix} 2 & 1 \\ 1 & 1 \end{bmatrix}.$$

For our second matrix, let's take $d = 0$ and $a = b = 5$:

$$A = \begin{bmatrix} 5 & 5 \\ 5 & 0 \end{bmatrix}.$$

Thus we have two interesting examples of matrices A satisfying

$$AB = BA.$$

3.) Consider the homogeneous linear system $A\mathbf{x} = \mathbf{0}$.

(a) [5 points] Show that, if \mathbf{u} and \mathbf{v} are solutions to the system, then $\mathbf{u} + \mathbf{v}$ is also a solution to the system.

Solution: Assume that \mathbf{u} and \mathbf{v} are solutions to the system $A\mathbf{x} = \mathbf{0}$. That is, suppose

$$A\mathbf{u} = \mathbf{0} \quad \text{and} \quad A\mathbf{v} = \mathbf{0}.$$

We compute

$$\begin{aligned} A(\mathbf{u} + \mathbf{v}) &= A\mathbf{u} + A\mathbf{v} && (\text{Distributive Law}) \\ &= \mathbf{0} + \mathbf{0} && (\text{since } \mathbf{u}, \mathbf{v} \text{ are solutions}) \\ &= \mathbf{0} \end{aligned}$$

showing that $\mathbf{u} + \mathbf{v}$ is also a solution.

(b) [5 points] Show that, if \mathbf{u} is a solution to the system and r is any real number, then $r\mathbf{u}$ is also a solution to the system.

Solution: Assume that \mathbf{u} is a solution to the system $A\mathbf{x} = \mathbf{0}$ and that r is any real number. Then

$$A\mathbf{u} = \mathbf{0}.$$

We compute

$$\begin{aligned} A(r\mathbf{u}) &= r(A\mathbf{u}) \\ &= r\mathbf{0} \\ &= \mathbf{0} \end{aligned}$$

showing that $r\mathbf{u}$ is also a solution.

4.) [10 points] For each of the following matrices, either find its inverse or explain why it is not invertible.

$$(a) A = \begin{bmatrix} 1 & 1 & 1 \\ 2 & 0 & 1 \\ 3 & 2 & 3 \end{bmatrix}$$

Solution: We row reduce the partitioned matrix $[A|I]$:

$$\begin{aligned} [A|I] &\sim \left[\begin{array}{ccc|ccc} 1 & 1 & 1 & 1 & 0 & 0 \\ 0 & -2 & -1 & -2 & 1 & 0 \\ 0 & -1 & 0 & -3 & 0 & 1 \end{array} \right] R1 \\ &\sim \left[\begin{array}{ccc|ccc} 1 & 0 & 1 & -2 & 0 & 1 \\ 0 & 1 & 0 & 3 & 0 & -1 \\ 0 & 0 & -1 & 4 & 1 & -2 \end{array} \right] R1 + R3 \\ &\sim \left[\begin{array}{ccc|ccc} 1 & 0 & 0 & 2 & 1 & -1 \\ 0 & 1 & 0 & 3 & 0 & -1 \\ 0 & 0 & 1 & -4 & -1 & 2 \end{array} \right] R1 + R3 \\ &\sim \left[\begin{array}{ccc|ccc} 2 & 1 & -1 \\ 3 & 0 & -1 \\ -4 & -1 & 2 \end{array} \right]. \end{aligned}$$

So we find

$$A^{-1} = \begin{bmatrix} 2 & 1 & -1 \\ 3 & 0 & -1 \\ -4 & -1 & 2 \end{bmatrix}.$$

$$(b) B = \begin{bmatrix} 2 & -2 & -12 \\ 0 & -1 & -6 \\ 0 & 0 & 1 \end{bmatrix}$$

Solution: We row reduce the partitioned matrix $[B|I]$:

$$\begin{aligned} [B|I] &\sim \left[\begin{array}{ccc|ccc} 1 & -1 & -6 & \frac{1}{2} & 0 & 0 \\ 0 & -1 & -6 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 & 0 & 1 \end{array} \right] \frac{1}{2}R1 \\ &\sim \left[\begin{array}{ccc|ccc} 1 & 0 & 0 & \frac{1}{2} & -1 & 0 \\ 0 & 1 & 6 & 0 & -1 & 0 \\ 0 & 0 & 1 & 0 & 0 & 1 \end{array} \right] R1 - R2 \\ &\sim \left[\begin{array}{ccc|ccc} 1 & 0 & 0 & \frac{1}{2} & -1 & 0 \\ 0 & 1 & 0 & 0 & -1 & -6 \\ 0 & 0 & 1 & 0 & 0 & 1 \end{array} \right] R2 - 6 \cdot R3 \end{aligned}$$

So we find

$$B^{-1} = \begin{bmatrix} \frac{1}{2} & -1 & 0 \\ 0 & -1 & -6 \\ 0 & 0 & 1 \end{bmatrix}.$$