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Sample Solutions – Assignment 7

1.) Suppose A is a 4× 4 matrix with eigenvalues 4, 2, 2, 1.
(a) What are the eigenvalues of 8A?

Solution: The eigenvalues of 8A are 32, 16, 16, 8. To prove this, we note that
for any n × n matrix M and any real number k, det(kM) = kn det(M). So
det(8A − (8x)I) = 84fA(x) where fA is the characteristic polynomial of A. It
follows (for instance, by substituting x = 1

8
λ) that

det(8A− λI) = 84

[
(
1

8
λ− 4)(

1

8
λ− 2)2(

1

8
λ− 1)

]
= (λ− 32)(λ− 16)2(λ− 8).

(b) What are the eigenvalues of A3?

Solution: The eigenvalues of A3 are probably 64, 8, 8, 1. To prove this, let us
assume that the eigenspace associated to λ = 2 is two-dimensional. Then we
have a basis {v1,v2,v3,v4} for R4 with Av1 = 4v1, Av2 = 2v2, Av3 = 2v3 and
Av4 = v4. Then, for instance, we have

A3v1 = A2(Av1) = A2(4v1) = 4A(Av1) = 4A(4v1) = 16(Av1) = 64v1.

Similar calculations give A3v2 = 8v2, A3v3 = 8v3 and A3v4 = v4. Thus we have
located four eigenvalues of A3 and there can be no more. (GAP: What happens
if that eigenspace has dimension only one?? I don’t know right now!)

(c) What are the eigenvalues of AT ?

Solution: Theorem 3.1 tells us that det(B>) = det(B) for any square matrix B.
So if we apply this to B = A − 4I, B = A − 2I and B = A − I, then we see
that A> has eigenvalues 4, 2 and 1 just as A does. Now the only challenge is to
show that eigenvalue two still has multiplicity two. Well certainly there can be
no other eigenvalues since (A>)> = A. Ah, but the row rank of A> − 2I is the
column rank of A−2I which we know is the same as the row rank of A−2I which
is assumed to be two. So, yes, this eigenspace has dimension two as required.
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2.) Exercise #21 on page 354 except use the following Leslie matrix

A =


0 0 0 6
1
3

0 0 0
0 1√

2
0 0

0 0 1√
2

0

 .

Solution: We don’t know the total population of this colony of this organism, but
we can determine the relative ratios of the age groups in any stable population.
That is, we seek a non-zero (all-positive) vector x satisfying Ax = x. Writing

x = [x0, x1, x2, x3]>

we have

Ax =


0 0 0 6
1
3

0 0 0
0 1√

2
0 0

0 0 1√
2

0



x0

x1

x2

x3

 =


x0

x1

x2

x3

 .
This gives us a fairly simple linear system:

x0 = 6x3, x1 =
1

3
x0, x2 =

1√
2
x1, x3 =

1√
2
x2.

One solution is
x = [6, 2,

√
2, 1]>.

So the stable population is in the ratio 6 : 2 : 1.414 : 1. For example, if there
are one million insects in the colony, then we expect roughly 576,136 newborns,
192,045 one-year-olds, 135,796 two-year-olds and 96,023 adult (age at least 3)
females.

3.) Exercise #T.6 on page 355

Solution: We are given that An×n is nilpotent and we are asked to show that
zero is the only eigenvalue of A. Indeed, suppose λ is any eigenvalue of A. Then
there exists a non-zero vector x such that Ax = λx. Suppose now that Ak = O
for some positive integer k. Now we compute

Akx = Ak−1(Ax) = λAk−1x = λ2Ak−2x = · · · = λk−1Ax = λkx.

But Akx = Ox = 0. So we have

0 = λkx

with x 6= 0, forcing λk = 0. This shows that every eigenvalue λ of A satisfies
λ = 0.
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4.) Let

A =

 3 1 1
1 3 1
1 1 3

 .
(a) Find all eigenvalues of A.

Solution: We compute fA(λ) = det(A− λI):

fA(λ) =

∣∣∣∣∣∣
3− λ 1 1

1 3− λ 1
1 1 3− λ

∣∣∣∣∣∣ = −(λ− 5)(λ− 2)2.

So the eigenvalues of A are 5, 2 and 2.

(b) Exhibit two different bases for R3 consisting solely of eigenvectors for A.

Solution: We need a basis for nullspace(A−λI) for each eigenvalue λ. For λ = 5,
we have

A− 5I =

 −2 1 1
1 −2 1
1 1 −2

 ∼
 1 0 −1

0 1 −1
0 0 0


. So this eigenspace has dimension one and a basis is S5 =

{
(1, 1, 1)>

}
.

For λ = 2, we have

A− 2I =

 1 1 1
1 1 1
1 1 1

 ∼
 1 1 1

0 0 0
0 0 0


. So this eigenspace has dimension two and a basis is S2 =

{
(−1, 1, 0)>, (−1, 0, 1)>

}
.

Putting these together, we obtain our first basis for R3:

S =


 1

1
1

 ,
 −1

1
0

 ,
 −1

0
1

 .

There are many ways to transform this into a second basis. I’d like to choose an
orthonormal basis, i.e., a basis of pairwise orthogonal unit vectors. To do this,
I’ll use the Gram-Schmidt procedure of Section 6.8. We obtain

T =

 1√
3

 1
1
1

 , 1√
2

 −1
1
0

 , 1√
3

 −1
−1

1

 .
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