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Sample Solutions – Assignment 5

1.) Exercise #14 on page 250.

Solution:

(a) I claim that the set of all n× n symmetric matrices form a subspace of the vector space
Mnn. First I note that this set is not empty since the 0 matrix is symmetric. Now I need
only verify closure under addition and scalar multiplication.

Let A and B be symmetric n × n matrices. Then, by definition, A> = A and B> = B.
We use the appropriate theorem from Chapter 1:

(A+B)> = A> +B> = A+B

showing that A+B is symmetric. So this set is closed under addition. Similarly, Chapter 1
tells us that (cA)> = cA> for any scalar c. So if A> = A and c is any real number, we have

(cA)> = cA> = cA

showing that cA is symmetric. This verifies closure under scalar multiplication.

(b) One way to see that the set of non-singular matrices is not a subspace of Mnn is to
note that the zero matrix is singular. We know that any subspace of a vector space V must
contain the zero vector of V . But in this case, that fails. So this cannot be a subspace.

(c) [Sorry, I recalled the problem incorrectly:] We will show that the set of all n× n
skew symmetric matrices form a subspace of the vector space Mnn. First note that the zero
matrix O is skew symmetric, so this set is nonempty.

Let A and B be skew symmetric n × n matrices. Then, by definition, A> = −A and
B> = −B. We again use the theorems from Chapter 1:

(A+B)> = A> +B> = −A+ (−B) = −(A+B)

showing that A+ B is skew symmetric. So condition (α) holds. Similarly, if A> = −A and
c is any real number, we have

(cA)> = cA> = c(−A) = −(cA)

showing that cA is skew symmetric. This verifies condition (β).

2.) Exercise #T.8 on page 251.
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Solution: Let A be an m × n matrix. The set W of all vectors x in Rn such that Ax 6= 0
is not a subspace of Rn. One quick way to see this is to note that A0 = 0 so that this set
does not contain the zero vector. But any subspace of Rn must contain 0.

3.) Exercise #12 on page page 261.

Solution:

(a) We are given the vectors p1(t) = t2 + 1, p2(t) = t − 2, p3(t) = t + 3 in vector space P2

and must decide whether or not they are dependent. We set up the equation

c1p1(t) + c2p2(t) + c3p3(t) = 0

where 0 = 0t2 + 0t + 0 is the zero vector in P2. Two polynomials are equal only when
all corresponding coefficients are equal. So we obtain a system of three equations in three
unknowns: and have

c1 = 0
c2 + c3 = 0

c1 − 2c2 + 3c3 = 0

Solving this system by Gauss-Jordan elimination, we find it has unique solution c1 = c2 =
c3 = 0. Thus the given vectors are linearly independent.

(b) Similar to the previous part, we set up an equation of the form

c1p1(t) + c2p2(t) + c3p3(t) = 0

and have
2c1 + c2 = 0

c3 = 0
c1 + 3c2 = 0

We get only one solution: c1 = c2 = c3 = 0. Thus the given vectors are linearly independent.

(c) Again, we write down our generic equation and, using these vectors, we get the system

3c2 + 2c3 = 0
3c1 + c3 = 0
c1 + c2 + c3 = 0

By elimination, we obtain
3c2 + 2c3 = 0

c1 + c2 + c3 = 0

a homogeneous system of two equations in three unknowns. So we know that a nontrivial
solution exists. So the given vectors are linearly dependent. One non-trivial solution is

c1 = 1, c2 = 2, c3 = −3

which means
p1(t) + 2p2(t)− 3p3(t) = 0
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So we can write
p1(t) = −2p2(t) + 3p3(t)

(d) Using the same approach, we obtain the system

c1 + 5c2 + 3c3 = 0
− 5c2 − 5c3 = 0

−4c1 − 6c2 + 2c3 = 0

By Gauss-Jordan elimination, we obtain

c1 − + 2c3 = 0
c2 + c3 = 0

So we know that a nontrivial solution exists. So the given vectors are linearly dependent.
One non-trivial solution is

c1 = 2, c2 = −1, c3 = 1

which means
2p1(t)− p2(t) + p3(t) = 0

So,
p2(t) = 2p1(t) + p3(t)

4.) Exercise #T.2 on page 262.

Proof: Throughout, assume
S1 = {v1,v2, . . . ,vk}

and
S2 = {v1,v2, . . . ,v`}

for some ` ≥ k.

(a) Assume that S1 is a linearly dependent set. Then there exist scalars c1, c2, . . . , ck
not all zero such that

c1v1 + c2v2 + · · ·+ ckvk = 0

in vector space V . Now define scalars c′1, c
′
2, . . . , c

′
` by

c′j =

{
cj, if 1 ≤ j ≤ k;
0, if k < j ≤ `.

Then we have

c′1v1 + c′2v2 + · · ·+ c′`v` =

c′1v1 + · · ·+ c′kvk + c′k+1vk+1 + · · ·+ c′`v` =

c1v1 + · · ·+ ckvk + 0vk+1 + · · ·+ 0v` =

c1v1 + · · ·+ ckvk = 0
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Since some of the c′j values are non-zero (namely at least one in the range 1 ≤ j ≤ k, as
given), this shows that S2 is a linearly dependent set.

(b) [This statement is the contrapositive of the previous one. So logically it is equivalent to
part (a) and a separate proof is not needed. But we give one anyway.]

Assume that S2 is a linearly independent set. Now suppose c1, c2, . . . , ck are any scalars
such that

c1v1 + c2v2 + · · ·+ ckvk = 0.

Now define scalars c′1, c
′
2, . . . , c

′
` by

c′j =

{
cj, if 1 ≤ j ≤ k;
0, if k < j ≤ `.

Then we have

c′1v1 + c′2v2 + · · ·+ c′`v` =

c′1v1 + · · ·+ c′kvk + c′k+1vk+1 + · · ·+ c′`v` =

c1v1 + · · ·+ ckvk + 0vk+1 + · · ·+ 0v` =

c1v1 + · · ·+ ckvk = 0

But S2 is independent! So all of the c′j are equal to zero, including not only the ones we
chose to be zero, but also the unknown constants c1, . . . , ck. I.e., given any c1, . . . , ck which
yield

c1v1 + c2v2 + · · ·+ ckvk = 0

we have shown that c1 = c2 = · · · = ck = 0 is forced. That is, we have shown that S1 is a
linearly independent set.
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