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Sample Solutions – Assignment 2

Problem 1(a): The DCW company produces three models with resources and profits summarized as follows:
Model: P1 P2 P3 Total Resource Avail.
Steel per unit 2 2 1 1800
Plastic per unit 3 1 1 1500
Profit per unit $150 $110 $60

We must first determine all possible production schedules which fully utilize the two resources.

Solution: Let us say that x1 units of P1 are to be produced, x2 units of P2 and x3 units of P3. The
conditions that the resources are fully utilized lead to the following system of equations:

2x1 + 2x2 + x3 = 1800
3x1 + x2 + x3 = 1500

We apply the method of elimination: subtracting the first equation from the second to obtain x1−x2 = −300;
subtracting 2 times the second equation from the first to obtain −4x1 − x3 = −1200. We transform those
equations and get:

x1 = r

x2 = r + 300
x3 = 1200− 4r

where r can be any real number. But the application forces us to consider only solutions [x1, x2, x3] with all
entries greater than or equal to zero. So we find

0 ≤ r ≤ 300.

In summary, any x1, x2, x3 which satisfy the problem’s requirements are described by these equations with
r in the given range.

(b) Among the solutions found in part (a), which production schedule will maximize profit?

Solution: Let w denote the profit we can obtain from a given production schedule [x1, x2, x3]. Then

w = 150x1 + 110x2 + 60x3,

which we can write entirely in terms of our free parameter r:

w = 105, 000 + 20r.

This is our profit, in dollars. So we clearly want to make r as large as possible. Keeping the real-world
problem in mind, we choose r = 300. Here is the optimum production schedule:

Model P1 P2 P3 Total
Units produced 300 600 0 900
Steel used 600 1200 0 1800
Plastic used 900 600 0 1500
Profit $45,000 $66,000 $0 $111,000

Problem 2(a): Find all values of r for which the matrix A =

 r 3 3
3 r 3
3 3 r

 is singular.
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Solution: We compute

det(A) = r3 + 27 + 27− 9r − 9r − 9r = r3 − 27r + 54 = (r + 6)(r − 3)2.

So A is singular (non-invertible) if and only if its determinant is zero, i.e., if and only if r = −6 or r = 3.

(b) For all other values of r, compute A−1.

Solution: (a) To find all value of r for which the matrix

 r 3 3
3 r 3
3 3 r

 is singular, we need to do the fol-

lowing basic operations on A:

Adding the second and third rows to the first row to obtain:

 r + 6 r + 6 r + 6
3 r 3
3 3 r

 Multiply the first row

by 1
r+6 to get:

 1 1 1
3 r 3
3 3 r

. Adding (−3) times the first row to the second row and third row to obtain: 1 1 1
0 r − 3 0
0 0 r − 3

. Multiply the second row and the third row by 1
r−3 to get:

 1 1 1
0 1 0
0 0 1

.

Finally we obtain I3. So when r 6= 3, r 6= −6, the matrix A is row equivalent to I3, which denotes A is
nonsingular. When r = 3orr = −6, matrix A is singular.

(b) Step1. We row reduce the 3× 6 matrix

[A|I3] =

 r 3 3 1 0 0
3 r 3 0 1 0
3 3 r 0 0 1

 .
To avoid a mess, we will supress all divisions until the end of the row reduction algorithm. We get Adding
the second and third rows to the first row to obtain:

[A|I] ∼

 r 3 3 1 0 0
0 r2 − 9 3(r − 3) −3 r 0
0 3(r − 3) r2 − 9 −3 0 r

 r ·R2− 3 ·R1
r ·R3− 3 ·R1

Multiply the first row by 1
r+6 to get:  1 1 1 1

r+6
1
r+6

1
r+6

3 r 3 0 1 0
3 3 r 0 0 1

 .
Adding (−3) times the first row to the second row and third row to obtain: 1 1 1 1

r+6
1
r+6

1
r+6

0 r − 3 0 −3
r+6 1 + −3

r+6
−3
r+6

0 0 r − 3 −3
r+6

−3
r+6 1 + −3

r+6

 .
Multiply the second row and the third row by 1

r−3 to get: 1 1 1 1
r+6

1
r+6

1
r+6

0 1 0 −3
(r+6)(r−3)

1
r−3 + −3

(r+6)(r−3)
−3

(r+6)(r−3)

0 0 1 −3
(r+6)(r−3)

−3
(r+6)(r−3)

1
r−3 + −3

(r+6)(r−3)

 .
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Finally we obtain 1 0 0 1
r+6 + 6

(r+6)(r−3)
1
r+6 + 6

(r+6)(r−3) −
1
r−3

1
r+6 + 6

(r+6)(r−3) −
1
r−3

0 1 0 −3
(r+6)(r−3)

1
r−3 + −3

(r+6)(r−3)
−3

(r+6)(r−3)

0 0 1 −3
(r+6)(r−3)

−3
(r+6)(r−3)

1
r−3 + −3

(r+6)(r−3)

 .
Step3: since C = I3, we conclude D = A−1. Hence

A−1 =


1
r+6 + 6

(r+6)(r−3)
1
r+6 + 6

(r+6)(r−3) −
1
r−3

1
r+6 + 6

(r+6)(r−3) −
1
r−3

−3
(r+6)(r−3)

1
r−3 + −3

(r+6)(r−3)
−3

(r+6)(r−3)
−3

(r+6)(r−3)
−3

(r+6)(r−3)
1
r−3 + −3

(r+6)(r−3)

 =


r+3

(r+6)(r−3)
−3

(r+6)(r−3)
−3

(r+6)(r−3)
−3

(r+6)(r−3)
r+3

(r+6)(r−3)
−3

(r+6)(r−3)
−3

(r+6)(r−3)
−3

(r+6)(r−3)
r+3

(r+6)(r−3)



Problem T.27 on page 89. We find square roots of three matrices and show that this is impossible for a
fourth.

Solution:
(a) We are given

B =
[

1 1
0 1

]
and we seek a 2× 2 matrix A which satisfies A2 = B. Let’s write

A =
[
a b
c d

]
.

Then our requirement is

A2 =
[
a2 + bc ab+ bd
ac+ cd bc+ d

]
= B =

[
1 1
0 1

]
from which we obtain a nonlinear system:

a2 + bc = 1
b(a+ d) = 1
c(a+ d) = 0
bc+ d2 = 1

Now it is useful to remember that we need only find ONE square root. (We were not asked to find all
solutions.) So we try c = 0 and our equations reduce to

a2 = 1, b(a+ d) = 1, d2 = 1.

So a = d = ±1 and b = ± 1
2 . So here is a square root of the given matrix B:

A =
[

1 1
2

0 1

]
.

(b) We are given

B =

 1 0 0
0 0 0
0 0 0

 .
We try to make the problem simpler by first seeing if there is a matrix A with plenty of zero entries which
satisfies A2 = B. And indeed, our first attempt is successful:

A =

 a 0 0
0 0 0
0 0 0

 yields A2 =

 a2 0 0
0 0 0
0 0 0

 .
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So we find two square roots of B having this special form, namely

A =

 ±1 0 0
0 0 0
0 0 0

 .
(c) Clearly I2 = I, so I itself is a square root of the identity matrix I. But here is another one:

A =


−1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −1

 .
(This is a type of reflection. There are many other “mirrors” about which we can reflect in 4-space. Here’s
another square root of I4:

A =


−1 0 0 0
0 0 0 1
0 0 −1 0
0 1 0 0

 .
Of course, most square roots of I are not nearly so pretty.)

(d) In this part, we have to be more rigorous. We can’t just say that we cannot find a square root of the

given matrix B =
[

0 1
0 0

]
. We must show that it is impossible for ANYONE to find it.

So, let

A =
[
a b
c d

]
.

Then we need

A2 =
[
a2 + bc b(a+ d)
c(a+ d) bc+ d2

]
=
[

0 1
0 0

]
.

We arrive at system of equations:

a2 + bc = 0
b(a+ d) = 1
c(a+ d) = 0
bc+ d2 = 0

Looking at the second equation, we see that a + d 6= 0. So the third equation tells us that c = 0. Then we
are in trouble because the first equation now forces a = 0 and the last forces d = 0. But we already said
that a+ d = 0 is not healthy for the second equation! That is, we have a contradiction: the matrix A does
not exist.

Problem T.12 on page 65. If u and v are solutions to the linear system Ax = b, then their difference
u− v is a solution to the corresponding homogeneous system Ax = 0.

Solution: Assume u and v are solutions to the linear system Ax = b. That means that

Au = b and Av = b.

We now compute

A(u− v) = Au−Av (Distributive Law)

= b− b (since they are solutions)

= 0

showing that u− v is indeed a solution to the homogeneous system Ax = 0.
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