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1. Exercise #14 on page 304
Solution: (a) To find [v]r, we need to compute constants c1, ¢z and ¢z such that

-1 1 0 1
C1 1 + c2 2 + c3 1 = 3
0 -1 0 8
this equation leads to the linear system whose augmented matrix is:
-1 1 01 10 0| -9
1 2113 |~[0 1 0| -8
0 -1 0| 8 0 0 1 28
We have transformed the augmented matrix to reduced echelon form and we read
off the solution: ¢; = —9, ¢ = —8, ¢3 = 28. So the coordinate vector of v with
respect to the basis T is:
-9
[Vlr=1| -8
28

We find [w]r by the same method: we need to compute constant ¢1, ¢z and c3
such that

-1 1] 0 [ -1
C1 1 + c2 2 + c3 1 = 8
0 | —1 ] 0 | —2
We obtain a linear system whose augmented matrix is:
-1 1 0] —17 1 0 0 3
1 2 1 8[~10 1 0] 2
0 -1 0| -2 | 0 0 1|1
So the coordinate vector of w with respect to the basis T is:
3
[wlr = | 2
1
(b) Suppose we let:
1 -1 0
V1 = 0 V2 = 0 Vg — 1
1 0 2
-1 1 0
W1 = 1 W2 = 2 Wg — 1
0 -1 0

To compute Pg, 7, we find a1, ag, as; b1, b2, b3 and ¢, ¢z, c3 such that
a1Vi + azvy + a3vy = wi

bivi + bavy + b3vy = wy



€1V1 + €2V2 + €3V3 = W3
since the coefficient matrix of all three linear system is [vi vz vg], we can trans-
form the three augmented matrix to reduced row echelon form simultaneously by
transforming the partitioned matrix:

1 -1 0| -1 1]o0
0 0 1| 1] 2|1
1 02| of -1]0

to reduced row echelon form, obtaining:

1 0 0] =2 =5] =27
01 0| -1| —6] -2
|0 0 1 1 2 1|
which implies that the transition matrix from T-basis to the S-basis is:
-2 -5 -2
Ps,7=| -1 -6 -2
1 2 1
(c)
-2 -5 -2 -9 2
[V]s = PS{—T[V]T = -1 -6 -2 -8 = 1
1 2 1 28 3
-2 -5 -2 3 —18
[W]s = Pser[wlr=| -1 —6 -2 3 | =] —17
1 2 1 1 8

(d) Similar to (a), to find [v]s, we need to compute constant ¢1, ¢z and ¢3 such
that

€1Vy1 + 2V +C3V3 =V

this equation leads to the linear system whose augmented matrix is:

1 -1 0] 1
0 0 1] 3
1 0 2| 8

transforming the augmented matrix to reduced echelon form, we obtain the solution:
61:2, 62:1, 0323
so the coordinate vector of v with respect to the basis T is:

2
[V]S = ].
3

which is the same as result from (c).

To find [w]s, we need to compute constant ¢1, ¢ and ¢z such that

€1V1 + C2Vy +¢c3V3 =W



this equation leads to the linear system whose augmented matrix is:

1 -1 0] -1
0 0 1 8
1 0 2| -2

transforming the augmented matrix to reduced echelon form, we obtain the solution:
Cc1 :—18, 622—17, 03:8

so the coordinate vector of w with respect to the basis T is:

—18
[W]s = —17
8
which is also the same as result from (c).
(e) By Theorem 6.15:
2 -5 —21°"! 2 1 -2
Qres=P3lp,=| -1 -6 -2 = -1 0 -2
1 2 1 4 -1 7
(f)
-2 1 -2 2 -9
[Vlr = Qreslvls=| -1 0 -2 1|=] -8
4 -1 7 3 28
-2 1 -2 —18 3
[wlr = Qresiwls=| -1 0 -2 -17 | =12
4 -1 7 8 1

So the answers are the same as those of (a).

2 Suppose A is a 4 x 4 matrix with eigenvalues 4, 3, 2, 1.
Solution: (a) Suppose A is a eigenvalue of A, we have Ax = Ax, Then (54)x =
5(Ax) = (5A)x. So 5] is a eigenvalue of 5A. In our case, the eigenvalues of 54 are
20,15,10 and 5.

(b) Suppose A is any eigenvalue of A and x is an associated eigenvector. We
have Ax = Ax, Then

A’x = (AA)x = A(4x = A(Dx) = M Ax = X*x.
So A% is a eigenvalue of A%. In our case, the eigenvalue of A? are 16,9,4 and 1.
(b) Since (AI — A)T = AT — AT = X\ — AT, we have det(A\] — A) = det(M\] — AT).

That is A and A7 have the same characteristic polynomial. So A and AT have the
same eigenvalues. In our case, the eigenvalue of AT are 4,3,2,1.



4 2
3LetA:[2 1:|

Solution: (a) The characteristic polynomial of 4 is:
f(A) =A% —=5) = X(A - 5)
The eigenvalue of A are then: A; =0, A; = 5.

To find the eigenvector x; associated with A; = 0, we form the system

(0.[2 - A)x =0

i

or
A solution is

for any real number r. thus for r = 2,

<[]

is an eigenvector of A associated with A; = 0.

To find the eigenvector x; associated with Ay = 5, we form the system

(5.[2 - A)x =0
1 -2 Ty _ 0
-2 -4 Lo o 0
2r
r
for any real number r. thus for » = 1,

w=[1]

is an eigenvector of A associated with Az = 5.

or

A solution is

(b) Since the eigenvectors

e [4] e

are linearly independent. Hence A is diagonalizable. Here

-1 2 [ -02 04
P—[ 2 1] and P —[ 0.4 0.2]

rrar=| Tt 02 1) 2 1)

() We see that A% has eigenvalues 0 and 5°. The associated eigenvectors are

Thus



the same as for A:

then we have:
_1,45p _ | —0.2 0.4 s| -1 2] _ |10 0] _
S i P Rl B P B

that is,

s orooi [ —1 27[0 0][—02 047 [ 2500 1250
A*=FPDP —[ 2 1”0 55H 0.4 0.2]—[1250 625]

-1 1
4 Let vi = 1 and vo= ] 1
0 1

Solution: (a) Since A is a symmetric matrix, there exists an invertible ma-
trix P such that P~'AP = D, where D is a diagonal matrix and the eigenvalues of
A lie on the main diagonal of D. Moreover, we know that eigenvectors associated to
distinct eigenvalues are orthogonal. Now we have already known 2 eigenvectors of

A, we can easily calculate another eigenvector v4 = [1 1 —2] which is orthogonal
to vy and vy. This gives us
-1 1 1 -1 0 0
P = 11 1 and we have D= 0 1 0
0 1 -2 0 0 A
where we have denoted the remaining eigenvalue by A. We have:
1 -3 3 0
Pl = sl 22 2
11 =2
and then

(=1+2)  (5+2A) 2(1-2)
A=PDP ' =—1| (5+X) (-1+2A) 2(1-2x)
2(1—2) 2(1—2) 2(1+2))

This is the general form for A and, again, the remaining eigenvalue is .
(b) Since if A is a symmetric matrix, then eigenvectors that are associated with

distinct eigenvalues of A are orthogonal. But we know that v; and wy are not
orthogonal, so there is no such symmetric matrix.



