Linear Algebra
C Term, Sections C01-C04
W. J. Martin
February 13, 2002

Sample Solutions – Assignment 5

1. Exercise #12 on page 261
Solution: (a) Since considering \(\{t^2 + 1, t - 2, t + 3\} \) are linearly dependent or not is equivalent as considering the vectors \(\mathbf{v}_1 = (1, 0, 1) \), \(\mathbf{v}_2 = (0, 1, -2) \) and \(\mathbf{v}_3 = (0, 1, 3) \) are linearly dependent or not.
So we form the equation:

\[
c_1 \mathbf{v}_1 + c_2 \mathbf{v}_2 + c_3 \mathbf{v}_3 = 0
\]

and solve for \(c_1, c_2 \) and \(c_3 \). The resulting homogeneous system has only the trivial solution \(c_1 = c_2 = c_3 = 0 \), showing the given vectors are linearly independent. Hence \(\{t^2 + 1, t - 2, t + 3\} \) is linearly independent.

(b) Similarly, in order to know \(\{2t + 1, t^2 + 3, t\} \) are linearly dependent or not, we consider the vectors \(\mathbf{v}_1 = (2, 0, 1) \), \(\mathbf{v}_2 = (1, 0, 3) \) and \(\mathbf{v}_3 = (0, 1, 0) \) are linearly dependent or not.
So we form the equation:

\[
c_1 \mathbf{v}_1 + c_2 \mathbf{v}_2 + c_3 \mathbf{v}_3 = 0
\]

and solve for \(c_1, c_2 \) and \(c_3 \). Also the resulting homogeneous system has only the trivial solution \(c_1 = c_2 = c_3 = 0 \), showing that the vectors are linearly independent. Hence \(\{2t^2 + 1, t^2 + 3, t\} \) is linearly independent.

(c) Given \(\{3t + 1, 3t^2 + 1, 2t^2 + t + 1\} \), we consider the vectors \(\mathbf{v}_1 = (0, 3, 1) \), \(\mathbf{v}_2 = (1, 0, 3) \) and \(\mathbf{v}_3 = (2, 1, 1) \) are linearly dependent or not.
So we form the equation:

\[
c_1 \mathbf{v}_1 + c_2 \mathbf{v}_2 + c_3 \mathbf{v}_3 = 0
\]

and solve for \(c_1, c_2 \) and \(c_3 \). The resulting homogeneous system has infinitely many solutions. A particular solution is \(c_1 = \frac{1}{3}, c_2 = \frac{2}{3}, c_3 = -1 \). Or we can write \(2t^2 + t + 1 = \frac{1}{3}(3t + 1) + \frac{2}{3}(3t^2 + 1) \). Hence \(\{2t^2 + 1, t^2 + 3, t\} \) is linearly dependent.

(d) Given \(\{t^2 - 4, 5t^2 - 5t - 6, 3t^2 - 5t + 2\} \), we consider the vectors \(\mathbf{v}_1 = (1, 0, -4) \), \(\mathbf{v}_2 = (5, -5, 6) \) and \(\mathbf{v}_3 = (3, -5, 2) \) are linearly dependent or not.
So we form the equation:

\[
c_1 \mathbf{v}_1 + c_2 \mathbf{v}_2 + c_3 \mathbf{v}_3 = 0
\]

and solve for \(c_1, c_2 \) and \(c_3 \). The resulting homogeneous system has only the trivial solution \(c_1 = c_2 = c_3 = 0 \), showing that the vectors are linearly independent. Hence \(\{t^2 - 4, 5t^2 - 5t - 6, 3t^2 - 5t + 2\} \) is linearly independent.

2. Exercise #14 on page 262
Solution: (a) Since \(\sin t \) can’t be written as \(\sin t = k \cos t \) and the unbounded function \(e^t \) can’t be written as the linear combination of bounded functions \(\sin t \) and \(\cos t \). So by Theorem 6.4, \(\{\cos t, \sin t, e^t\} \) is linearly independent.

(b) Since \(e^t \) can’t be written as \(e^t = kt \) and the bounded function \(\sin t \) can’t
be written as the linear combination of unbounded functions \(t \) and \(e^t \). So by Theorem 6.4, \(\{t, e^t, \sin t\} \) is linearly independent.

(c) Since \(t \) can't be written as \(t = kt^2 \) and the function \(e^t \) can't be written as the linear combination of functions \(t^2 \) and \(t \). So by Theorem 6.4, \(\{t^2, t, e^t\} \) is linearly independent.

(d) Since \(\cos 2t \) can be written as \(\cos^2 t - \sin^2 t \). So \(\{\cos^2 t, \sin^2 t, \cos 2t\} \) is linearly dependent.

3. Exercise #14 on page 273

Solution: Step 1. Since
\[
\begin{bmatrix}
1 & 1 \\
1 & 1 \\
1 & 1
\end{bmatrix}
= \begin{bmatrix}
1 & 0 \\
0 & 1 \\
0 & 1
\end{bmatrix}
+ \begin{bmatrix}
0 & 1 \\
1 & 0 \\
1 & 1
\end{bmatrix}
\]
We can delete \(\begin{bmatrix}
1 & 0 \\
0 & 1 \\
0 & 1
\end{bmatrix} \) from \(S \), getting the subset \(S_1=\left\{ \begin{bmatrix}
1 & 0 \\
0 & 1 \\
0 & 1
\end{bmatrix}, \begin{bmatrix}
0 & 1 \\
1 & 0 \\
1 & 1
\end{bmatrix}, \begin{bmatrix}
-1 & 1 \\
1 & -1
\end{bmatrix} \right\} \), which also spans \(W \).

Step 2. Since
\[
\begin{bmatrix}
-1 & 1 \\
1 & -1
\end{bmatrix}
= (-1) \begin{bmatrix}
1 & 0 \\
0 & 1
\end{bmatrix}
+ \begin{bmatrix}
0 & 1 \\
1 & 0
\end{bmatrix}
\]
We can delete \(\begin{bmatrix}
-1 & 1 \\
1 & -1
\end{bmatrix} \) from \(S_1 \), getting the subset \(S_2=\left\{ \begin{bmatrix}
1 & 0 \\
0 & 1 \\
0 & 1
\end{bmatrix}, \begin{bmatrix}
0 & 1 \\
1 & 0
\end{bmatrix} \right\} \), which also spans \(W \).

Step 3. Since now \(S_2=\left\{ \begin{bmatrix}
1 & 0 \\
0 & 1 \\
0 & 1
\end{bmatrix}, \begin{bmatrix}
0 & 1 \\
1 & 0
\end{bmatrix} \right\} \) spans \(W \) and is linearly independent. Thus \(S_2 \) is a basis for \(W \).

4. Exercise #T.10 on page 274

Since the number of vectors in \(T \) equals the dimension of \(V \), we have two ways to prove \(T \) is a basis for \(V \).

Proof(1): To prove \(T = \{w_1, w_2, w_3\} \) spans \(V \).

Since \(S = \{v_1, v_2, v_3\} \) is a basis for vector space \(V \). So for any vector \(v \) in \(V \), there is \(c_1, c_2 \) and \(c_3 \) such that \(v = c_1 v_1 + c_2 v_2 + c_3 v_3 \). Let \(k_1 = c_1, k_2 = c_2 - c_1, k_3 = c_3 - c_2 \), we can see that
\[
k_1 w_1 + k_2 w_2 + k_3 w_3 = c_1 (v_1 + v_2 + v_3) + (c_2 - c_1) (v_2 + v_3) + (c_3 - c_2) v_3
= c_1 v_1 + c_2 v_2 + c_3 v_3 = v.
\]
So \(T = \{w_1, w_2, w_3\} \) spans \(V \) and is a basis for \(V \).

Proof(2): To prove \(T = \{w_1, w_2, w_3\} \) is linearly independent.

Suppose there is \(k_1, k_2, k_3 \) such that \(k_1 w_1 + k_2 w_2 + k_3 w_3 = 0 \) and \(k_1, k_2, k_3 \) not all equal to 0. Then we have:
\[
k_1 w_1 + k_2 w_2 + k_3 w_3 = k_1 (v_1 + v_2 + v_3) + k_2 (v_2 + v_3) + k_3 v_3
= k_1 v_1 + (k_1 + k_2) v_2 + (k_1 + k_2 + k_3) v_3 = 0
\]
Since \(k_1, k_2, k_3 \) not all equal to 0, so \(k_1, (k_1 + k_2) \) and \((k_1 + k_2 + k_3) \) can't all equal to 0. But this contradicts the fact that \(S = \{v_1, v_2, v_3\} \) is linearly independent. That is, such \(k_1, k_2 \) and \(k_3 \) don't exist. So \(T = \{w_1, w_2, w_3\} \) is linearly independent and is a basis for \(V \).