

Sample Solutions – Assignment 5

1. Exercise #12 on page 261

Solution: (a) Since considering $\{t^2 + 1, t - 2, t + 3\}$ are linearly dependent or not is equivalent as considering the vectors $\mathbf{v}_1 = (1, 0, 1)$, $\mathbf{v}_2 = (0, 1, -2)$ and $\mathbf{v}_3 = (0, 1, 3)$ are linearly dependent or not.

So we form the equation:

$$c_1\mathbf{v}_1 + c_2\mathbf{v}_2 + c_3\mathbf{v}_3 = \mathbf{0}$$

and solve for c_1, c_2 and c_3 . The resulting homogeneous system has only the trivial solution $c_1 = c_2 = c_3 = 0$, showing the given vectors are linearly independent. Hence $\{t^2 + 1, t - 2, t + 3\}$ is linearly independent.

(b) Similarly, in order to know $\{2t^2 + 1, t^2 + 3, t\}$ are linearly dependent or not, we consider the vectors $\mathbf{v}_1 = (2, 0, 1)$, $\mathbf{v}_2 = (1, 0, 3)$ and $\mathbf{v}_3 = (0, 1, 0)$ are linearly dependent or not.

So we form the equation:

$$c_1\mathbf{v}_1 + c_2\mathbf{v}_2 + c_3\mathbf{v}_3 = \mathbf{0}$$

and solve for c_1, c_2 and c_3 . Also the resulting homogeneous system has only the trivial solution $c_1 = c_2 = c_3 = 0$, showing that the vectors are linearly independent. Hence $\{2t^2 + 1, t^2 + 3, t\}$ is linearly independent.

(c) Given $\{3t + 1, 3t^2 + 1, 2t^2 + t + 1\}$, we consider the vectors $\mathbf{v}_1 = (0, 3, 1)$, $\mathbf{v}_2 = (3, 0, 1)$ and $\mathbf{v}_3 = (2, 1, 1)$ are linearly dependent or not.

So we form the equation:

$$c_1\mathbf{v}_1 + c_2\mathbf{v}_2 + c_3\mathbf{v}_3 = \mathbf{0}$$

and solve for c_1, c_2 and c_3 . The resulting homogeneous system has infinitely many solutions. A particular solution is $c_1 = \frac{1}{3}, c_2 = \frac{2}{3}, c_3 = -1$. Or we can write $2t^2 + t + 1 = \frac{1}{3}(3t + 1) + \frac{2}{3}(3t^2 + 1)$. Hence $\{2t^2 + 1, t^2 + 3, t\}$ is linearly dependent.

(d) Given $\{t^2 - 4, 5t^2 - 5t - 6, 3t^2 - 5t + 2\}$, we consider the vectors $\mathbf{v}_1 = (1, 0, -4)$, $\mathbf{v}_2 = (5, -5, 6)$ and $\mathbf{v}_3 = (3, -5, 2)$ are linearly dependent or not.

So we form the equation:

$$c_1\mathbf{v}_1 + c_2\mathbf{v}_2 + c_3\mathbf{v}_3 = \mathbf{0}$$

and solve for c_1, c_2 and c_3 . The resulting homogeneous system has only the trivial solution $c_1 = c_2 = c_3 = 0$, showing that the vectors are linearly independent. Hence $\{t^2 - 4, 5t^2 - 5t - 6, 3t^2 - 5t + 2\}$ is linearly independent.

2. Exercise #14 on page 262

Solution: (a) Since $\sin t$ can't be written as $\sin t = k \cos t$ and the unbounded function e^t can't be written as the linear combination of bounded functions $\sin t$ and $\cos t$. So by Theorem 6.4, $\{\cos t, \sin t, e^t\}$ is linearly independent.

(b) Since e^t can't be written as $e^t = kt$ and the bounded function $\sin t$ can't

be written as the linear combination of unbounded functions t and e^t . So by Theorem 6.4, $\{t, e^t, \sin t\}$ is linearly independent.

(c) Since t can't be written as $t = kt^2$ and the function e^t can't be written as the linear combination of functions t^2 and t . So by Theorem 6.4, $\{t^2, t, e^t\}$ is linearly independent.

(d) Since $\cos 2t$ can be written as $\cos^2 t - \sin^2 t$. So $\{\cos^2 t, \sin^2 t, \cos 2t\}$ is linearly dependent.

3. Exercise #14 on page 273

Solution: Step 1. Since $\begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} + \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$ We can delete $\begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$ from S , getting the subset $S_1 = \left\{ \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}, \begin{bmatrix} -1 & 1 \\ 1 & -1 \end{bmatrix} \right\}$, which also spans W

Step 2. Since $\begin{bmatrix} -1 & 1 \\ 1 & -1 \end{bmatrix} = (-1) \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} + \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$ We can delete $\begin{bmatrix} -1 & 1 \\ 1 & -1 \end{bmatrix}$ from S_1 , getting the subset $S_2 = \left\{ \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \right\}$, which also spans W

Step 3. Since now $S_2 = \left\{ \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \right\}$ spans W and is linearly independent. Thus S_2 is a basis for W .

4. Exercise #T.10 on page 274

Since the number of vectors in T equals the dimension of V , We have two ways to prove T is a basis for V .

Proof(1): To prove $T = \{\mathbf{w}_1, \mathbf{w}_2, \mathbf{w}_3\}$ spans V .

Since $S = \{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\}$ is a basis for vector space V . So for any vector \mathbf{v} is V , there is c_1, c_2 and c_3 such that $\mathbf{v} = c_1\mathbf{v}_1 + c_2\mathbf{v}_2 + c_3\mathbf{v}_3$. Let $k_1 = c_1, k_2 = c_2 - c_1, k_3 = c_3 - c_2$, we can see that

$$\begin{aligned} k_1\mathbf{w}_1 + k_2\mathbf{w}_2 + k_3\mathbf{w}_3 &= c_1(\mathbf{v}_1 + \mathbf{v}_2 + \mathbf{v}_3) + (c_2 - c_1)(\mathbf{v}_2 + \mathbf{v}_3) + (c_3 - c_2)\mathbf{v}_3 \\ &= c_1\mathbf{v}_1 + c_2\mathbf{v}_2 + c_3\mathbf{v}_3 = \mathbf{v}. \end{aligned}$$

So $T = \{\mathbf{w}_1, \mathbf{w}_2, \mathbf{w}_3\}$ spans V and is a basis for V

Proof(2): To prove $T = \{\mathbf{w}_1, \mathbf{w}_2, \mathbf{w}_3\}$ is linearly independent.

Suppose there is k_1, k_2, k_3 such that $k_1\mathbf{w}_1 + k_2\mathbf{w}_2 + k_3\mathbf{w}_3 = \mathbf{0}$ and k_1, k_2, k_3 not all equal to 0. Then we have:

$$\begin{aligned} k_1\mathbf{w}_1 + k_2\mathbf{w}_2 + k_3\mathbf{w}_3 &= k_1(\mathbf{v}_1 + \mathbf{v}_2 + \mathbf{v}_3) + k_2(\mathbf{v}_2 + \mathbf{v}_3) + k_3\mathbf{v}_3 \\ &= k_1\mathbf{v}_1 + (k_1 + k_2)\mathbf{v}_2 + (k_1 + k_2 + k_3)\mathbf{v}_3 = \mathbf{0} \end{aligned}$$

Since k_1, k_2, k_3 not all equal to 0, so $k_1, (k_1 + k_2)$ and $(k_1 + k_2 + k_3)$ can't all equal to 0. But this contradicts the fact that $S = \{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\}$ is linearly independent. That is, such k_1, k_2 and k_3 don't exist. So $T = \{\mathbf{w}_1, \mathbf{w}_2, \mathbf{w}_3\}$ is linearly independent and is a basis for V .