

Linear Algebra
 C Term, Sections C01-C04
 W. J. Martin
 February 6, 2002

Sample Solutions – Assignment 4

1. Exercise #22 on page 236

Soluton: Since the desired plane is parallel with the plane $-2x + 4y - 5z + 6 = 0$, so it has a normal $\mathbf{n} = (-2, 4, -5)$. Also we know that it passes through the point $(2, 4, -3)$. Thus, an equation for the desired plane is:

$$-2(x - 2) + 4(y - 4) - 5(z + 3) = 0$$

Simplifng this, we have the equation

$$-2x + 4y - 5z - 27 = 0$$

2. Exercise #6 on page 250

Soluton: 6(a) Since $a_1 = 0$ and $a_0 = 0$, every polynomial in the set has the form $p(t) = at^2$ where a is some real number. Consider $p(t) = at^2$ and $q(t) = bt^2$. Then $p(t) + q(t) = (a + b)t^2$ is in the set since its linear and constant terms have coefficient zero. Also, if k is a scalar, then $kp(t) = (ka)t^2$ is in the same set. Hence the set of all polynomials $a_2t^2 + a_1t + a_0$ having $a_1 = a_0 = 0$ is a subspace of P_2 .

6(b) Since $a_1 = 2a_0$, we may write any polynomial $p(t)$ in the set as $p(t) = a_2t^2 + 2a_0t + a_0$. Consider $p(t) = 2a_0t^2 + 2a_0t + a_0$ and $q(t) = b_2t^2 + 2b_0t + b_0$. Then $p(t) + q(t) = (a_2 + b_2)t^2 + 2(a_0 + b_0)t + (a_0 + b_0)$ is in the same set as its coefficients clearly satisfy the same relationship. Also, if k is a scalar, then $kp(t) = (ka_2)t^2 + 2(ka_0)t + ka_0$ is in the specified subset. Hence the set of all polynomials (of degree at most 2) having $a_1 = 2a_0$ is a subspace of P_2 .

6(c) This is not a subspace. Consider for example the polynomials

$$p(t) = t^2 + 2t - 1, \quad q(t) = t + 1.$$

Then both $p(t)$ and $q(t)$ satisfy the given condition as

$$(1 + 2 - 1) = 2, \quad (0 + 1 + 1) = 2.$$

But $p(t) + q(t) = t^2 + 3t$ is not in the set since its coefficients sum to four. This shows that the given set of polynomials is not closed under addition.

3. Exercise #12 on page 250

Soluton: 12(a)

$$\begin{bmatrix} a & b & c \\ d & 0 & 0 \end{bmatrix}, \text{ where } b = a + c$$

Consider

$$\begin{bmatrix} a_1 & b_1 & c_1 \\ d_1 & 0 & 0 \end{bmatrix} + \begin{bmatrix} a_2 & b_2 & c_2 \\ d_2 & 0 & 0 \end{bmatrix} = \begin{bmatrix} a_1 + a_2 & b_1 + b_2 & c_1 + c_2 \\ d_1 + d_2 & 0 & 0 \end{bmatrix}$$

Since $b_1 = a_1 + c_1$ and $b_2 = a_2 + c_2$, so $(b_1 + b_2) = (a_1 + a_2) + (c_1 + c_2)$.
 Also, if k is a scalar,

$$k \begin{bmatrix} a & b & c \\ d & 0 & 0 \end{bmatrix} = \begin{bmatrix} ka & kb & kc \\ kd & 0 & 0 \end{bmatrix}$$

Then $kb = ka + kc$. Hence, the set of all matrices of the form

$$\begin{bmatrix} a & b & c \\ d & 0 & 0 \end{bmatrix} \text{ where } b = a + c$$

is a subspace of M_{23}

12(b) This set **fails** to be a subspace of M_{23} . Consider the vector

$$\mathbf{u} = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 0 & 0 \end{bmatrix}, \text{ where } c = 1 > 0$$

Then, with scalar $k = -1$, we have

$$k\mathbf{u} = (-1) \begin{bmatrix} 1 & 1 & 1 \\ 1 & 0 & 0 \end{bmatrix} = \begin{bmatrix} -1 & -1 & -1 \\ -1 & 0 & 0 \end{bmatrix}$$

with (1, 3)-entry being negative. So $k\mathbf{u}$ is not inside the specified set. Thus the set fails to be closed under scalar multiplication. and is not a subspace of M_{23}

12(c)

$$\begin{bmatrix} a & b & c \\ d & e & f \end{bmatrix}, \text{ where } a = -2c \text{ and } f = 2e + d$$

Let \mathbf{u} and \mathbf{v} be any vectors of this form, say Consider

$$\mathbf{u} = \begin{bmatrix} a_1 & b_1 & c_1 \\ d_1 & e_1 & f_1 \end{bmatrix}, \quad \mathbf{v} = \begin{bmatrix} a_2 & b_2 & c_2 \\ d_2 & e_2 & f_2 \end{bmatrix}.$$

Then

$$\mathbf{u} + \mathbf{v} = \begin{bmatrix} a_1 + a_2 & b_1 + b_2 & c_1 + c_2 \\ d_1 + d_2 & e_1 + e_2 & f_1 + f_2 \end{bmatrix}$$

Since $a_1 = -2c_1$ and $a_2 = -2c_2$, so $(a_1 + a_2) = -2(c_1 + c_2)$.

Since $f_1 = 2e_1 + d_1$ and $f_2 = 2e_2 + d_2$, so $(f_1 + f_2) = 2(e_1 + e_2) + (d_1 + d_2)$

So the vector $\mathbf{u} + \mathbf{v}$ does indeed belong to the set.

Also, if k is any scalar,

$$k\mathbf{u} = \begin{bmatrix} ka_1 & kb_1 & kc_1 \\ kd_1 & ke_1 & kf_1 \end{bmatrix}$$

Observe that, using what we know about \mathbf{u} , we have $ka_1 = k(-2c_1) = -2(kc_1)$ and $kf_1 = k(2e_1 + d_1) = 2(ke_1) + kd_1$. This shows that the set of all such matrices is closed under scalar multiplication. Now we may conclude that this is a subspace.

4. Exercise #T.10 on page 252

Proof: Clearly $W_1 + W_2$ is non-empty as it contains $\mathbf{0} = \mathbf{0} + \mathbf{0}$, noting that $\mathbf{0}$ belongs to both W_1 and W_2 . Let \mathbf{u}, \mathbf{v} be any vectors in $W_1 + W_2$. Then there exist \mathbf{u}_1 and \mathbf{v}_1 in W_1 and \mathbf{u}_2 and \mathbf{v}_2 in W_2 for which

$$\mathbf{u} = \mathbf{u}_1 + \mathbf{u}_2 \quad \text{and} \quad \mathbf{v} = \mathbf{v}_1 + \mathbf{v}_2$$

using the definition of $W_1 + W_2$. Then we have

$$\mathbf{u} + \mathbf{v} = (\mathbf{u}_1 + \mathbf{u}_2) + (\mathbf{v}_1 + \mathbf{v}_2)$$

where $\mathbf{u}_1 + \mathbf{v}_1$ belongs to W_1 and $\mathbf{u}_2 + \mathbf{v}_2$ belongs to W_2 since W_1 and W_2 are subspaces. This shows that $W_1 + W_2$ is closed under vector addition. Similarly, if k is any scalar,

$$k\mathbf{u} = k\mathbf{u}_1 + k\mathbf{u}_2$$

belongs to $W_1 + W_2$ since $k\mathbf{u}_1$ belongs to W_1 and $k\mathbf{u}_2$ belongs to W_2 (these latter two sets being closed under scalar multiplication). Since $W_1 + W_2$ is non-empty and closed under both addition and scalar multiplication, we conclude that it is a subspace of V .