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April 21, 2011

MA197X Problem Set 6

Instructions: Please review the rules on the presentation of assignments in the course.
Then complete the following ten problems and submit the solutions, inside your portfolio
folder, by Thursday, April 28th.

For each of the following problems, first state the problem precisely in English and then
give a proper proof of the statement using English sentences. Be sure to include the correct
problem numbers for recording purposes.

51. For all positive integers n
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4
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9
+ · · ·+ 1

n2
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n
.

[HINT: You may want to use a proof by contradiction in your induction step.]

52. For all positive integers n

1 + 3 + 5 + · · ·+ (2n− 1) = n2.

53. For every positive integer n,
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54. For every positive integer n
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n
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55. For every positive integer n
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In the remaining problems (except the last one), you need to find the theorem before you
search for its proof. Using experimentation with small values of n, first make a conjecture
regarding the outcome for general positive integers n and then prove your conjecture using
induction. (NOTE: The experimentation should be done on scrap paper and is not part of
your formal solution.)

56. Find a simple expression for the sum

1

1 · 2
+

1

2 · 3
+ · · ·+ 1

n · (n + 1)
.

57. For a real number a which is not an integer, simplify

1

a · (a + 1)
+

1

(a + 1) · (a + 2)
+ · · ·+ 1

(a + n− 1) · (a + n)
.

58. What is the largest integer that divides n3+(n+1)3+(n+2)3 for every positive integer
n?

59. Let us call a positive integer n “posh” if it is possible to dissect a square into n smaller
squares. For example, n = 6 and n = 7 are posh while n = 1 and n = 2 are not.
Which natural numbers are posh?

60. The Fibonacci numbers1 are defined by F1 = F2 = 1 and Fn = Fn−1 + Fn−2 for all
n ≥ 3. Find the value of Fn−1Fn+1 − F 2

n for n ≥ 2.

And here are some fun induction and Pigeonhole Principle problems to think about. Do
not turn these in:

61. Simplify 1 + 2 + 4 + · · ·+ 2n.

62. For all positive integers n,

13 + 23 + · · ·+ n3 =

[
n(n + 1)

2

]2

.

63. For every positive integer n, the integer n3 + 5n is divisible by six.

64. If n lines are drawn in the plane so that no two are parallel and no three share a
common point, into how many regions is the plane divided by these lines?

1These numbers were introduced in Year 1202 by Leonardo of Pisa, the son of Bonacci.
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65. Find a relation for F 2
n + F 2

n+1 which holds for all positive integers n.

66. If m|n, then Fm divides Fn. [HINT: Use induction on k = n/m.]

67. Every positive integer can be expressed as a sum of distinct Fibonacci numbers.

68. For every integer n ≥ 4, n! > 2n. [NOTE: This requires a straightforward variation on
the Principle of Mathematical Induction. Please state it — without proof — in your
“Recall” section.]

69. Prove that, if five points are chosen from the interior of an equilateral triangle of side
length two, then some pair of these points lie at a distance of one or less.

70. Prove that, if 51 distinct integers n1, . . . , n51 are chosen from the set {1, 2, . . . , 99},
then some pair of them adds up to 100.

71. Ten children go on an easter egg hunt and find a total of 44 eggs. Prove that some two
children found the same number of eggs.

72. Among any 26 integers between 2 and 100 (inclusive), there exist elements a and b
with gcd(a, b) > 1.

73. Consider an 8 × 8 chessboard with two diagonally opposite corners removed. Prove
that it is impossible to cover all remaining 62 squares with just 31 dominoes. (Here, we
understand that a “domino” is a rectangle that covers exactly two adjacent squares.)
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