Proofs in Contemporary Math W. J. Martin April 14, 2009

MA196X Problem Set 4

Instructions: Please first read the rules on the presentation of assignments in the course. Then complete as many of these as you can by Friday, April 24th. After that, I will still accept problems until the sample solutions have been distributed.

Note: Always identify each problem by its problem number and re-state the problem precisely before giving its solution.

25. For all sets A, B, C and D, and any functions f, g and h, if $f : A \to B$, $g : B \to C$ and $h : C \to D$, then

$$h \circ (g \circ f) = (h \circ g) \circ f.$$

26. For all sets A and B and for any function $f: A \to B$,

$$I_B \circ f = f$$
 and $f \circ I_A = f$.

27. For all sets A, B and C and any functions f: A → B and g: B → C
(a) if f and g are both injective, then g ∘ f is also injective.
(b) if g ∘ f is an injection, then f is also an injection.

Finally, in part (c), give a simple example of sets A, B, C and functions f, g as above where $g \circ f$ is injective, but g is not.

28. For all sets A, B and C and any functions f : A → B and g : B → C
(a) if f and g are both surjective, then g ∘ f is also surjective.
(b) if g ∘ f is an surjection, then g is also a surjection.

Finally, in part (c), give a simple example of sets A, B, C and functions f, g as above where $g \circ f$ is surjective, but f is not.

- 29. Prove that the following proposition is FALSE: For all sets A and B and all functions $f: A \to B$ and $g: B \to A$, if $g \circ f = I_A$, then $f \circ g = I_B$.
- 30. For all sets A and B and all $f : A \to B$ if f is both one-to-one and onto, then $(f^{-1})^{-1} = f$.
- 31. For all sets A and B and all $f : A \to B$ and $g : B \to A$, if f and g are both bijections and $g \circ f = I_A$ then $g = f^{-1}$.

- 32. Throughout parts (a)-(c), assume that X and Y are sets and f : X → Y.
 (a) For all A, B ⊆ X, f(A ∪ B) = f(A) ∪ f(B).
 (b) For all A, B ⊆ X, f(A ∩ B) ⊆ f(A) ∩ f(B).
 (c) For all A, B ⊆ X, f(A − B) ⊆ f(A) − f(B).
- 33. Throughout parts (a)-(c), assume that X and Y are sets and f : X → Y.
 (a) For all C, D ⊆ Y, f⁻¹(C ∪ D) = f⁻¹(C) ∪ f⁻¹(D).
 (b) For all C, D ⊆ Y, f⁻¹(C ∩ D) = f⁻¹(C) ∩ f⁻¹(D).
 (c) For all C, D ⊆ Y, f⁻¹(C − D) = f⁻¹(C) − f⁻¹(D).
- 34. For any sets X and Y and any $f: X \to Y$ (a) for any $A, B \subseteq X$, if $A \subseteq B$, then $f(A) \subseteq f(B)$; (b) for any $A \subseteq X$, $A \subseteq f^{-1}(f(A))$.
- 35. For any sets X and Y and any $f: X \to Y$ (a) for any $C, D \subseteq Y$, if $C \subseteq D$, then $f^{-1}(C) \subseteq f^{-1}(D)$; (b) for any $C \subseteq Y$, $f(f^{-1}(C)) \subseteq C$.
- 36. For any sets X, Y and Z and any $f: X \to Y$ and $g: Y \to Z$ (a) for all $A \subseteq X$, $(g \circ f)(A) = g(f(A))$; (b) for all $C \subseteq Z$, $(g \circ f)^{-1}(C) = f^{-1}(g^{-1}(C))$.
- 37. Let X and Y be sets and let $f : X \to Y$. Then f is one-to-one if and only if for all $A, B \subseteq X, f(A \cap B) = f(A) \cap f(B)$.
- 38. Let X and Y be sets and let $f : X \to Y$. Then f is one-to-one if and only if for all $A, B \subseteq X, f(A B) = f(A) f(B)$.
- 39. Let X and Y be sets and let $f : X \to Y$. Then f is one-to-one if and only if for all $A \subseteq X$, $f^{-1}(f(A)) = A$.
- 40. Let X and Y be sets and let $f: X \to Y$. If $f(f^{-1}(Y)) = Y$ then f is onto.
- 41. Let X and Y be sets and let $f: X \to Y$. If f is onto then, for all $C \subseteq Y$, $f(f^{-1}(C)) = C$.
- 42. Let A, B, C and D be sets and let $f : A \to C$ and $g : B \to D$. Define a function $H : A \times B \to C \times D$ by

$$H(a,b) = (f(a),g(b))$$

for all $(a, b) \in A \times B$.

- (a) Prove: if f and g are both one-to-one, then H is also one-to-one.
- (b) Disprove: if f and g are both onto, then H is also onto.
- 43. Let n be a positive integer and consider $f : \mathbb{R}^n \to \mathbb{R}$ given by

$$f(x_1, x_2, \dots, x_n) = x_1 + x_2 + \dots + x_n$$

Prove that f is onto, but that f is one-to-one if and only if n = 1.

- 44. Let A be a set and let \sim be an equivalence relation on A. Prove that the rule $a \mapsto [a]$, which sends each $a \in A$ to the equivalence class containing it, is a function from A to A/\sim and in fact a surjection. (In many parts of mathematics, this is called the "natural map" and denoted ν .)
- 45. Let *m* and *n* be positive integers and, for any integer *a*, let $[a]_m$ (resp. $[a]_n$) denote the equivalence class containing *a* under congruence modulo *m* (resp. *n*). Define $\mathbb{Z}_m = \mathbb{Z}/\equiv_m$ and $\mathbb{Z}_n = \mathbb{Z}/\equiv_n$ to be the corresponding collections of equivalence classes. Prove that the rule *f* given by

$$f: [a]_m \mapsto [a]_n$$

is a function from \mathbb{Z}_m to \mathbb{Z}_n if and only if n|m.