Proofs in Contemporary Math W. J. Martin April 4, 2009

MA196X Problem Set 3

Instructions: Please first read the rules on the presentation of assignments in the course. Then complete as many of these as you can by Friday, April 10th. After that, I will still accept problems until the sample solutions have been distributed.

Note: Always identify each problem by its problem number and re-state the problem precisely before giving its solution.

13. (a) Prove: For all sets A and B and all relations $\boldsymbol{r}, \boldsymbol{s}$ from A to B, we have $\text{Dom}(\boldsymbol{r} \cup \boldsymbol{s}) = \text{Dom}(\boldsymbol{r}) \cup \text{Dom}(\boldsymbol{s})$. (Then show that, without further proof, it follows that $\text{Im}(\boldsymbol{r} \cup \boldsymbol{s}) = \text{Im}(\boldsymbol{r}) \cup \text{Im}(\boldsymbol{s})$.)

(b) Show that the following proposition is false: For all sets A and B and all relations \mathbf{r} , \mathbf{s} from A to B, we have $\text{Dom}(\mathbf{r} \cap \mathbf{s}) = \text{Dom}(\mathbf{r}) \cap \text{Dom}(\mathbf{s})$.

- 14. Prove: If \boldsymbol{r} is a relation on set A with $\text{Dom}(\boldsymbol{r}) = A$ and \boldsymbol{r} is both symmetric and transitive, then \boldsymbol{r} is reflexive.
- 15. Prove: If A is any set and \boldsymbol{r} is a relation on A, then \boldsymbol{r} is both symmetric and antisymmetric if and only if $\boldsymbol{r} \subseteq \operatorname{id}_A := \{(a, a) : a \in A\}.$
- 16. Suppose A is a non-empty set and consider the relation \boldsymbol{r} defined on $\mathcal{P}(A)$ by

 $A\mathbf{r}B \leftrightarrow A \cap B = \emptyset.$

In parts (a)-(e), decide whether the given statement is TRUE or FALSE. If it is true, provide a proof; if it is false, provide a simple counterexample.

- (a) r is reflexive
- (b) r is irreflexive
- (c) r is symmetric
- (d) r is antisymmetric
- (e) r is transitive
- 17. Let A, B and C be sets. Let r be a relation from A to B and let s be a relation from B to C. For these objects, define

$$\boldsymbol{s} \circ \boldsymbol{r} = \{(a,c) \in A \times C \mid (\exists b \in B) (a\boldsymbol{r}b \wedge b\boldsymbol{s}c)\}.$$

Prove: For any A, B, C and any $\mathbf{r} \subseteq A \times B$ and $\mathbf{s} \subseteq B \times C$, $\text{Dom}(\mathbf{s} \circ \mathbf{r}) \subseteq \text{Dom}(\mathbf{r})$ and $\text{Im}(\mathbf{s} \circ \mathbf{r}) \subseteq \text{Im}(\mathbf{s})$.

- 18. With notation as in the previous problem, prove: if B = C and $s = \operatorname{id}_B$, then $s \circ r = r$.
- 19. With notation as in Problem 17, prove: if $\text{Im}(\mathbf{r}) = \text{Dom}(\mathbf{s})$, then $\text{Dom}(\mathbf{s} \circ \mathbf{r}) = \text{Dom}(\mathbf{r})$ and $\text{Im}(\mathbf{s} \circ \mathbf{r}) = \text{Im}(\mathbf{s})$. [NOTE: If you have previously solved Problem 17, then you may use its result in your solution.]
- 20. Let A be a non-empty set and let r and s be relations on A. For each of the following propositions, decide whether the statement is true or false. If it is true, prove it; if the statement is false, give a simple counterexample.
 - (a) If both r and s are reflexive, then $s \circ r$ is reflexive.
 - (b) If both r and s are irreflexive, then $s \circ r$ is irreflexive.
 - (c) If both r and s are symmetric, then $s \circ r$ is symmetric.
 - (d) If both r and s are antisymmetric, then $s \circ r$ is antisymmetric.
 - (e) If both r and s are transitive, then $s \circ r$ is transitive.
- 21. In number theory, we make extensive use of the "exactly divides" relation. The relation $\| \subseteq \mathbb{Z} \times \mathbb{Z}$ is defined as follows: for a prime p, and integer n and a positive integer k,

$$p^{k} \| n \leftrightarrow \left[(p^{k} | n) \wedge (\forall \ell \in \mathbb{Z}) \left(\ell > k \to p^{\ell} \not| n \right) \right];$$

in all other cases, $m \parallel n$ is false.

- (a) Find $Dom(\parallel)$. Explain briefly.
- (b) Find $\text{Im}(\parallel)$. Explain briefly.
- (c) Show that, for any prime p and any $k \ge 1$, the set $\{n \in \mathbb{Z} : p^k || n\}$ is infinite.
- (d) For $n \in \mathbb{Z}$, arbitrary but fixed, what can you conclude about the size of the set $\{m \in \mathbb{Z} : m || n\}$? Justify.
- 22. Let m and n be positive integers. Let r be the relation "congruence modulo m" on \mathbb{Z} and let s be the relation "congruence modulo n" on \mathbb{Z} (see p44 for the definition). Prove: if n|m, then $r \subseteq s$.
- 23. Prove: For any positive integer n and for all integers a, b, c, d, if $a \equiv b \mod n$ and $c \equiv d \mod n$, then

$$a + c \equiv b + d \mod n$$
 and $ac \equiv bd \mod n$.

24. Let (A, \preceq) be a finite poset (i.e., A is a finite set and \preceq is a partial order relation on A). Prove that there exists a linear extension for \preceq : there exists a total order relation \preceq_* , extending \preceq (i.e., $\preceq \subseteq \preceq_* \subseteq A \times A$). (See p61 for the definition.)