Proofs in Contemporary Math W. J. Martin March 20, 2009

MA196X Problem Set 1

Instructions: Please first read the rules on the presentation of assignments in the course. Then complete as many of these as you can by Tuesday, March 24th. After that, I will still accept problems until the sample solutions have been distributed.

For each of the following problems, first state the problem precisely and then give a proper proof of the statement using English sentences.

- 1. The following hold for any integers:
 - (a) If a|b and b|a, then $b = \pm a$;
 - (b) If a and b are positive and a|b, then $a \leq b$;
 - (c) a|a;
 - (d) If a and b are positive and a|b and b|a, then b = a;
 - (e) If a|b and b|c, then a|c.
- 2. The following hold for any integers:
 - (a) If a|b then a|bx for any integer x;
 - (b) If a|b and a|c, then a|(bx + cy) for any integers x and y;
 - (c) If a|b and c|d, then ac|bd.
- 3. The following are all false:
 - (a) For all integers a, b, c, if a|bc then either a|b or a|c;
 - (b) For all integers a, b, c, d, if a|b and c|d then (a + c)|(b + d);
 - (c) For all integers a, b, c, if $a \nmid b$ and $a \nmid c$ then $a \nmid bc$;
 - (d) For all integers a, b, c, if $a \nmid b$ and $b \nmid c$ then $a \nmid c$.
- 4. If n is an odd integer, then $8|(n^2-1)$.
- 5. If p is prime and p|ab, then p|a or p|b.

[HINT: For this more challenging problem, you may use the following theorem without proof: If integers c and d are relatively prime, then there exist integers x and y such that cx + dy = 1. Two integers are **relatively prime** if they have no common divisor larger than one, as is true for c = 15 and d = 28 for example. For this same example, the values x = -13, y = 7 give 15x + 28y = 1 as desired.]

6. Consider the following two conjectures:

Conjecture A: For every positive integer n, there exists a prime number between n and n^2 .

Conjecture B: For every positive integer n, there exists a prime number between n and 2n.

While we currently do not know if either of these is true, one implies the other. Figure out which implies which and prove this implication.