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Sample Solution — Proofs by Induction

Proposition: For every positive integer n,

1 1 1 1 1
123 234 ThamrDm+2 4 2mtlnt2)

Proof (by induction): Let P denote the set of positive integers for which the given statement
Is true:
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Base Case: We prove the statement for n = 1. Since
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we have shown 1 € P.

[HOP: We let n > 1 be arbitrarily chosen and assume the statement is true for n; i.e.,
suppose n € P.

Induction Step: We aim to show that the statement is true for n + 1. We use the induction
hypothesis to write

1 1 1 1
1-2-3 * 2-3-4+'“+n(n+1)(n—|—2)+(n+1)(n+2)(n—i—3) -
1 1 1 1
<1-2-3 Tttt n+1)n+2))+(n~l—1)(n+2)(n+3)
1 1
h (Z 2(n + 1) n—i—2> D) (n+2)(n+3)
B 1_ n+3 2
=1 2(n+1)(n+2)(n+3)+2(n+1)(n+2)(n+3)
1 2—n—3
T I DM +3)
1 —n—1
T I DmE2(n+3)
B 1_ n+1
4 2+ 1D(n+2)(n+3)
1 1
4 2n+2)(n+3)

This sequence of equations shows
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which proves that n 4+ 1 € P.

By the Principle of Mathematical Induction, we conclude that P = N. Q.E.D.



