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Sample Solution – Proofs by Induction

Proposition: For every positive integer n,
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=

1

4
− 1

2(n + 1)(n + 2)
.

Proof (by induction): Let P denote the set of positive integers for which the given statement
is true:

P =

{
n ∈ N

∣∣∣∣∣
n∑

k=1

1

k(k + 1)(k + 2)
=
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4
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2(n + 1)(n + 2)

}
.

Base Case: We prove the statement for n = 1. Since
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=
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6
=

1

4
− 1

12
=

1

4
− 1

2(1 + 1)(1 + 2)
,

we have shown 1 ∈ P .

IHOP: We let n ≥ 1 be arbitrarily chosen and assume the statement is true for n; i.e.,
suppose n ∈ P .

Induction Step: We aim to show that the statement is true for n + 1. We use the induction
hypothesis to write
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.

This sequence of equations shows

n+1∑
k=1

=
1

k(k + 1)(k + 2)
=

1

4
− 1

2(n + 2)(n + 3)

which proves that n + 1 ∈ P .

By the Principle of Mathematical Induction, we conclude that P = N. Q.E.D.

1


