Calculus II

D Term

W. J. Martin

March 20, 2001

Some Properties of the Definite Integral

This handout lists the most important properties of the definite integral. Proofs are omitted.

## **Endpoints**

- 1.  $\int_a^a f(x) dx = 0$  for any function f and any real number a such that f(a) is defined.
- 2. ("IAP") If f is integrable on [a, b], [a, c] and [c, b], then (regardless of the order of the three numbers) we have

$$\int_a^b f(x) \, dx = \int_a^c f(x) \, dx \, \, + \, \, \int_c^b f(x) \, dx$$

3. If  $a \leq b$  and f is integrable on [a, b], then

$$\int_b^a f(x)\,dx = -\int_a^b f(x)\,dx$$

## Linearity

4. If c is a constant and f is integrable on [a, b], then

$$\int_a^b cf(x)\,dx = c\,\int_a^b f(x)\,dx$$

5. If both f and g are integrable on [a, b], then

$$\int_a^b c \, [f(x) + g(x)] \, \, dx = \int_a^b f(x) \, dx + \int_a^b g(x) \, dx$$

6. If both f and g are integrable on [a, b], then

$$\int_a^b c \left[f(x)-g(x)
ight] \, dx = \int_a^b f(x) \, dx - \int_a^b g(x) \, dx$$

Comparison (Here, assume a < b and that all integrals exist)

7. If  $f(x) \ge 0$  for all x in the interval [a, b], then

$$\int_a^b f(x) \, dx \ge 0$$

8. If  $f(x) \geq g(x)$  for all x in the interval [a, b], then

$$\int_a^b f(x)\,dx \geq \int_a^b g(x)\,dx$$

9. If  $m \leq f(x) \leq M$  for all x in the interval [a, b], then

$$m(b-a) \le \int_a^b f(x) \, dx \le M(b-a)$$

## Symmetry

10. If f is an even function (i.e., f(-x) = f(x) for all x) and both integrals exist, then

$$\int_{-a}^a f(x) \, dx = 2 \, \int_0^a f(x) \, dx$$

11. If f is an odd function (i.e., f(-x) = -f(x) for all x) and the integral exists, then

$$\int_{-a}^{a} f(x) \, dx = 0$$