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Appreciative Graduates

It’s always nice to see the impact you’ve had on your former
students:
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Math Diversions

Q: How much time does it save to cut diagonally across a square
parking lot, park, or lawn?

Q: For beginning protractor users: Zoom in on Google maps and
figure out the system for numbering runways at airports.

Q: What’s wrong with this McGraw-Hill pre-calculus text?

To find horizontal asymptotes of a rational function
y = f (x), first solve for x and locate those values of y
where this function is undefined.
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Linear Programming in the Sci-Fi Literature

‘I don’t want to bore you’, Harvey said, ‘but you
should understand that these heaps of wire can
practically think — linear programming — which means
that instead of going through all the alternatives they
have a hunch which is the right one.’

– Billion Dollar Brain, by Len Deighton
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Sheriff Greg Bartlett

I Morgan County, Alabama, jail holds about 300

I state food allowance is $1.75 per inmate, per day

I county sheriffs like Bartlett are in charge of diet, food
procurement, kitchen, etc.

I any allowance not spent on food goes directly to the sheriff
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Sheriff Greg Bartlett

I food allowance $1.75 per inmate, per day. Unspent money
goes to sheriff

I federal agents arrested the sheriff Wed Jan 7th 2009

I judge sent him to jail (for one day) until he proposed a new
food plan

I Bartlett had pocketed $212,000 in surplus meal monies in just
3 years

I 1.75× 300× 365 = $191, 625 per year allowance
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What Sheriff Bartlett missed

I diet problems are standard applications of linear optimization

I variables: quantity of each food to include in one person’s
daily diet

I constraints: meet FDA nutritional requirements (protein,
vitamins, fibre, . . . )

I E.g., each person should get at least 2000 calories per day
I objective: minimize cost

Photo Credit: trusty guides Photo Credit: stockfood.com
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What Sheriff Bartlett missed

I variables: quantity of each food to include

I constraints: meet FDA nutritional requirements

I objective: minimize cost

I Mike Trick (Carnegie Mellon) used linear programming, found
I The good sheriff could have met all dietary requirements on

just $0.96 per inmate per day:
I 0.24 servings of raw carrots (2 cents per inmate per day)
I 3.60 servings of peanut butter (25 cents)
I 4.82 servings of popcorn (19 cents)
I 3.54 servings of baked potato (21 cents)
I 2.17 servings of skim milk (28 cents)

Isn’t math wonderful!
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Shameless Digressions

Photo Credit: cartoon stock.com

Here’s a web interface to linear programming software that allows
you to solve your own diet problems:

http://www.neos-guide.org/NEOS/index.php/Diet_Problem_Demo
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A Few Simple Messages

I math majors get jobs (Jobs Rated 2011: top four professions
are . . . )

I math is still alive, new theorems every year, many unsolved
problems

I for example, linear programming is cool, powerful, versatile,
changing

I In 1970, a study estimated that 25% of all computing was
devoted to LP
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Solving Systems of Linear Equations
A system of linear equations (3 equations, 3 unknowns):

3x + 5y = 18
2x − 5z = 2

2y + 3z = 6

The solution set is a line. Let’s parametrize it by t:

x = −4 + 5t, y = 6− 3t, z = −2 + 2t.

Today’s Question: Can we find a solution with all entries
non-negative?
Yes: For t = 1, (x , y , z) = (1, 3, 0);

for t = 2, (x , y , z) = (6, 0, 2).
Any more solutions? Yes!
All solutions with 1 ≤ t ≤ 2 are non-negative vectors. (Convexity!)
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The Language of Linear Algebra

Let’s revisit our system of 3 equations in 3 unknowns:

3x1 + 5x2 = 18
2x1 − 5x3 = 2

2x2 + 3x3 = 6

This is written Ax = b for

A =

 3 5 0
2 0 −5
0 2 3

 , x =

 x1
x2
x3

 , b =

 18
2
6

 .
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The Basic Problem

Given a matrix A with m rows and n columns and a vector b with
m rows, we have the solution set of all vectors x of length n
satisfying

Ax = b

Linear Programming: Find a solution with no negative entries.

This is equivalent to the more familiar formulation of maximizing
some linear profit function subject to some collection of constraints
which are linear equations or inequalities.
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Farkas’ Lemma

Gyula Farkas (1847-1930)

Theorem (1902): Given matrix A and vector b
EITHER

there is a non-negative vector x such that Ax = b
OR

there is a vector y such that y>A ≥ 0 and yet y>b < 0
NOT BOTH.
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History of Linear Programming

Leonid Kantorovich George Dantzig John von Neumann
(1912-1986) (1914-2005) (1903-1957)

I Operations Research

I Linear Programming (1939-1947)

I Simplex Algorithm (1947)

I Duality Theorem (1950)
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History of Linear Programming

Leonid Kantorovich George Dantzig John von Neumann
(1912-1986) (1914-2005) (1903-1957)

I (Military) Operations Research

I Linear Programming (a program is a plan of action)

I Simplex Algorithm

I Duality Theorem (rediscovery of Farkas’ Lemma)
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Polynomial Time Algorithms are “Fast”

I We say an algorithm runs in “polynomial time”, if there exists
a polynomial f (n) such that the algorithm takes at most f (n)
steps on n pieces of input for all n ≥ 0

I Technically, “pieces” means “bits”, but we can say
“variables x constraints” or even “variables + constraints”

I E.g., sorting, shortest path are polynomial time; graph
coloring, traveling salesman are probably exponential

I Q: If you can verify a YES answer in polynomial time and you
can verify a NO answer in polynomial time, can’t you decide
whether the answer is YES or NO in polynomial time?
(I.e., is P = NP ∩ coNP?)

I Big question in the 1970s: Can linear programming problems
be solved in polynomial time?
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Ellipsoid Method

Leonid Khachian, 1979 in Moscow, provided the first polynomial
time algorithm for linear programming.

I Ellipsoid Method solves our version Ax = b, x ≥ 0

I originally developed by Shor, Nemirovski & Yudin in Russia in
the early 1970s

I Start with an ellipsoid that contains the region (if non-empty)

I If the center of the ellipsoid is feasible, DONE

I Else, find a separating hyperplane

I Now find a smaller ellipsoid that contains the half-ellipsoid
that contains the feasible region. Iterate.

I The Bad News: high complexity (n4 log R
r iterations each

requiring O(n2) steps)

I Worse News: numerically unstable in higher dimensions
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Karmarkar’s Algorithm

I Khachiyan’s result generated great interest in efficient
algorithms

I Narendra Karmarkar (PhD, Berkeley 1983, w/ Richard Karp)

I ideas from non-linear optimization applied to linear problem

I log-barrier method, Newton-type method with projective
(non-linear) scaling

I running time (according to wikipedia) is
O(n7/2 L2 log L log log L) for a problem with n variables and
L bits of input

I Very complicated, but similar to Affine Scaling Method, which
is easy to teach
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Patents on Mathematics?

I When Karmarkar published his algorithm, he was employed at
Bell Labs, Murray Hill, NJ

I AT&T tried to patent the algorithm, succeeded (patent
expired in 2006)

I there was a publicly available version —provably
polynomial-time — and a faster secret version

I AT&T’s KORBX computer implemented Karmarkar’s
algorithm for linear and integer programming

I Price: $8.9 million. Number of computers sold: 2

I Anecdote: AT&T applied this algorithm to optimize their
Pacific basin network

I I was told that this saved the company $20 million per year in
operating costs
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A Flurry of Activity to this Day

I Interior point methods have been a very active area of
research since Karmarkar’s result

I We now have polynomial time algorithms for many types of
“conic programming” problems

I Most importantly, we have efficient algorithms for
semidefinite programming

I SDP encompasses LP, but also includes special types of
quadratic constraints

I many applications in finance, graph theory, control theory, . . .
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Game Theory

Suppose we play Rock/Paper/Scissors many many times, with our
opponent carefully watching our behavior.

Our optimal strategy is to play R, S, P at random, each with 1/3
probability.

But what if the payoff for winning with Rock or Scissors is $1 and
the payoff for winning with Paper is $2?

Q: What is the optimal strategy now?
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Asymmetric Rock/Paper/Scissors
Setting: We play Rock/Paper/Scissors many times. The payoff
for winning with Rock or Scissors is $1;
the payoff for winning with Paper is $2.

maximize w
2xP − xS ≥ w

−2xR + xS ≥ w
xR − xP ≥ w
xR + xP + xS = 1

xR , xP , xS ≥ 0

Optimal Solution:

xR = xP = 1/4, xS = 1/2
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LP really is Artificial Intelligence

Hanshin Expressway, Osaka Japan

I very expensive toll road through a congested area

I Light sensors every 500m measure traffic volume

I A computer solves a linear programming problem every 15
minutes

I Decides which on-ramps to open and close

I Objective: to maximize number of vehicles subject to no
traffic jams
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The End

Good luck to all your Math Meet competitors!
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