
wpimgram

A Change of Tone
(T , M, S)-Nets

Resilient Functions
Fuzzy Extractors

The PCP Theorem

Hey! You Can’t Do That With My Code!

William J. Martin

Department of Mathematical Sciences
and

Department of Computer Science
Worcester Polytechnic Institute

Twelfth Rocky Mountain Discrete Mathematics Day(s)
Denver CO, June 20, 2009

William J. Martin Abusing Codes



wpimgram

A Change of Tone
(T , M, S)-Nets

Resilient Functions
Fuzzy Extractors

The PCP Theorem

Outline

A Change of Tone

(T ,M,S)-Nets

Resilient Functions

Fuzzy Extractors

The PCP Theorem

William J. Martin Abusing Codes



wpimgram

A Change of Tone
(T , M, S)-Nets

Resilient Functions
Fuzzy Extractors

The PCP Theorem

A New Era in Coding Theory

Is algebraic coding theory dead?

William J. Martin Abusing Codes



wpimgram

A Change of Tone
(T , M, S)-Nets

Resilient Functions
Fuzzy Extractors

The PCP Theorem

A New Era in Coding Theory

Is algebraic coding theory dead?

William J. Martin Abusing Codes



wpimgram

A Change of Tone
(T , M, S)-Nets

Resilient Functions
Fuzzy Extractors

The PCP Theorem

New Efficient Error-Correcting Codes

I turbo codes

I belief propagation

I low-density parity check codes

I proof by simulation (now made rigorous)

I large minimum distance no longer needed
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Of Course Codes are Still Fundamental

I Coding Theory

I “Distinguishability”

I E.g., linear codes in
Hamming scheme H(n, q)

I Design Theory

I “Approximation”

I E.g, orthogonal arrays of
strength t
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A Hint of Delsarte Theory

I Coding Theory

I “Distinguishability”

I E.g., linear codes in
Hamming scheme H(n, q)

I Design Theory

I “Approximation”

I E.g, orthogonal arrays of
strength t

Theorem: The dual of any additive code with minimum distance
d is an OA of strength t = d − 1.
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I Perhaps the most exciting development in algebraic coding
theory since 1990 is the theory of quantum error-correcting
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I This is not what I want to talk about today.
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Using Codes to Estimate Integrals

If orthogonal arrays can be used to approximate Hamming space,
can they also be used to approximate other spaces?
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Key Results

I 1967: Sobol’ sequences (I. Sobol’) [also Halton/Faure/
Hammersley sequences]

I 1987: (T ,M,S)-nets (Niederreiter)

I 1996: generalized orthogonal arrays (Lawrence)

I 1996: ordered orthogonal arrays (Mullen/Schmid)

I 1996: Constructions from algebraic curves
(Niederreiter/Xing)

I 1999: MacWilliams identities, LP bounds, association scheme
(WJM/Stinson)

I late 90s+: Many new constructions
(Adams/Edel/Bierbrauer/et al.)

I 2004+: Improved bounds
(Schmid/Schürer/Bierbrauer/Barg/Purkayastha/Trinker/Visentin)
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What is a (T , M , S)-Net?

Harald Niederrieter

A (T ,M,S)-net in base q

is a set N of qM points in the half-open
S-dimensional Euclidean cube [0, 1)S with the property that every
elementary interval[

a1

qd1
,

a1 + 1

qd1

)
×
[

a2

qd2
,

a2 + 1

qd2

)
× · · · ×

[
aS

qdS
,

aS + 1

qdS

)
of volume qT−M (i.e., with d1 + d2 + · · ·+ dS = M − T ) contains
exactly qT points from N .
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Simple Example of a (T , M , S)-Net

I binary code with minimum
distance three

I C = {000000, 111001,
001110, 110111}

I partition into two groups of
three coords, insert decimal
points

I

0 0 0 0 0 0

1 1 1 0 0 1

0 0 1 1 1 0

1 1 0 1 1 1

I four points in [0, 1)2

I N = {(0, 0), (7/8, 1/8),
(1/8, 3/4), (3/4, 7/8)}

I 0.00             0.25            0.50              0.75          1.00

1.00

0.75

0.50

0.25

0.00

William J. Martin Abusing Codes
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Orthogonal Array Property

I We consider an m × n array A over Fq

I “OA property”: for a subset T of the columns, does the
projection of A onto these columns contain every |T |-tuple
over Fq equally often?

I orthogonal array of strength t: A has the OA property with
respect to any set T of t or fewer columns

I ordered orthogonal array: Now assume n = s` and columns
are labelled {(i , j) : 1 ≤ i ≤ s, 1 ≤ j ≤ `}.
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Ordered Orthogonal Arrays

I “OA property” with respect to column set T : projection of
A onto these columns contains every |T |-tuple over Fq equally
often

I ordered orthogonal array: Now assume n = s` and columns
are labelled {(i , j) : 1 ≤ i ≤ s, 1 ≤ j ≤ `}

I a set T of columns is “left-justified” if it contains (i , j − 1)
whenever it contains (i , j) with j > 1

I ordered orthogonal array of strength t: A enjoys the OA
property for every left-justified set of t or fewer columns

I Lawrence/Mullen/Schmid: ∃(T ,M,S)-net in base q ⇔
∃OOA over Fq with qm rows, s = S , ` = t = M − T .
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The Theorem of Mullen & Schmid and (indep.) Lawrence

Theorem (1996): ∃(T ,M, S)-net in base q ⇔ ∃OOA over Fq

with qm rows, s = S , ` = t = M − T

William J. Martin Abusing Codes
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Idea of Proof

N = {
(

0
4 ,

0
4

)
,
(

1
4 ,

3
4

)
,
(

2
4 ,

2
4

)
,
(

3
4 ,

1
4

)
}

T = {(1, 1), (1, 2)}
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Idea of Proof

N = {(.00, .00), (.01, .11), (.10, .10), (.11, .01)}

T = {(2, 1), (2, 2)}

William J. Martin Abusing Codes



wpimgram

A Change of Tone
(T , M, S)-Nets

Resilient Functions
Fuzzy Extractors

The PCP Theorem

Idea of Proof

N = {(.00, .00), (.01, .11), (.10, .10), (.11, .01)}

T = {(1, 1), (2, 1)}

William J. Martin Abusing Codes



wpimgram

A Change of Tone
(T , M, S)-Nets

Resilient Functions
Fuzzy Extractors

The PCP Theorem

Nets from Many Sources

two mutually orthogonal latin squares of order five (color/height)
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Niederreiter/Xing Construction (Simplified)
I Let N = {P1, . . . ,Ps} be a subset of Fq of size s, let k ≥ 0

I Reed-Solomon code has a codeword for each polynomial f (x)
of degree ≤ k :

cf = [f (P1), f (P2), . . . , f (Ps)]

I a non-zero polynomial of degree at most k has at most k roots
I . . . counting multiplicities!
I So take SM-tuple (M = k + 1)[

f (P1), f ′(P1), . . . , f (k)(P1)| . . . . . . |f (Ps), f ′(Ps), . . . , f (k)(Ps)
]

to get a powerful (T ,M, S)-net
I They show that the same works over algebraic curves (global

function fields)
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Codes for the Rosenbloom-Tsfasman Metric

I the dual of a linear OA is an error-correcting code

I the dual of a linear OOA is a code for the
Rosenbloom-Tsfasman metric

I Research Problem: Are there any non-trivial perfect codes in
the Rosenbloom-Tsfasman metric?
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Resilient Functions

How can a code be used to bolster randomness?
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Resilient Functions

We have a secret string x . An opponent learns t bits of x , but we
don’t know which ones.

After applying function f , we guarantee that our opponents knows
nothing.
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Key Results

I 1985: The bit extraction problem
(Chor/Goldreich/Håstad/Friedman/Rudich/Smolensky)

I 1988: Privacy amplification by public discussion
(Bennett/Brassard/Robert)

I 1993: Equivalent to large set of OA (Stinson)

I 1995: First non-linear examples (Stinson/Massey)

I 1997: All-or-nothing transforms (Rivest)

I 1999+: Applications to fault-tolerant distributed computing,
key distribution, quantum cryptography, etc.
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The Linear Case (Chor, et al.)

I Let G be a generator matrix for an [n, k , d ]q-code

I Define f : Fn
q → Fk

q via

f (x) = Gx

I If t ≤ d − 1 entries of x are deterministic and the rest are
random and fully independent (denote DT ,A)

I . . . then f (x) is uniformly distributed over Fk
q

I Why? Any linear combination of entries of f (x) is a dot
product of x with some codeword

I So any non-trivial linear function of entries involves at least
one random input position
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True Random Bit Generators (Sunar/Stinson/WJM)

I Random bits are expensive

I Device must tap some physical source of known behavior

I Even the best sources of randomness have “quiet” periods

I Assuming 80% of input bits are random samples and 20% are
from quiet periods

I Resilient function collapses samples to strings one-tenth the
size

I What if quiet period is longer than expected?
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Higher Weights (Generalized Hamming Weights)
I Start with a binary linear [n, k , d ]-code

I Define A
(`)
h as number of linear subcodes C ′, dim C ′ = `,

| supp C ′| = h

I E.g. A
(1)
h = Ah for h > 0, A

(`)
h = 0 for h < d except A

(0)
0 = 1

I The number of i-subsets of coordinates that contain the
support of exactly 2r codewords is shown to be

Bi ,r =
k∑
`=0

n∑
h=0

(−1)`−r 2(`−r
2 )
(

n − h

i − h

)[
`
r

]
A

(`)
h

I Lemma (Sunar/WJM): Let X be a random variable taking
values in {0, 1}n according to a probability distributionDT ,A.
Then

Prob[Hout = k − r | |T | = i ] = Bi ,r

(
n

i

)−1

.
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A Research Problem

Higher weight enumerators are known only for very few codes:

I MDS codes: partial information only (Dougherty, et al.)

I Golay codes (Sunar/WJM, probably earlier)

I Hamming codes

Can we work out these statistics for the other standard families of
codes?
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Part III: Fuzzy Extractors
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Codes for Biometrics

How can we eliminate noise if we are not permitted to choose our
codewords?

William J. Martin Abusing Codes



wpimgram

A Change of Tone
(T , M, S)-Nets

Resilient Functions
Fuzzy Extractors

The PCP Theorem

Selected References

I 1990s: Ad-hoc mix of protocols (e.g., quantum oblivious
transfer, crypto over noisy channels)

I 1987,1994: Patents for iris recognition systems

I 2008: definition of “fuzzy extractor”
(Dodis/Ostrovsky/Reyzin/Smith)

I 2009: CD fingerprinting (Hammouri/Dana/Sunar)

I 2009: physically unclonable functions (WPI team)
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Metric space M and function f :M×{0, 1}∗ → {0, 1}∗ such that
f (w ′, x) = f (w , x) provided x valid for w and d(w ′,w) < ε.

William J. Martin Abusing Codes



wpimgram

A Change of Tone
(T , M, S)-Nets

Resilient Functions
Fuzzy Extractors

The PCP Theorem

Fuzzy Extractors

Metric space M and function f :M×{0, 1}∗ → {0, 1}∗ such that
f (w ′, x) = f (w , x) provided x valid for w and d(w ′,w) < ε.

William J. Martin Abusing Codes



wpimgram

A Change of Tone
(T , M, S)-Nets

Resilient Functions
Fuzzy Extractors

The PCP Theorem

Fuzzy Extractor: Toy Example

Baseline reading w = 3 is obtained from temporal reading w ′ = 2
and hint x = D.
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Code-Offset Construction (Dodis, et al.)

Fuzzy extractor for Hamming metric:

I Start with a binary [n, k , d ]-code with generator matrix G

I For each user, generate a random k-bit string m

I For baseline reading w , helper data is x = w + mG

I New reading w ′ is assumed to be within distance d/2 of w in
large Hamming space

I To recover m from x and w ′, decode w ′+ x = mG + (w −w ′)

I Provided k and d are both linear in n, recovery of m from just
x or w ′ is hard
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A Research Problem

Fuzzy extractors are known for several metrics:

I Hamming

I Set difference (fuzzy vault scheme of Juels/Sudan)

I Edit distance

Can we build efficient fuzzy extractors for the Euclidean metric?
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Codes and Computational Complexity

How does coding theory make computational problems more
robust?
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Probabilistically Checkable Proofs

Randomized Turing Machine uses O(r(n)) random bits and makes
O(q(n)) queries to the proof π.

If π is a correct proof, x is accepted with probability one; if not, x
is rejected with probability at least 1

2 .
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Key Results

I 1980s: Cryptography, IP, AM, constrained NP verifiers, . . .

I 1990: IP = PSPACE (Shamir), MIP = NEXP
(Babai/Fortnow/Lund)

I 1992: NP ⊆ PCP[O(log n),O(log n)] (Arora/Safra, cf. Feige,
et al.)

I 1992: NP = PCP[O(log n),O(1)]
(Arora/Lund/Motwani/Sudan/Szegedy)

I 1990s: Implications for hardness of approximation

I 1999: New hardness-based proof of PCP Theorem (Dinur)

I 2001: NP = PCP1−ε, 1
2
[O(log n), 3] (Håstad)
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William J. Martin Abusing Codes



wpimgram

A Change of Tone
(T , M, S)-Nets

Resilient Functions
Fuzzy Extractors

The PCP Theorem

Key Results

I 1980s: Cryptography, IP, AM, constrained NP verifiers, . . .

I 1990: IP = PSPACE (Shamir), MIP = NEXP
(Babai/Fortnow/Lund)

I 1992: NP ⊆ PCP[O(log n),O(log n)] (Arora/Safra, cf. Feige,
et al.)

I 1992: NP = PCP[O(log n),O(1)]
(Arora/Lund/Motwani/Sudan/Szegedy)

I 1990s: Implications for hardness of approximation

I 1999: New hardness-based proof of PCP Theorem (Dinur)

I 2001: NP = PCP1−ε, 1
2
[O(log n), 3] (Håstad)
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PCP

I Our Turing machine V (the “Verifier” of the proof) has input
x on tape and a “proof” π claiming x ∈ L as auxiliary input

I output is V π(x) ∈ {0, 1}
I V is randomized: for |x | = n, it uses at most r(n) random bits

I V has random access to the proof: for |x | = n, it queries at
most q(n) bits from π

I for x ∈ L, there exists π such that Prob[V π(x) = 1] = 1

I for x 6∈ L, for all π such that Prob[V π(x) = 0] ≥ 1
2

I the set of languages for which such a polynomial time V
exists is denoted PCP[r(n), q(n)]
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Recap PCP Theorems

l

I 1992: NP ⊆ PCP[O(log n),O(log n)] (Arora/Safra)

I 1992: NP = PCP[O(log n),O(1)]
(Arora/Lund/Motwani/Sudan/Szegedy)

I 1999: New hardness-based PCP Theorem (Dinur, employing
expanding constraint graphs)

I 2001: NP = PCP1−ε, 1
2
[O(log n), 3] (Håstad) where

probability of accepting a correct proof can be made
arbitrarily close to one
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Constraint Satisfaction Problems (CSP)

I alphabet Σ

I graph G , vertices are “variables”, edges are “constraints”

I clauses c(e) ⊆ Σ× Σ

I mapping a : V (G )→ Σ is valid if (a(x), a(y)) ∈ c(e)
whenever e = (x , y)

I E.g., 3-coloring:
c(e) = {(1, 2), (1, 3), (2, 1), (2, 3), (3, 1), (3, 2)} for all e

I So CSP is NP-hard
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c(e) = {(1, 2), (1, 3), (2, 1), (2, 3), (3, 1), (3, 2)} for all e

I So CSP is NP-hard
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The PCP Theorem

Coding Theory Key to Proof
I If we are only going to sample a small portion of π, then an

error-plagued version of π will also work with high probability

I so the proof π is “self-correcting”; may as well make it a
codeword

I Target problem: CSP with t constraints each involving w
variables

I assignment for each constraint is encoded using a Hadamard
code

I for proof π of length n, encode as a small-degree polynomial
I choose q ≈ n1/m and encode π as values of m-variate

polynomial over Fq

I m = log t/ log log t and q = poly log t
I x : Hm → {0, 1} where H ⊆ Fq has size n1/m has low-degree

extension
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Hardness of Approximation Results

I (Håstad) max-3SAT is NP-hard to approximate within a
ratio of > 7/8

I It is NP-hard to decide if a CSP has unsat(C) = 1 or
unsat(C) ≤ 1/2

I For some ε > 0, there is no (1 + ε)-approximate algorithm for
Steiner Tree unless P = NP

I For some ε > 0, there is no (1 + ε)-approximate algorithm for
Minimum Vertex Cover unless P = NP

I For some c > 1, there is no nc -approximate algorithm for
Independent Set unless P = NP
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The End

Thank you all!
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