Hey! You Can't Do That With My Code!

William J. Martin

Department of Mathematical Sciences and Department of Computer Science Worcester Polytechnic Institute

Twelfth Rocky Mountain Discrete Mathematics Day(s) Denver CO, June 20, 2009

イロン イヨン イヨン イヨン

Outline

A Change of Tone

(T, M, S)-Nets

Resilient Functions

Fuzzy Extractors

The PCP Theorem

イロン イヨン イヨン イヨン

A New Era in Coding Theory

Is algebraic coding theory dead?

イロン イヨン イヨン イヨン

A New Era in Coding Theory

Is algebraic coding theory dead?

・ロト ・回ト ・ヨト

New Efficient Error-Correcting Codes

- turbo codes
- belief propagation
- Iow-density parity check codes
- proof by simulation (now made rigorous)
- large minimum distance no longer needed

- (同) - (三)

- < ∃ >

Of Course Codes are Still Fundamental

Coding Theory

► DESIGN THEORY

・ロト ・回 ト ・ヨト ・ヨトー

æ

William J. Martin Abusing Codes

Of Course Codes are Still Fundamental

- Coding Theory
- "Distinguishability"

- Design Theory
- "Approximation"

イロト イヨト イヨト イヨト

Of Course Codes are Still Fundamental

- Coding Theory
- "Distinguishability"
- E.g., linear codes in Hamming scheme H(n, q)

- Design Theory
- "Approximation"
- E.g, orthogonal arrays of strength t

-∢ ≣ ≯

A Hint of Delsarte Theory

- Coding Theory
- "Distinguishability"
- E.g., linear codes in Hamming scheme H(n,q)

- Design Theory
- "Approximation"
- E.g, orthogonal arrays of strength t

Theorem: The dual of any additive code with minimum distance d is an OA of strength t = d - 1.

 Perhaps the most exciting development in algebraic coding theory since 1990 is the theory of quantum error-correcting codes

イロン イヨン イヨン イヨン

- Perhaps the most exciting development in algebraic coding theory since 1990 is the theory of quantum error-correcting codes
- This is not what I want to talk about today.

イロト イヨト イヨト イヨト

Part I: (T, M, S)-Nets

・ロン ・回 と ・ヨン ・ヨン

Э

Using Codes to Estimate Integrals

If orthogonal arrays can be used to approximate Hamming space, can they also be used to approximate other spaces?

イロト イヨト イヨト イヨト

Key Results

 1967: Sobol' sequences (I. Sobol') [also Halton/Faure/ Hammersley sequences]

イロン イヨン イヨン イヨン

- 1967: Sobol' sequences (I. Sobol') [also Halton/Faure/ Hammersley sequences]
- ▶ **1987:** (*T*, *M*, *S*)-nets (Niederreiter)

イロト イヨト イヨト イヨト

- 1967: Sobol' sequences (I. Sobol') [also Halton/Faure/ Hammersley sequences]
- ▶ **1987:** (*T*, *M*, *S*)-nets (Niederreiter)
- ▶ 1996: generalized orthogonal arrays (Lawrence)

イロト イヨト イヨト イヨト

- 1967: Sobol' sequences (I. Sobol') [also Halton/Faure/ Hammersley sequences]
- ▶ **1987:** (*T*, *M*, *S*)-nets (Niederreiter)
- ▶ 1996: generalized orthogonal arrays (Lawrence)
- ▶ 1996: ordered orthogonal arrays (Mullen/Schmid)

イロト イヨト イヨト イヨト

- 1967: Sobol' sequences (I. Sobol') [also Halton/Faure/ Hammersley sequences]
- ▶ **1987:** (*T*, *M*, *S*)-nets (Niederreiter)
- ▶ 1996: generalized orthogonal arrays (Lawrence)
- ▶ 1996: ordered orthogonal arrays (Mullen/Schmid)
- ► **1996:** Constructions from algebraic curves (Niederreiter/Xing)

イロト イヨト イヨト イヨト

- 1967: Sobol' sequences (I. Sobol') [also Halton/Faure/ Hammersley sequences]
- ▶ **1987:** (*T*, *M*, *S*)-nets (Niederreiter)
- ▶ 1996: generalized orthogonal arrays (Lawrence)
- ▶ 1996: ordered orthogonal arrays (Mullen/Schmid)
- 1996: Constructions from algebraic curves (Niederreiter/Xing)
- 1999: MacWilliams identities, LP bounds, association scheme (WJM/Stinson)

イロト イヨト イヨト イヨト

- 1967: Sobol' sequences (I. Sobol') [also Halton/Faure/ Hammersley sequences]
- ▶ **1987:** (*T*, *M*, *S*)-nets (Niederreiter)
- ▶ 1996: generalized orthogonal arrays (Lawrence)
- ▶ 1996: ordered orthogonal arrays (Mullen/Schmid)
- 1996: Constructions from algebraic curves (Niederreiter/Xing)
- 1999: MacWilliams identities, LP bounds, association scheme (WJM/Stinson)
- late 90s+: Many new constructions (Adams/Edel/Bierbrauer/et al.)

<ロ> (日) (日) (日) (日) (日)

- 1967: Sobol' sequences (I. Sobol') [also Halton/Faure/ Hammersley sequences]
- ▶ **1987:** (*T*, *M*, *S*)-nets (Niederreiter)
- ▶ 1996: generalized orthogonal arrays (Lawrence)
- ▶ 1996: ordered orthogonal arrays (Mullen/Schmid)
- 1996: Constructions from algebraic curves (Niederreiter/Xing)
- 1999: MacWilliams identities, LP bounds, association scheme (WJM/Stinson)
- late 90s+: Many new constructions (Adams/Edel/Bierbrauer/et al.)
- 2004+: Improved bounds (Schmid/Schürer/Bierbrauer/Barg/Purkayastha/Trinker/Visentin)

What is a (T, M, S)-Net?

Harald Niederrieter

イロト イヨト イヨト イヨト

æ

A (T, M, S)-net in base q

What is a (T, M, S)-Net?

Harald Niederrieter

글 > 글

A (T, M, S)-net in base q is a set \mathcal{N} of q^M points in the half-open S-dimensional Euclidean cube $[0, 1)^S$

What is a (T, M, S)-Net?

Harald Niederrieter

▲ 同 ▶ | ▲ 臣 ▶

A (T, M, S)-net in base q is a set \mathcal{N} of q^M points in the half-open S-dimensional Euclidean cube $[0, 1)^S$ with the property that every elementary interval

$$\left[\frac{a_1}{q^{d_1}},\frac{a_1+1}{q^{d_1}}\right)\times \left[\frac{a_2}{q^{d_2}},\frac{a_2+1}{q^{d_2}}\right)\times\cdots\times \left[\frac{a_5}{q^{d_5}},\frac{a_5+1}{q^{d_5}}\right)$$

of volume q^{T-M}

What is a (T, M, S)-Net?

Harald Niederrieter

A (T, M, S)-net in base q is a set \mathcal{N} of q^M points in the half-open S-dimensional Euclidean cube $[0, 1)^S$ with the property that every elementary interval

$$\left[\frac{a_1}{q^{d_1}},\frac{a_1+1}{q^{d_1}}\right)\times \left[\frac{a_2}{q^{d_2}},\frac{a_2+1}{q^{d_2}}\right)\times\cdots\times \left[\frac{a_5}{q^{d_5}},\frac{a_5+1}{q^{d_5}}\right)$$

of volume q^{T-M} (i.e., with $d_1 + d_2 + \cdots + d_S = M - T$)

What is a (T, M, S)-Net?

Harald Niederrieter

A (T, M, S)-net in base q is a set \mathcal{N} of q^M points in the half-open S-dimensional Euclidean cube $[0, 1)^S$ with the property that every elementary interval

$$\left[rac{a_1}{q^{d_1}},rac{a_1+1}{q^{d_1}}
ight) imes \left[rac{a_2}{q^{d_2}},rac{a_2+1}{q^{d_2}}
ight) imes\cdots imes \left[rac{a_S}{q^{d_S}},rac{a_S+1}{q^{d_S}}
ight)$$

of volume q^{T-M} (i.e., with $d_1 + d_2 + \cdots + d_S = M - T$) contains exactly q^T points from \mathcal{N} .

Simple Example of a (T, M, S)-Net

 binary code with minimum distance three • four points in $[0,1)^2$

・ロン ・回と ・ヨン・

Simple Example of a (T, M, S)-Net

- binary code with minimum distance three
- ► C = {000000, 111001, 001110, 110111}

- ▶ four points in [0,1)²

イロト イヨト イヨト イヨト

Simple Example of a (T, M, S)-Net

- binary code with minimum distance three
- ► C = {000000, 111001, 001110, 110111}
- partition into two groups of three coords, insert decimal points

- four points in $[0,1)^2$

Simple Example of a (T, M, S)-Net

- binary code with minimum distance three
- ► C = {000000, 111001, 001110, 110111}
- partition into two groups of three coords, insert decimal points

0	0	0	0	0	0
1	1	1	0	0	1
0	0	1	1	1	0
1	1	0	1	1	1

- four points in $[0,1)^2$

Simple Example of a (T, M, S)-Net

- binary code with minimum distance three
- ► C = {000000, 111001, 001110, 110111}
- partition into two groups of three coords, insert decimal points

.0	0	0	.0	0	0
.1	1	1	.0	0	1
.0	0	1	.1	1	0
.1	1	0	.1	1	1

- four points in $[0,1)^2$

< ∃⇒

Orthogonal Array Property

• We consider an $m \times n$ array A over \mathbb{F}_q

・ロト ・日本 ・モト ・モト

Orthogonal Array Property

- We consider an $m \times n$ array A over \mathbb{F}_q
- ► "OA property": for a subset T of the columns, does the projection of A onto these columns contain every |T|-tuple over F_q equally often?

イロト イポト イヨト イヨト

Orthogonal Array Property

- We consider an $m \times n$ array A over \mathbb{F}_q
- ► "OA property": for a subset T of the columns, does the projection of A onto these columns contain every |T|-tuple over F_q equally often?
- ► orthogonal array of strength t: A has the OA property with respect to any set T of t or fewer columns

イロト イヨト イヨト イヨト

Orthogonal Array Property

- We consider an $m \times n$ array A over \mathbb{F}_q
- ► "OA property": for a subset T of the columns, does the projection of A onto these columns contain every |T|-tuple over F_q equally often?
- orthogonal array of strength t: A has the OA property with respect to any set T of t or fewer columns
- ► ordered orthogonal array: Now assume n = sℓ and columns are labelled {(i, j) : 1 ≤ i ≤ s, 1 ≤ j ≤ ℓ}.

イロト イポト イヨト イヨト

Ordered Orthogonal Arrays

► "OA property" with respect to column set T: projection of A onto these columns contains every |T|-tuple over F_q equally often

イロト イヨト イヨト イヨト
Ordered Orthogonal Arrays

- ► "OA property" with respect to column set T: projection of A onto these columns contains every |T|-tuple over F_q equally often
- ► ordered orthogonal array: Now assume n = sℓ and columns are labelled {(i, j) : 1 ≤ i ≤ s, 1 ≤ j ≤ ℓ}

<ロ> (日) (日) (日) (日) (日)

Ordered Orthogonal Arrays

- ► "OA property" with respect to column set T: projection of A onto these columns contains every |T|-tuple over F_q equally often
- ► ordered orthogonal array: Now assume n = sℓ and columns are labelled {(i, j) : 1 ≤ i ≤ s, 1 ≤ j ≤ ℓ}
- ▶ a set T of columns is "left-justified" if it contains (i, j 1) whenever it contains (i, j) with j > 1

イロト イポト イヨト イヨト

Ordered Orthogonal Arrays

- ► "OA property" with respect to column set T: projection of A onto these columns contains every |T|-tuple over F_q equally often
- ► ordered orthogonal array: Now assume n = sℓ and columns are labelled {(i, j) : 1 ≤ i ≤ s, 1 ≤ j ≤ ℓ}
- ▶ a set T of columns is "left-justified" if it contains (i, j − 1) whenever it contains (i, j) with j > 1
- ordered orthogonal array of strength t: A enjoys the OA property for every left-justified set of t or fewer columns

イロト イヨト イヨト イヨト

Ordered Orthogonal Arrays

- ► "OA property" with respect to column set T: projection of A onto these columns contains every |T|-tuple over F_q equally often
- ► ordered orthogonal array: Now assume n = sℓ and columns are labelled {(i, j) : 1 ≤ i ≤ s, 1 ≤ j ≤ ℓ}
- ▶ a set T of columns is "left-justified" if it contains (i, j − 1) whenever it contains (i, j) with j > 1
- ordered orthogonal array of strength t: A enjoys the OA property for every left-justified set of t or fewer columns
- ▶ **Lawrence/Mullen/Schmid:** $\exists (T, M, S)$ -net in base $q \Leftrightarrow \exists OOA \text{ over } \mathbb{F}_q \text{ with } q^m \text{ rows, } s = S, \ell = t = M T.$

イロト イヨト イヨト イヨト

The Theorem of Mullen & Schmid and (indep.) Lawrence

Theorem (1996): $\exists (T, M, S)$ -net in base $q \Leftrightarrow \exists OOA$ over \mathbb{F}_q with q^m rows, s = S, $\ell = t = M - T$

Idea of Proof

$$\mathcal{N} = \{ \left(rac{0}{4}, rac{0}{4}
ight), \left(rac{1}{4}, rac{3}{4}
ight), \left(rac{2}{4}, rac{2}{4}
ight), \left(rac{3}{4}, rac{1}{4}
ight) \}$$

 $T = \{(1,1),(1,2)\}$

▲ロン ▲御と ▲注と ▲注と

Idea of Proof

$$\mathcal{N} = \{(.00, .00), (.01, .11), (.10, .10), (.11, .01)\}$$

 $T = \{(2,1), (2,2)\}$

Idea of Proof

$$\mathcal{N} = \{(.00, .00), (.01, .11), (.10, .10), (.11, .01)\}$$

 $T = \{(1,1), (2,1)\}$

・ロン ・四と ・ヨン ・ヨン

Nets from Many Sources

two mutually orthogonal latin squares of order five (color/height)

Image: A math a math

Niederreiter/Xing Construction (Simplified)

• Let $N = \{P_1, \ldots, P_s\}$ be a subset of \mathbb{F}_q of size s, let $k \ge 0$

・ロト ・回ト ・ヨト ・ヨト

Niederreiter/Xing Construction (Simplified)

- Let $N = \{P_1, \ldots, P_s\}$ be a subset of \mathbb{F}_q of size s, let $k \ge 0$
- ► Reed-Solomon code has a codeword for each polynomial f(x) of degree ≤ k:

$$c_f = [f(P_1), f(P_2), \ldots, f(P_s)]$$

イロン イヨン イヨン イヨン

Niederreiter/Xing Construction (Simplified)

- Let $N = \{P_1, \ldots, P_s\}$ be a subset of \mathbb{F}_q of size s, let $k \ge 0$
- ► Reed-Solomon code has a codeword for each polynomial f(x) of degree ≤ k:

$$c_f = [f(P_1), f(P_2), \ldots, f(P_s)]$$

▶ a non-zero polynomial of degree at most *k* has at most *k* roots

イロト イポト イヨト イヨト

Niederreiter/Xing Construction (Simplified)

- Let $N = \{P_1, \ldots, P_s\}$ be a subset of \mathbb{F}_q of size s, let $k \ge 0$
- ► Reed-Solomon code has a codeword for each polynomial f(x) of degree ≤ k:

$$c_f = [f(P_1), f(P_2), \ldots, f(P_s)]$$

- ▶ a non-zero polynomial of degree at most k has at most k roots
- ... counting multiplicities!

イロン イヨン イヨン イヨン

Niederreiter/Xing Construction (Simplified)

- Let $N = \{P_1, \ldots, P_s\}$ be a subset of \mathbb{F}_q of size s, let $k \ge 0$
- ► Reed-Solomon code has a codeword for each polynomial f(x) of degree ≤ k:

$$c_f = [f(P_1), f(P_2), \ldots, f(P_s)]$$

- ▶ a non-zero polynomial of degree at most k has at most k roots
- ... counting multiplicities!
- So take *SM*-tuple (M = k + 1)

 $\left[f(P_1), f'(P_1), \dots, f^{(k)}(P_1) | \dots | f(P_s), f'(P_s), \dots, f^{(k)}(P_s)\right]$

イロン イ部ン イヨン イヨン 三日

to get a powerful (T, M, S)-net

Niederreiter/Xing Construction (Simplified)

- Let $N = \{P_1, \ldots, P_s\}$ be a subset of \mathbb{F}_q of size s, let $k \ge 0$
- ► Reed-Solomon code has a codeword for each polynomial f(x) of degree ≤ k:

$$c_f = [f(P_1), f(P_2), \ldots, f(P_s)]$$

- ▶ a non-zero polynomial of degree at most k has at most k roots
- ... counting multiplicities!
- So take *SM*-tuple (M = k + 1)

 $\left[f(P_1), f'(P_1), \dots, f^{(k)}(P_1) | \dots | f(P_s), f'(P_s), \dots, f^{(k)}(P_s)\right]$

to get a powerful (T, M, S)-net

 They show that the same works over algebraic curves (global function fields)

Codes for the Rosenbloom-Tsfasman Metric

▶ the dual of a linear OA is an error-correcting code

・ロン ・回 と ・ヨン ・ヨン

Codes for the Rosenbloom-Tsfasman Metric

- ▶ the dual of a linear OA is an error-correcting code
- the dual of a linear OOA is a code for the Rosenbloom-Tsfasman metric

イロン イヨン イヨン イヨン

Codes for the Rosenbloom-Tsfasman Metric

- the dual of a linear OA is an error-correcting code
- the dual of a linear OOA is a code for the Rosenbloom-Tsfasman metric
- Research Problem: Are there any non-trivial perfect codes in the Rosenbloom-Tsfasman metric?

<ロ> <同> <同> <同> < 同> < 同>

Part II: Resilient Functions

・ロト ・回ト ・ヨト ・ヨト

Resilient Functions

How can a code be used to bolster randomness?

William J. Martin Abusing Codes

Resilient Functions

イロト イヨト イヨト イヨト

Resilient Functions

We have a secret string x. An opponent learns t bits of x, but we don't know which ones.

After applying function f, we guarantee that our opponents knows nothing.

Image: A math a math

Key Results

▶ 1985: The bit extraction problem

(Chor/Goldreich/Håstad/Friedman/Rudich/Smolensky)

イロン イヨン イヨン イヨン

Key Results

- 1985: The bit extraction problem (Chor/Goldreich/Håstad/Friedman/Rudich/Smolensky)
- 1988: Privacy amplification by public discussion (Bennett/Brassard/Robert)

イロト イヨト イヨト イヨト

Key Results

- 1985: The bit extraction problem (Chor/Goldreich/Håstad/Friedman/Rudich/Smolensky)
- 1988: Privacy amplification by public discussion (Bennett/Brassard/Robert)
- ▶ 1993: Equivalent to large set of OA (Stinson)

イロト イヨト イヨト イヨト

Key Results

- 1985: The bit extraction problem (Chor/Goldreich/Håstad/Friedman/Rudich/Smolensky)
- 1988: Privacy amplification by public discussion (Bennett/Brassard/Robert)
- ▶ 1993: Equivalent to large set of OA (Stinson)
- ▶ 1995: First non-linear examples (Stinson/Massey)

イロト イヨト イヨト イヨト

Key Results

- 1985: The bit extraction problem (Chor/Goldreich/Håstad/Friedman/Rudich/Smolensky)
- 1988: Privacy amplification by public discussion (Bennett/Brassard/Robert)
- ▶ 1993: Equivalent to large set of OA (Stinson)
- ▶ 1995: First non-linear examples (Stinson/Massey)
- ▶ **1997:** All-or-nothing transforms (Rivest)

<ロ> (日) (日) (日) (日) (日)

Key Results

- 1985: The bit extraction problem (Chor/Goldreich/Håstad/Friedman/Rudich/Smolensky)
- 1988: Privacy amplification by public discussion (Bennett/Brassard/Robert)
- ▶ 1993: Equivalent to large set of OA (Stinson)
- ▶ 1995: First non-linear examples (Stinson/Massey)
- ▶ **1997:** All-or-nothing transforms (Rivest)
- 1999+: Applications to fault-tolerant distributed computing, key distribution, quantum cryptography, etc.

イロト イヨト イヨト イヨト

The Linear Case (Chor, et al.)

• Let G be a generator matrix for an $[n, k, d]_q$ -code

・ロン ・回と ・ヨン・

The Linear Case (Chor, et al.)

- Let G be a generator matrix for an $[n, k, d]_q$ -code
- Define $f : \mathbb{F}_q^n \to \mathbb{F}_q^k$ via

f(x) = Gx

・ロン ・回と ・ヨン ・ヨン

The Linear Case (Chor, et al.)

- Let G be a generator matrix for an $[n, k, d]_q$ -code
- Define $f : \mathbb{F}_q^n \to \mathbb{F}_q^k$ via

$$f(x) = Gx$$

If t ≤ d − 1 entries of x are deterministic and the rest are random and fully independent (denote D_{T,A})

イロト イヨト イヨト イヨト

The Linear Case (Chor, et al.)

- Let G be a generator matrix for an $[n, k, d]_q$ -code
- Define $f : \mathbb{F}_q^n \to \mathbb{F}_q^k$ via

$$f(x) = Gx$$

- If t ≤ d − 1 entries of x are deterministic and the rest are random and fully independent (denote D_{T,A})
- ... then f(x) is uniformly distributed over \mathbb{F}_q^k

<ロ> (日) (日) (日) (日) (日)

The Linear Case (Chor, et al.)

- Let G be a generator matrix for an $[n, k, d]_q$ -code
- Define $f : \mathbb{F}_q^n \to \mathbb{F}_q^k$ via

$$f(x) = Gx$$

- If t ≤ d − 1 entries of x are deterministic and the rest are random and fully independent (denote D_{T,A})
- ... then f(x) is uniformly distributed over \mathbb{F}_q^k
- ► Why? Any linear combination of entries of f(x) is a dot product of x with some codeword

イロン イヨン イヨン イヨン

The Linear Case (Chor, et al.)

- Let G be a generator matrix for an $[n, k, d]_q$ -code
- Define $f : \mathbb{F}_q^n \to \mathbb{F}_q^k$ via

$$f(x) = Gx$$

- If t ≤ d − 1 entries of x are deterministic and the rest are random and fully independent (denote D_{T,A})
- ... then f(x) is uniformly distributed over \mathbb{F}_q^k
- Why? Any linear combination of entries of f(x) is a dot product of x with some codeword
- So any non-trivial linear function of entries involves at least one random input position

・ロト ・回ト ・ヨト ・ヨト

True Random Bit Generators (Sunar/Stinson/WJM)

Random bits are expensive

イロト イヨト イヨト イヨト

True Random Bit Generators (Sunar/Stinson/WJM)

- Random bits are expensive
- Device must tap some physical source of known behavior

イロト イヨト イヨト イヨト
True Random Bit Generators (Sunar/Stinson/WJM)

- Random bits are expensive
- Device must tap some physical source of known behavior
- Even the best sources of randomness have "quiet" periods

True Random Bit Generators (Sunar/Stinson/WJM)

- Random bits are expensive
- Device must tap some physical source of known behavior
- Even the best sources of randomness have "quiet" periods
- Assuming 80% of input bits are random samples and 20% are from quiet periods

- ∢ ⊒ →

True Random Bit Generators (Sunar/Stinson/WJM)

- Random bits are expensive
- Device must tap some physical source of known behavior
- Even the best sources of randomness have "quiet" periods
- Assuming 80% of input bits are random samples and 20% are from quiet periods
- Resilient function collapses samples to strings one-tenth the size

- ∢ ⊒ ⊳

True Random Bit Generators (Sunar/Stinson/WJM)

- Random bits are expensive
- Device must tap some physical source of known behavior
- Even the best sources of randomness have "quiet" periods
- Assuming 80% of input bits are random samples and 20% are from quiet periods
- Resilient function collapses samples to strings one-tenth the size
- What if quiet period is longer than expected?

イロト イポト イヨト イヨト

Higher Weights (Generalized Hamming Weights)

Start with a binary linear [n, k, d]-code

イロン イヨン イヨン イヨン

3

Higher Weights (Generalized Hamming Weights)

- Start with a binary linear [n, k, d]-code
- ▶ Define A_h^(ℓ) as number of linear subcodes C', dim C' = ℓ, | supp C'| = h

イロン イヨン イヨン イヨン

Higher Weights (Generalized Hamming Weights)

- Start with a binary linear [n, k, d]-code
- ▶ Define A_h^(ℓ) as number of linear subcodes C', dim C' = ℓ, | supp C'| = h
- E.g. $A_h^{(1)} = A_h$ for h > 0, $A_h^{(\ell)} = 0$ for h < d except $A_0^{(0)} = 1$

イロト イポト イヨト イヨト

2

Higher Weights (Generalized Hamming Weights)

- ▶ Start with a binary linear [*n*, *k*, *d*]-code
- ▶ Define A_h^(ℓ) as number of linear subcodes C', dim C' = ℓ, | supp C' | = h
- ► E.g. $A_h^{(1)} = A_h$ for h > 0, $A_h^{(\ell)} = 0$ for h < d except $A_0^{(0)} = 1$
- The number of *i*-subsets of coordinates that contain the support of exactly 2^r codewords is shown to be

$$B_{i,r} = \sum_{\ell=0}^{k} \sum_{h=0}^{n} (-1)^{\ell-r} 2^{\binom{\ell-r}{2}} \binom{n-h}{i-h} \begin{bmatrix} \ell \\ r \end{bmatrix} A_{h}^{(\ell)}$$

イロト イポト イヨト イヨト

Higher Weights (Generalized Hamming Weights)

- Start with a binary linear [n, k, d]-code
- ▶ Define A_h^(ℓ) as number of linear subcodes C', dim C' = ℓ, | supp C' | = h
- E.g. $A_h^{(1)} = A_h$ for h > 0, $A_h^{(\ell)} = 0$ for h < d except $A_0^{(0)} = 1$
- The number of *i*-subsets of coordinates that contain the support of exactly 2^r codewords is shown to be

$$B_{i,r} = \sum_{\ell=0}^{k} \sum_{h=0}^{n} (-1)^{\ell-r} 2^{\binom{\ell-r}{2}} \binom{n-h}{i-h} \begin{bmatrix} \ell \\ r \end{bmatrix} A_{h}^{(\ell)}$$

► Lemma (Sunar/WJM): Let X be a random variable taking values in $\{0,1\}^n$ according to a probability distribution $\mathcal{D}_{T,A}$. Then $\operatorname{Prob}[H_{\operatorname{out}} = k - r \mid |T| = i] = B_{i,r} {n \choose i}^{-1}$.

・ロン ・回と ・ヨン・

3

A Research Problem

Higher weight enumerators are known only for very few codes:

MDS codes: partial information only (Dougherty, et al.)

イロト イヨト イヨト イヨト

A Research Problem

Higher weight enumerators are known only for very few codes:

- MDS codes: partial information only (Dougherty, et al.)
- Golay codes (Sunar/WJM, probably earlier)

イロト イヨト イヨト イヨト

A Research Problem

Higher weight enumerators are known only for very few codes:

- MDS codes: partial information only (Dougherty, et al.)
- Golay codes (Sunar/WJM, probably earlier)
- Hamming codes

Can we work out these statistics for the other standard families of codes?

Part III: Fuzzy Extractors

・ロト ・回ト ・ヨト ・ヨト

Codes for Biometrics

How can we eliminate noise if we are not permitted to choose our codewords?

William J. Martin Abusing Codes

イロト イヨト イヨト イヨト

Selected References

▶ **1990s:** Ad-hoc mix of protocols (e.g., quantum oblivious transfer, crypto over noisy channels)

イロト イヨト イヨト イヨト

Selected References

- ▶ **1990s:** Ad-hoc mix of protocols (e.g., quantum oblivious transfer, crypto over noisy channels)
- ▶ 1987,1994: Patents for iris recognition systems

イロト イヨト イヨト イヨト

2

Selected References

- ▶ **1990s:** Ad-hoc mix of protocols (e.g., quantum oblivious transfer, crypto over noisy channels)
- ▶ 1987,1994: Patents for iris recognition systems
- 2008: definition of "fuzzy extractor" (Dodis/Ostrovsky/Reyzin/Smith)

イロト イヨト イヨト イヨト

Selected References

- ▶ **1990s:** Ad-hoc mix of protocols (e.g., quantum oblivious transfer, crypto over noisy channels)
- ▶ 1987,1994: Patents for iris recognition systems
- 2008: definition of "fuzzy extractor" (Dodis/Ostrovsky/Reyzin/Smith)
- 2009: CD fingerprinting (Hammouri/Dana/Sunar)

イロト イヨト イヨト イヨト

Selected References

- ▶ **1990s:** Ad-hoc mix of protocols (e.g., quantum oblivious transfer, crypto over noisy channels)
- ▶ 1987,1994: Patents for iris recognition systems
- 2008: definition of "fuzzy extractor" (Dodis/Ostrovsky/Reyzin/Smith)
- 2009: CD fingerprinting (Hammouri/Dana/Sunar)
- > 2009: physically unclonable functions (WPI team)

・ロト ・同ト ・ヨト ・ヨト

Fuzzy Extractors

・ロン ・四と ・ヨン ・ヨン

Fuzzy Extractors

Metric space \mathcal{M} and function $f : \mathcal{M} \times \{0,1\}^* \to \{0,1\}^*$ such that f(w',x) = f(w,x) provided x valid for w and $d(w',w) < \epsilon$.

イロト イヨト イヨト イヨト

Fuzzy Extractor: Toy Example

・ロン ・四と ・ヨン ・ヨン

Fuzzy Extractor: Toy Example

Baseline reading w = 3 is obtained from temporal reading w' = 2and hint x = D.

But w is not recoverable from either w'_{1} or x alone. z_{2} , z_{2}

Code-Offset Construction (Dodis, et al.)

Fuzzy extractor for Hamming metric:

Start with a binary [n, k, d]-code with generator matrix G

イロト イヨト イヨト イヨト

Code-Offset Construction (Dodis, et al.)

Fuzzy extractor for Hamming metric:

- Start with a binary [n, k, d]-code with generator matrix G
- ▶ For each user, generate a random k-bit string m

イロト イヨト イヨト イヨト

Code-Offset Construction (Dodis, et al.)

Fuzzy extractor for Hamming metric:

- Start with a binary [n, k, d]-code with generator matrix G
- ▶ For each user, generate a random *k*-bit string *m*
- For baseline reading w, helper data is x = w + mG

Code-Offset Construction (Dodis, et al.)

Fuzzy extractor for Hamming metric:

- Start with a binary [n, k, d]-code with generator matrix G
- ▶ For each user, generate a random *k*-bit string *m*
- For baseline reading w, helper data is x = w + mG
- New reading w' is assumed to be within distance d/2 of w in large Hamming space

イロト イヨト イヨト イヨト

Code-Offset Construction (Dodis, et al.)

Fuzzy extractor for Hamming metric:

- Start with a binary [n, k, d]-code with generator matrix G
- ▶ For each user, generate a random *k*-bit string *m*
- For baseline reading w, helper data is x = w + mG
- ▶ New reading w' is assumed to be within distance d/2 of w in large Hamming space
- ► To recover *m* from *x* and *w*', decode w' + x = mG + (w w')

イロト イポト イヨト イヨト

Code-Offset Construction (Dodis, et al.)

Fuzzy extractor for Hamming metric:

- Start with a binary [n, k, d]-code with generator matrix G
- ▶ For each user, generate a random *k*-bit string *m*
- For baseline reading w, helper data is x = w + mG
- ▶ New reading w' is assumed to be within distance d/2 of w in large Hamming space
- ► To recover *m* from *x* and *w*', decode w' + x = mG + (w w')
- Provided k and d are both linear in n, recovery of m from just x or w' is hard

イロン イヨン イヨン イヨン

2

A Research Problem

Fuzzy extractors are known for several metrics:

Hamming

イロン イヨン イヨン イヨン

3

A Research Problem

Fuzzy extractors are known for several metrics:

- Hamming
- Set difference (fuzzy vault scheme of Juels/Sudan)

<ロ> (日) (日) (日) (日) (日)

A Research Problem

Fuzzy extractors are known for several metrics:

- Hamming
- Set difference (fuzzy vault scheme of Juels/Sudan)
- Edit distance

<ロ> (日) (日) (日) (日) (日)

A Research Problem

Fuzzy extractors are known for several metrics:

- Hamming
- Set difference (fuzzy vault scheme of Juels/Sudan)
- Edit distance

Can we build efficient fuzzy extractors for the Euclidean metric?

Part IV: The PCP Theorem

イロン イヨン イヨン イヨン

Э

Codes and Computational Complexity

How does coding theory make computational problems more robust?

イロン イヨン イヨン イヨン

Probabilistically Checkable Proofs

Randomized Turing Machine uses O(r(n)) random bits and makes O(q(n)) queries to the proof π .

If π is a correct proof, x is accepted with probability one; if not, x is rejected with probability at least $\frac{1}{2}$.

イロン イヨン イヨン イヨン
Probabilistically Checkable Proofs

William J. Martin Abusing Codes

< ∃⇒

Key Results

▶ 1980s: Cryptography, IP, AM, constrained NP verifiers, ...

・ロト ・回ト ・ヨト ・ヨト

Key Results

- ▶ 1980s: Cryptography, IP, AM, constrained NP verifiers, ...
- 1990: IP = PSPACE (Shamir), MIP = NEXP (Babai/Fortnow/Lund)

イロト イヨト イヨト イヨト

Key Results

- ▶ 1980s: Cryptography, IP, AM, constrained NP verifiers, ...
- 1990: IP = PSPACE (Shamir), MIP = NEXP (Babai/Fortnow/Lund)
- ▶ 1992: NP ⊆ PCP[O(log n), O(log n)] (Arora/Safra, cf. Feige, et al.)

イロン イヨン イヨン イヨン

- ▶ 1980s: Cryptography, IP, AM, constrained NP verifiers, ...
- 1990: IP = PSPACE (Shamir), MIP = NEXP (Babai/Fortnow/Lund)
- ▶ 1992: NP ⊆ PCP[O(log n), O(log n)] (Arora/Safra, cf. Feige, et al.)
- 1992: NP = PCP[O(log n), O(1)] (Arora/Lund/Motwani/Sudan/Szegedy)

イロン イ団 とくほと くほとう

- ▶ 1980s: Cryptography, IP, AM, constrained NP verifiers, ...
- 1990: IP = PSPACE (Shamir), MIP = NEXP (Babai/Fortnow/Lund)
- ▶ 1992: $NP \subseteq PCP[O(\log n), O(\log n)]$ (Arora/Safra, cf. Feige, et al.)
- 1992: NP = PCP[O(log n), O(1)] (Arora/Lund/Motwani/Sudan/Szegedy)
- ▶ 1990s: Implications for hardness of approximation

イロン イ団 とくほと くほとう

- ▶ 1980s: Cryptography, IP, AM, constrained NP verifiers, ...
- 1990: IP = PSPACE (Shamir), MIP = NEXP (Babai/Fortnow/Lund)
- ▶ 1992: $NP \subseteq PCP[O(\log n), O(\log n)]$ (Arora/Safra, cf. Feige, et al.)
- 1992: NP = PCP[O(log n), O(1)] (Arora/Lund/Motwani/Sudan/Szegedy)
- ▶ 1990s: Implications for hardness of approximation
- ▶ 1999: New hardness-based proof of PCP Theorem (Dinur)

イロト イヨト イヨト イヨト

- ▶ 1980s: Cryptography, IP, AM, constrained NP verifiers, ...
- 1990: IP = PSPACE (Shamir), MIP = NEXP (Babai/Fortnow/Lund)
- ▶ 1992: $NP \subseteq PCP[O(\log n), O(\log n)]$ (Arora/Safra, cf. Feige, et al.)
- 1992: NP = PCP[O(log n), O(1)] (Arora/Lund/Motwani/Sudan/Szegedy)
- ▶ 1990s: Implications for hardness of approximation
- ▶ 1999: New hardness-based proof of PCP Theorem (Dinur)
- ▶ 2001: $NP = PCP_{1-\epsilon, \frac{1}{2}}[O(\log n), 3]$ (Håstad)

イロン イ部ン イヨン イヨン 三日

PCP

Our Turing machine V (the "Verifier" of the proof) has input x on tape and a "proof" π claiming x ∈ L as auxiliary input

イロト イヨト イヨト イヨト

PCP

- Our Turing machine V (the "Verifier" of the proof) has input x on tape and a "proof" π claiming x ∈ L as auxiliary input
- output is $V^{\pi}(x) \in \{0,1\}$

・ロン ・回と ・ヨン ・ヨン

PCP

- Our Turing machine V (the "Verifier" of the proof) has input x on tape and a "proof" π claiming $x \in \mathcal{L}$ as auxiliary input
- output is $V^{\pi}(x) \in \{0,1\}$
- ▶ V is randomized: for |x| = n, it uses at most r(n) random bits

イロン イヨン イヨン イヨン

PCP

- Our Turing machine V (the "Verifier" of the proof) has input x on tape and a "proof" π claiming $x \in \mathcal{L}$ as auxiliary input
- output is $V^{\pi}(x) \in \{0,1\}$
- ▶ V is randomized: for |x| = n, it uses at most r(n) random bits
- V has random access to the proof: for |x| = n, it queries at most q(n) bits from π

イロト イヨト イヨト イヨト

PCP

- Our Turing machine V (the "Verifier" of the proof) has input x on tape and a "proof" π claiming $x \in \mathcal{L}$ as auxiliary input
- output is $V^{\pi}(x) \in \{0,1\}$
- ▶ V is randomized: for |x| = n, it uses at most r(n) random bits
- V has random access to the proof: for |x| = n, it queries at most q(n) bits from π
- for $x \in \mathcal{L}$, there exists π such that $Prob[V^{\pi}(x) = 1] = 1$

イロン イ部ン イヨン イヨン 三日

PCP

• Our Turing machine V (the "Verifier" of the proof) has input x on tape and a "proof" π claiming $x \in \mathcal{L}$ as auxiliary input

• output is
$$V^{\pi}(x) \in \{0,1\}$$

- ▶ V is randomized: for |x| = n, it uses at most r(n) random bits
- V has random access to the proof: for |x| = n, it queries at most q(n) bits from π
- for $x \in \mathcal{L}$, there exists π such that $\operatorname{Prob}[V^{\pi}(x) = 1] = 1$
- for $x \notin \mathcal{L}$, for all π such that $\operatorname{Prob}[V^{\pi}(x) = 0] \geq \frac{1}{2}$

イロン イ部ン イヨン イヨン 三日

PCP

• Our Turing machine V (the "Verifier" of the proof) has input x on tape and a "proof" π claiming $x \in \mathcal{L}$ as auxiliary input

• output is
$$V^{\pi}(x) \in \{0,1\}$$

- ▶ V is randomized: for |x| = n, it uses at most r(n) random bits
- V has random access to the proof: for |x| = n, it queries at most q(n) bits from π
- for $x \in \mathcal{L}$, there exists π such that $Prob[V^{\pi}(x) = 1] = 1$
- for $x \notin \mathcal{L}$, for all π such that $\operatorname{Prob}[V^{\pi}(x) = 0] \geq \frac{1}{2}$
- the set of languages for which such a polynomial time V exists is denoted PCP[r(n), q(n)]

・ロト ・回ト ・ヨト ・ヨト

Recap PCP Theorems

< □ > < □ > < □ > < □ > < □ > .

æ

▶ **1992:** $NP \subseteq PCP[O(\log n), O(\log n)]$ (Arora/Safra)

William J. Martin Abusing Codes

Recap PCP Theorems

イロト イヨト イヨト イヨト

- ▶ **1992:** $NP \subseteq PCP[O(\log n), O(\log n)]$ (Arora/Safra)
- 1992: NP = PCP[O(log n), O(1)] (Arora/Lund/Motwani/Sudan/Szegedy)

Recap PCP Theorems

イロト イヨト イヨト イヨト

- ▶ **1992:** $NP \subseteq PCP[O(\log n), O(\log n)]$ (Arora/Safra)
- 1992: NP = PCP[O(log n), O(1)] (Arora/Lund/Motwani/Sudan/Szegedy)
- ▶ **1999:** New hardness-based PCP Theorem (Dinur, employing expanding constraint graphs)

Recap PCP Theorems

イロト イヨト イヨト イヨト

- ▶ **1992:** $NP \subseteq PCP[O(\log n), O(\log n)]$ (Arora/Safra)
- 1992: NP = PCP[O(log n), O(1)] (Arora/Lund/Motwani/Sudan/Szegedy)
- ▶ **1999:** New hardness-based PCP Theorem (Dinur, employing expanding constraint graphs)
- ▶ 2001: NP = PCP_{1-e,¹/2}[O(log n), 3] (Håstad) where probability of accepting a correct proof can be made arbitrarily close to one

Constraint Satisfaction Problems (CSP)

alphabet Σ

<ロ> <部> < 語 > < 語 > < 語 > <</p>

Constraint Satisfaction Problems (CSP)

- alphabet Σ
- ▶ graph *G*, vertices are "variables", edges are "constraints"

イロト イヨト イヨト イヨト

Constraint Satisfaction Problems (CSP)

- alphabet Σ
- ▶ graph *G*, vertices are "variables", edges are "constraints"
- clauses $c(e) \subseteq \Sigma \times \Sigma$

イロト イヨト イヨト イヨト

Constraint Satisfaction Problems (CSP)

- alphabet Σ
- ▶ graph *G*, vertices are "variables", edges are "constraints"
- clauses $c(e) \subseteq \Sigma \times \Sigma$
- mapping a : V(G) → Σ is valid if (a(x), a(y)) ∈ c(e) whenever e = (x, y)

イロン イヨン イヨン イヨン

Constraint Satisfaction Problems (CSP)

- alphabet Σ
- ▶ graph *G*, vertices are "variables", edges are "constraints"
- clauses $c(e) \subseteq \Sigma \times \Sigma$
- mapping a : V(G) → Σ is valid if (a(x), a(y)) ∈ c(e) whenever e = (x, y)
- E.g., 3-coloring: $c(e) = \{(1,2), (1,3), (2,1), (2,3), (3,1), (3,2)\}$ for all e

イロト イポト イヨト イヨト

Constraint Satisfaction Problems (CSP)

- alphabet Σ
- ▶ graph *G*, vertices are "variables", edges are "constraints"
- clauses $c(e) \subseteq \Sigma \times \Sigma$
- mapping a : V(G) → Σ is valid if (a(x), a(y)) ∈ c(e) whenever e = (x, y)
- E.g., 3-coloring: $c(e) = \{(1,2), (1,3), (2,1), (2,3), (3,1), (3,2)\}$ for all e
- So CSP is NP-hard

イロト イポト イヨト イヨト

Coding Theory Key to Proof

If we are only going to sample a small portion of π, then an error-plagued version of π will also work with high probability

イロト イヨト イヨト イヨト

Coding Theory Key to Proof

- If we are only going to sample a small portion of π, then an error-plagued version of π will also work with high probability
- ► so the proof π is "self-correcting"; may as well make it a codeword

<ロ> <同> <同> <同> < 同> < 同>

Coding Theory Key to Proof

- If we are only going to sample a small portion of π, then an error-plagued version of π will also work with high probability
- \blacktriangleright so the proof π is "self-correcting"; may as well make it a codeword
- Target problem: CSP with t constraints each involving w variables

<ロ> <同> <同> <同> < 同> < 同>

Coding Theory Key to Proof

- If we are only going to sample a small portion of π, then an error-plagued version of π will also work with high probability
- ► so the proof π is "self-correcting"; may as well make it a codeword
- Target problem: CSP with t constraints each involving w variables
- assignment for each constraint is encoded using a Hadamard code

イロト イポト イヨト イヨト

Coding Theory Key to Proof

- If we are only going to sample a small portion of π, then an error-plagued version of π will also work with high probability
- ► so the proof π is "self-correcting"; may as well make it a codeword
- Target problem: CSP with t constraints each involving w variables
- assignment for each constraint is encoded using a Hadamard code
- for proof π of length *n*, encode as a small-degree polynomial

<ロ> (日) (日) (日) (日) (日)

Coding Theory Key to Proof

- If we are only going to sample a small portion of π, then an error-plagued version of π will also work with high probability
- ► so the proof π is "self-correcting"; may as well make it a codeword
- Target problem: CSP with t constraints each involving w variables
- assignment for each constraint is encoded using a Hadamard code
- for proof π of length *n*, encode as a small-degree polynomial
- ► choose q ≈ n^{1/m} and encode π as values of m-variate polynomial over F_q

・ロン ・回 と ・ 回 と ・ 回 と

Coding Theory Key to Proof

- If we are only going to sample a small portion of π, then an error-plagued version of π will also work with high probability
- \blacktriangleright so the proof π is "self-correcting"; may as well make it a codeword
- Target problem: CSP with t constraints each involving w variables
- assignment for each constraint is encoded using a Hadamard code
- for proof π of length *n*, encode as a small-degree polynomial
- ► choose q ≈ n^{1/m} and encode π as values of m-variate polynomial over F_q
- $m = \log t / \log \log t$ and $q = poly \log t$

イロン イ部ン イヨン イヨン 三日

Coding Theory Key to Proof

- If we are only going to sample a small portion of π, then an error-plagued version of π will also work with high probability
- \blacktriangleright so the proof π is "self-correcting"; may as well make it a codeword
- Target problem: CSP with t constraints each involving w variables
- assignment for each constraint is encoded using a Hadamard code
- for proof π of length *n*, encode as a small-degree polynomial
- ► choose q ≈ n^{1/m} and encode π as values of m-variate polynomial over 𝔽_q
- $m = \log t / \log \log t$ and $q = poly \log t$
- ▶ $x : H^m \to \{0, 1\}$ where $H \subseteq \mathbb{F}_q$ has size $n^{1/m}$ has low-degree extension

Hardness of Approximation Results

 (Håstad) max-3SAT is NP-hard to approximate within a ratio of > 7/8

・ロン ・回と ・ヨン・

Hardness of Approximation Results

- (Håstad) max-3SAT is NP-hard to approximate within a ratio of > 7/8
- It is NP-hard to decide if a CSP has unsat(C) = 1 or unsat(C) ≤ 1/2

イロト イヨト イヨト イヨト

Hardness of Approximation Results

- (Håstad) max-3SAT is NP-hard to approximate within a ratio of > 7/8
- It is NP-hard to decide if a CSP has unsat(C) = 1 or unsat(C) ≤ 1/2
- For some *ϵ* > 0, there is no (1 + *ϵ*)-approximate algorithm for Steiner Tree unless **P** = **NP**

イロン イヨン イヨン イヨン
A Change of Tone (T, M, S)-Nets Resilient Functions Fuzzy Extractors The PCP Theorem

Hardness of Approximation Results

- (Håstad) max-3SAT is NP-hard to approximate within a ratio of > 7/8
- It is NP-hard to decide if a CSP has unsat(C) = 1 or unsat(C) ≤ 1/2
- For some *ϵ* > 0, there is no (1 + *ϵ*)-approximate algorithm for Steiner Tree unless **P** = **NP**
- ► For some ε > 0, there is no (1 + ε)-approximate algorithm for Minimum Vertex Cover unless P = NP

イロト イヨト イヨト イヨト

2

A Change of Tone (T, M, S)-Nets Resilient Functions Fuzzy Extractors The PCP Theorem

Hardness of Approximation Results

- (Håstad) max-3SAT is NP-hard to approximate within a ratio of > 7/8
- It is NP-hard to decide if a CSP has unsat(C) = 1 or unsat(C) ≤ 1/2
- For some *ϵ* > 0, there is no (1 + *ϵ*)-approximate algorithm for Steiner Tree unless **P** = **NP**
- For some *ϵ* > 0, there is no (1 + *ϵ*)-approximate algorithm for Minimum Vertex Cover unless **P** = **NP**
- ► For some c > 1, there is no n^c-approximate algorithm for Independent Set unless P = NP

(ロ) (同) (E) (E) (E)

A Change of Tone (T, M, S)-Nets Resilient Functions Fuzzy Extractors The PCP Theorem

The End

æ

・ロト ・回ト ・モト ・モト