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1 Statement of the problem

Extending earlier ideas of Sobol’ [11], Niederreiter [6] introduced the following
definition. A (T,M, S)-net in base b is a subset N of the Euclidean unit cube
[0, 1)S of size bM enjoying the property that each elementary interval in base b

E =
S∏
i=1

[
ai
bdi

,
ai + 1
bdi

)
, 0 ≤ ai < bdi

of volume bT−M contains exactly bT points of the net. (Note that V ol(E) =
b−
∑

di .) These deterministic low-discrepancy point sets have proven powerful
in the estimate of high-dimensional integrals. The goal is to make the quality
parameter T as close to zero as possible.

Some researchers work on constructions of such nets and ideas from coding
theory have led to very powerful examples [7]. But, in many cases, we do not
know if these constructions are optimal. Therefore a theory of bounds is needed.
The problem addressed here is that of obtaining provable lower bounds on the
parameter T in terms of M , S and the base b. The theoretical breakthrough
came in several stages. First, Mullen/Schmid [9] and Lawrence [2] independently
proved an equivalnce between the Euclidean (T,M, S)-nets and combinatorial
objects call ordered orthogonal arrays. Based on these ideas, Martin and Stin-
son [3] constructed a family of association schemes analogous to the Hamming
schemes used in coding theory and established a linear programming bound for
(T,M, S)-nets. Finally, we need to apply this bound.

2 Importance of the problem

This problem is of interest to combinatorialists dealing with combinatorial de-
signs and orthogonal arrays because, for them, a (T,M, S)-net is an unusual ana-
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log of an orthogonal array and we are interested in how constructions and bounds
can be adapted to this new situation. The problem is of interest to coding the-
orists not only because of the similarity between error-correcting codes and the
duals of (T,M, S)-nets (which we won’t define here), but because these may be
useful in digital communications under a new error model, the “synchronization
channel”. But, most importantly, the constructions and bounds for (T,M, S)-
nets are of great importance to practitioners in Monte Carlo and Quasi-Monte
Carlo methods (numerical integration, simulation, global optimization). The
practitioner must choose which net to implement in complex software packages
and knowing that a given net is optimal will affect the longevity of the code and
the user’s confidence in its efficiency.

3 Contribution to the problem

In this talk, we bridge the gap between numerical finite bounds obtained using
floating point software (in this case, cplex, a powerful optimization package)
and publishable bounds in exact arithmetic and (hopefully) analytic bounds
valid for all dimensions. The problems in making this leap are many-fold. First,
the optimization software reports questionable data which cannot be trusted
enough for publication purposes. On the other hand, going directly to a com-
puter algebra system working in exact arithmetic is not feasible since linear
programming problems with tens of thousands of variables seem to be beyond
the reach of maple, etc.

Once this hurdle is conquered and provable bounds are obtained for small di-
mensions, the next contribution is to extrapolate these results to obtain bounds
for all dimensions. We sought patterns in solution families and conjectured that
this behavior continues. In some cases, we applied ideas from formal power series
to prove such bounds for an infinite family of linear programming problems of
this type. These are the first ever analytic solutions to the linear programming
problem for (T,M, S)-nets.

4 Originality of the contribution

An ordered orthogonal array OOAλ(t, s, `, b) is a λbt×s` array over an alphabet
of size b with the property that for any “left-justified” set A = {(i, j) : 1 ≤
i ≤ s, 1 ≤ j ≤ ti,

∑
ti = t} of t columns, the subarray restricted to columns

in A contains each t-tuple over b exactly λ times as a row. Mullen/Schmid
and Lawrence proved that a (T,M, S)-net in base b exists if and only if an
OOAλ(M − T, S,M − T, b) exists with λ = bT .

In [3], Martin and Stinson derived a linear programming bound for ordered
orthogonal arrays. This is a special case of a general result of Delsarte [1].

Let positive integers s, `, and b ≥ 2 be given. Let z = (z0, . . . , z`) be a vector
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of indeterminates. Define polynomials

pi(z) =

(
`−i∑
h=0

dbh − bh−1ezh

)
− b`−iz`+1−i

where z`+1 = 0.
Now if f = (f0, . . . , f`) is any (`+ 1)-tuple of nonnegative integers summing

to s we define

Pf (z) =
∏̀
i=0

pi(z)fi .

Our linear program has
(
`+s
s

)
variables and constraints, one of each for every

(` + 1)-tuple f of nonnegative integers summing to s. We will henceforth refer
to these tuples as “shapes”.

For a shape e = (e0, . . . , e`), we write

ze = ze00 · · · z
e`
` .

Now we define the constraint matrix P. For shapes e and f , the entry Pf ,e in
row f and column e is defined to be the coefficient of ze in the polynomial Pf (z).
We have one variable Af for each shape f , but the variable A0 will be treated
in a special manner by putting A0 = 1 where the zero shape is 0 ≡ (s, 0, . . . , 0).

We define the “height” of a shape e as follows:

ht(e) = e1 + 2e2 + · · ·+ `e`.

In our approach, we express the dual of the linear program of Martin and Stinson
in terms of multivariate polynomials.

For any ordered orthogonal array OOA(t, s, `, b), the number of rows is
bounded below by the objective value of any feasible solution to the follow-
ing LP:
maximize [zs0]g(z)
subject to

[ze]g(z) ≥ 0 for all e 6= 0
g(z) =

∑
eBePe(z) with

Be ≤ 0 whenever ht(e) > t
B0 = 1

Our approach is then to find families of polynomials g(z) feasible for this
problem and thereby give lower bounds for the quality parameter T of a (T, M,
S)-net for S →∞.

The case ` = 1 corresponds to the ordinary linear programming bound for
error-correcting codes and orthogonal arrays. Quite a bit is known in this case,
but almost nothing is known for the cases ` ≥ 2.

5 Non-triviality of the contribution

The solution presented here involved months of computing just to get the numer-
ical data from cplex. Next, a continued fractions technique was used to help
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maple guess various rational solutions to the optimization problem. With this
rational data in hand, we were able to make several conjectures as to what the
asymptotic behavoir should be. The most difficult step, in collaboration with
Terry Visentin at the University of Winnipeg, was to derive algebraic proofs
of these bounds. So the overall solution required tools from coding theory, op-
timization, numerical analysis, number theory, algebra and combinatorics. As
well, the theory of association schemes and ideas from combinatorial design the-
ory played a crucial role in the development of the theory that made this result
possible.
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