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Abstract. Research in the field of quantum algorithms and quan-
tum error correction is progressing at an astounding rate. There
are many good papers on both subjects, but reading even a few of
these may seem a daunting task to the newcomer.

The aim of this paper is to give a leisurely introduction to the
basic theory of quantum error correcting codes without appealing
to even the most basic notions in physics. Thus the article is not
a substitute for important papers such as [12] or [7] but rather an
advertisement for them. I would be pleased if, in addition, some
readers view this as a useful companion article if and when they go
on to read more substantial literature on the subject of quantum
error correction.

I present nothing new here. Rather, I give an elementary account
of the important theorems and proofs which appear in these fun-
damental works using only undergraduate algebra and a bit of
classical coding theory. In particular, I give a full proof of the
Knill/Laflamme theorem as well as an elementary treatment of sta-
bilizer codes. The goal is to make the literature dealing with this
exciting new area more accessible to discrete mathematicians.

1 This paper is not about quantum mechanics

What is quantum mechanics? I cannot answer that; the reader should con-
sult an expert. Because this essay is aimed at readers with little physics
background — and because I am not an authority on quantum mechanics
— I am determined to avoid any discussion of physics in this essay. It is
assumed that the reader has been exposed to the concept of quantum com-
puting and can put the abstractions discussed here in a physical context if
they so desire.



It is by no means my intent to imply that physics is irrelevant to quan-
tum error correction. It’s all about physics and the serious researcher needs
to read the literature on the subject. Instead, I aim to isolate that frag-
ment of the theory which is both introductory and explainable in purely
mathematical terms. Fortunately, we can cover quite a lot using only un-
dergraduate algebra and basic (classical) coding theory. I have chosen the
notation of standard linear algebra over the “bra” and “ket” of Dirac. I
have avoided the computation of non-zero probabilities, thus eliminating
the need for unit vectors. Quantum states are treated as points in complex
projective space, although I never make any concrete use of this language.
All of this is designed to make the core ideas accessible to an audience more
comfortable with discrete mathematics than with physics.

2 Qubits and quantum registers

We will define a qubit as a two-dimensional complex vector space with a
pre-specified orthonormal basis, which we will denote {0, 1}. A qubit in state
x consists of an ordered pair (A, x) where A is a qubit and x is any vector
in A. Many authors include the restriction ||x|| = 1, but we shall not. Every
state x is a linear combination of 0 and 1.

Fig. 1. A qubit is a two-dimensional complex vector space.



We are interested in the space of linear operators (i.e., 2 × 2 matrices)
acting on the qubit A. Each such operator can be uniquely expressed as a
linear combination of the following four matrices

I =
(

1 0
0 1

)
, σx =

(
0 1
1 0

)
, σy =

(
0 −1
1 0

)
, σz =

(
1 0
0 −1

)
.

Proposition 1. The set P = {±I,±σx,±σy,±σz} forms a group. This
group is isomorphic to the dihedral group D4.

The matrices in P are called Pauli matrices. (Be warned that some
authors extend this term to matrices iP , P ∈ P.)

Here is the basic idea of this paper. We have a collection of qubits. These
are subject to some “noise”. For example, the noise might act on each qubit
as a linear operator. We must restrict the allowable configurations of qubits
so as to be able to detect and remove (invert) any noise which is sufficiently
small. We try to do this by expressing the noise on each qubit as a linear
combination of Pauli matrices. What I have just said is terribly imprecise.
One shortcoming is that the qubits must be allowed to interact, or become
“entangled” in some way. So let us first create an algebraic object which
accounts for this.

An n-qubit quantum register is a 2n-dimensional complex vector space
A together with a distinguished orthonormal basis B. The basis elements —
called the “computational basis states” — are indexed by binary n-tuples
a:

B = {a : a ∈ Zn
2}. (1)

Obviously, A can be written

A ∼= C2n

= C2 ⊗ · · · ⊗ C2,

i.e., as a tensor product of n qubits, In fact, we can assume that this has
been done in such a way that

a =
n⊗

i=1

ai.

An n-qubit quantum register in state x consists of an ordered pair (A, x)
where A is an n-qubit quantum register and x is any vector in A. Of course,
x need not be expressible as a tensor product of vectors in C2. For a function
f : A → A, we will freely use terminology such as “f applied to A in state
x leaves A in state y” where y = f(x).



3 Very little about quantum computing

It is beyond the scope of our discussion to give a fully accurate treatment
of quantum computation. What I give here is a bit of a lie. It is a slightly
distorted description of a quantum algorithm which is just enough for our
purposes; namely to prove that error-correction algorithms actually exist.
There will be two significant omissions in my description of a quantum
algorithm. First, I will say that any unitary operator can be applied to a
register without regard to the physical task of constructing such operators
in polynomial time. Second, I will all but remove the probability issues
from my definition of a measurement. Anyone who seeks a more accurate
treatment is encouraged to read [13], [5] or any of the other fine references
on quantum computation. Fortunately, this muted treatment will suffice for
our needs.

A quantum algorithm begins with a quantum register A in an unknown
state x 6= 0 — perhaps together with some classical information such as
bases for some special subspaces of A (which do not depend on x) — and
consists of a finite sequence of steps, each of which is of one of the following
two types:

1. we may apply any unitary operator to A. Such a step returns no infor-
mation;

2. we may perform a measurement, defined as follows:
• we specify an orthogonal decomposition

A = A1 ⊕ · · · ⊕Ar

of A. The current state of the register x may be orthogonal to some
Ai’s and not to others;

• An oracle chooses a random index i (1 ≤ i ≤ r). All we will say about
this probability distribution 1 is that the probability that an index
i is chosen is zero if and only if x is orthogonal to Ai;

• The state changes from x to Pix where Pi denotes orthogonal pro-
jection onto Ai. Note that Pix 6= 0;

• The only information we glean from this measurement is that we are
told the value of i.

Our notation for such a measurement will be

M = {A1, . . . , Ar}.

1 I do not mean to sound mysterious. The probability of choosing i is ‖xi‖2
‖x‖2 . But

we will not use this formula.



Many authors are more careful and only allow measurements in which
each Ai admits a basis of computational basis states. The equivalence be-
tween the two approaches is obtained by applying U , then measuring, then
applying U† for some unitary matrix U . So the issue of efficiently construct-
ing such U arises again here.

Note that branching is permitted. Our choice of what to do in step k
can depend not only on the initial information but also on the information
obtained in any measurements among steps 1, . . . , k − 1. But it cannot
depend (directly) on those steps in which unitary operators are applied, for
in those steps no information is returned.

We now give a very elementary example of a quantum algorithm. Sup-
pose we begin with a register A in an unknown state x 6= 0. We wish to
apply an algorithm which leaves A in state α0 for some non-zero scalar α.
First, we perform the measurement

M = {span(a) : a ∈ Zn
2}

consisting of the coordinate axes. This measurement projects x onto one
of the coordinate axes. We are guaranteed that the projection, αb say, is
non-zero and the value of b is returned by the measurement. Next, we apply
the unitary transformation

U =
n⊗

i=1

σbi
x

which acts on the standard basis as mod-2 addition of the binary vector b:

Uc = c + b (c ∈ Zn
2 ) .

This clearly achieves the desired result.
Many authors writing about quantum algorithms assume that the initial

state of the register is fully controllable, up to multiplication by a non-
zero scalar. With a slight modification, the above algorithm justifies this
assumption.

Two more remarks are in order before we leave the subject of quantum
algorithms. First, at the physical level, the only measurements allowed are
those in which each of the subspaces Ai admits a basis of elementary basis
vectors: Ai = span(a : a ∈ Si ⊆ B). Our definition of a measurement (which
is taken from [5]) is no more general since any measurement of this type is
“conjugate” under the unitary group to one of the restricted type.

Using the language of “superoperators”, one can argue that every quan-
tum algorithm is equivalent to a quantum algorithm with essentially one
step. Thus one may read that a quantum algorithm amounts to a three-
part process: (i) expand the quantum register A by adding ancilla qubits to



obtain A′ = A ⊗ A1 where A1 is another quantum register (consequently,
so also is A′); (ii) apply a single unitary operator; and (iii) measure all
the qubits in A1 (i.e., the measurement contains one projector for each el-
ementary basis vector in A1). This is terribly vague, especially since I have
not defined a superoperator. We will not use this idea anywhere in this pa-
per. I include this comment mainly to make the reader aware of alternative
language that appears in the literature.

4 The error group

Let n be a positive integer. We assume that each error operates linearly
on C2n

. That is, an error can be viewed as a 2n × 2n matrix with complex
entries. We first consider errors of a very special type. Consider the set E
consisting of all tensor products

E = s1 ⊗ s2 ⊗ · · · ⊗ sn (2)

where each si is a Pauli matrix:

si ∈ P = {±I,±σx,±σy,±σz}.

Recall that tensor products can be multiplied component-by-component:

(M ⊗N)(R⊗ S) = (MR)⊗ (NS).

Thus, since P forms a group, so does E . This is called the error group. We
can collect all powers of −1 at the front of any such product and write

E = {±s1 ⊗ · · · ⊗ sn : si ∈ {I, σx, σy, σz}} . (3)

Clearly, |E| = 2 · 4n = 21+2n. Define the weight of E ∈ E as the number of
non-identity components:

wt(E) = |{j : sj 6= I}| .

It is easy to see that there are 2
(
n
t

)
3t matrices of weight t in E .

The next step is to index the elements of E by binary (2n + 1)-tuples.
Since σy = σxσz, any matrix of the form (2) where si ∈ {I, σx, σy, σz} can
be written uniquely as

E =

(
n⊗

i=1

σai
x

)
·

(
n⊗

i=1

σbi
z

)
where a and b are 01-vectors of length n. We abbreviate this by writing

E = X(a)Z(b) (4)



where
X(a) = σa1

x ⊗ · · · ⊗ σan
x

and similarly for Z(b). Thus

E = {±X(a)Z(b) : a, b ∈ Zn
2}

where there is a slight abuse of notation in viewing Z2 as consisting of {0, 1}.
So there is a one-to-one correspondence between matrices ±X(a)Z(b) in E
and signed binary 2n-tuples ±(a|b).

Lemma 1. Any two elements of E either commute or anti-commute. More
precisely, if E = ±X(a)Z(b) and E′ = ±X(a′)Z(b′), then

EE′ =
{

E′E, if 〈(a|b), (a′|b′)〉 = 0;
−E′E, if 〈(a|b), (a′|b′)〉 = 1 (5)

where 〈·, ·〉 is the binary inner product

〈(a|b), (a′|b′)〉 =
n∑

i=1

aib
′
i +

n∑
i=1

a′ibi (mod 2). (6)

If · denotes the ordinary dot product on Zn
2 , then the inner product

a · b′ + a′ · b is a binary symplectic inner product since it is represented by
an anti-symmetric bilinear form over Z2.

Proof. We have

σ2
x = I, σ2

z = I, σxσz = −σzσx.

Suppose E = X(a)Z(b) and E′ = X(a′)Z(b′). Observe that Z(b′)X(a) =
(−1)a·b′

X(a)Z(b′) and Z(b)X(a′) = (−1)a′·bX(a′)Z(b). Thus

E′E = X(a′)Z(b′)X(a)Z(b)

= (−1)a·b′
X(a′)X(a)Z(b′)Z(b)

= (−1)a·b′
X(a)X(a′)Z(b)Z(b′)

= (−1)a·b′+a′·bX(a)Z(b)X(a′)Z(b′)

= (−1)a·b′+a′·bEE′.ut

A binary code is simply a non-empty subset of Zm
2 for some m. A binary

code C is additive if C is a subgroup of Zm
2 . Suppose we are given an inner

product 〈·, ·〉 on Zm
2 . If C is a subgroup of this binary space, then C has a

dual code C⊥ given by

C⊥ = {a ∈ Zm
2 : 〈a, c〉 = 0 for all c ∈ C} .



An additive binary code is self-orthogonal if C ⊆ C⊥.
Now if G is a subgroup of the error group E , then the set

{(a|b) : X(a)Z(b) ∈ G or −X(a)Z(b) ∈ G}

is a binary additive code. Conversely, for any binary additive code C, we
obtain a subgroup

{±X(a)Z(b) : (a|b) ∈ C} .

Corollary 1. A subgroup G of E is abelian if and only if the corresponding
binary code is self-orthogonal under the symplectic inner product.

We will later be interested in finding abelian subgroups of E . So let
us toy with this question before we get deeper into the application. Two
obvious abelian subgroups are

{X(a) : a ∈ Zn
2}

and
{Z(b) : b ∈ Zn

2}.

But these are not terribly interesting. Here is a more interesting class of
examples. Let C1 be any additive binary code of length n with generator
matrix G1. Let C2 be an additive subcode of its dual C⊥

1 and suppose G2

is a generator matrix for C2. Let C be the rowspace over Z2 of the matrix(
G1 0
0 G2

)
.

Then it is easy to check that C is self-orthogonal under 〈·, ·〉. Thus the set

G = {±X(a)Z(b) : (a|b) ∈ C}

is an abelian subgroup of E .
For such a partitioned binary vector (a|b), let wt(a|b) denote the number

of indices i for which ai 6= 0 or bi 6= 0. Steane observes that this is the
Hamming weight of the bitwise or of a and b. For our purposes, this number
wt(a|b) will be called the weight of (a|b). We will see later that the parameter

min{wt(a|b) : (a|b) ∈ C⊥ − C}

for binary codes C ≤ Zn
2 ×Zn

2 self-orthogonal under 〈·, ·〉 corresponds to the
error detection abilities of a quantum code associated to C. This beauti-
ful connection between symplectic geometry and subgroups of the unitary
group is explored in [7] (in the context of quantum error correction) and
in [6] (in relation to codes over Z4). These are recommended reading.



Let me finish this section with one concrete example of an abelian
subgroup of E which is not of the above type. Let n = 2 and consider
C = {(00|00), (10|10), (01|01), (11|11)}. This is a self-orthogonal code with
respect to the symplectic inner product and the corresponding abelian sub-
group of E is

G =

±


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 ,±


0 0 −1 0
0 0 0 −1
1 0 0 0
0 1 0 0

 ,

±


0 −1 0 0
1 0 0 0
0 0 0 −1
0 0 1 0

 ,±


0 0 0 1
0 0 −1 0
0 −1 0 0
1 0 0 0


 .

5 Error models

We have a quantum register A and a state vector x ∈ A which we wish to
protect against errors. An error is any linear operator on A. Fortunately,
physicists assure us that some errors are more likely to occur than others. In
fact, we can assume that many 2n × 2n matrices M never occur as errors.
In the next section, I will explain why mathematicians working on quantum
error correction can usually work under the following absurd error model:

– any error acts on each qubit as a Pauli matrix. Hence the error operator
belongs to the error group E ;

– there is some integer t such that errors having weight exceeding t do
not occur.

A more reasonable error model is the following:

– errors occur independently on different qubits;
– the probability of experiencing any error occurring on a given qubit is

bounded above by ε ≈ 0;
– the error acts on any given qubit as a 2× 2 matrix over C.

The first two conditions guarantee that the probability of an error oc-
curring which simultaneously affects k qubits decays as O(εk). Thus, given
some tolerance for undetected/uncorrected error, we may ignore all errors

E = s1 ⊗ · · · ⊗ sn, (si ∈ Mat2(C))

having weight greater than t for some integer t. The independence assump-
tion allows to concern ourselves only with errors which can be expressed as
tensor products. But this is not realistic.



Let us say that an error E ∈ Mat2n(C) does not affect the first qubit
if E can be expressed as a tensor product E = I2 ⊗ E′ where E′ is a
2n−1 × 2n−1 complex matrix. Otherwise E affects the first qubit. With
simple relabeling, this definition extends to any qubit. Here is my final
attempt at a reasonable, but physics-free error model:

– any error acts as a linear operator on C2n

;
– there is some ε > 0 such that the probability of seeing an error affecting

k qubits diminishes as O(εk).

This model allows for correlated errors provided the probability of oc-
currence of errors affecting large numbers of qubits is negligible. In the next
section, we will state and prove the Knill/Laflamme theorem. An important
consequence of this theorem is the fact that a code which corrects errors
under the first error model also works well under this error model.

6 Detecting and correcting errors

A quantum code is simply a non-trivial subspace Q of some quantum reg-
ister. We are interested in finding such Q which allow us (via the use of
quantum algorithms) to detect and correct certain types of errors. We begin
by defining a detectable error.

Two vectors x, y ∈ Cm are distinguishable — with certainty — by a
measurement if and only if they are orthogonal. Alexei Ashikhmin once
lectured on quantum codes using this as an axiom thus eliminating the
need to define “measurement”. Ashikhmin also showed me the following
idea.

Definition 1. Let A denote a quantum register. Let Q be a subspace of A
and let E be a 2n × 2n matrix. We say E is detectable (relative to Q)
provided, for all x, y ∈ Q, if x⊥y, then x⊥Ey.

Let me briefly explain why this definition is justified and why it is not
a theorem. If the register is in initial state y ∈ Q and matrix E is applied
to arrive at the state Ey, we may apply the measurement {Q,Q⊥}. If
the measurement leaves the register in some state in Q⊥, then we know
Ey 6∈ Q and we have detected an error. Otherwise, we know that the
measurement has projected the vector Ey — via the matrix ΠQ which
denotes orthogonal projection onto Q — back into Q (or it has left Ey ∈ Q
fixed). The hypothesis Ey⊥x for all x ∈ Q with x⊥y now guarantees that
ΠQEy is a non-zero multiple of y. In summary, an error is detectable in this
sense if there exists a measurement which either restores the initial state
(up to multiplication by a scalar) or tells us that some error has occurred.



Let me remark that I allow the state to vary over all of the ambient
space. Many papers on quantum computing insist that — at all times —
the state is a unit vector. (This is useful for probability calculations.) How-
ever, the physicist really works in complex projective space when she does
quantum mechanics. So any non-zero multiple of y ∈ Q is just as good as
y itself.

We now explain what we mean by error correction. By definition, we
say that the all-zero matrix is a correctable error. (This definition is due to
Emmanuel Knill who assures me that the zero matrix will never arise as an
error in practical systems.) Let Q be a non-trivial subspace of A and let T
be any set of 2n×2n matrices. We say that Q allows correction of all errors
in T provided there is a quantum algorithm which — when applied to A
in state Ex where E is any non-zero matrix in T and x is any vector in Q
— will leave the quantum register in state αx for some non-zero complex
number α. Note that neither E nor x is known, nor will we expect the
algorithm to determine either of them.

7 The error correction algorithm

In this section, we present the most important theorem in quantum error
correction. The theorem characterizes correctable sets of errors. As some-
times happens with important results, attribution is a tricky business. In
1995, Peter Shor [17] demsonstrated that quantum error correction is pos-
sible. Essentially the same result was obtained by Bennett, et al. [4], but in
a very different language. Meanwhile, Ekert and Macchiavello [9] indepen-
dently made fundamental discoveries as well. Yet it was not immediately
clear what kind of error sets could be handled by an error correction al-
gorithm. In 1995, Manny Knill and Raymond Laflamme [12] gave a simple
characterization of sets T of correctable errors. Our treatment is based on
their paper. The proof necessarily includes a quantum algorithm. We begin
with a simple but beautiful lemma from geometry.

Lemma 2. Suppose {yi : i ∈ I} and {zi : i ∈ I} are sets of vectors in Cm

such that for all i, j ∈ I,

〈yi, yj〉 = 〈zi, zj〉.

Then there exists a unitary matrix M such that Myi = zi for all i ∈ I.

In the statement and proof of the next theorem, we will find it convenient
to define

T †T = {E†E′ : E,E′ ∈ T }.

I should warn the reader that the proof consumes the next five pages.



Theorem 1 (Knill and Laflamme [12]; compare Bennett, et al. [4]).
Let Q be a subspace of an n-qubit quantum register A having dimension at
least three and let T be any set of 2n× 2n matrices. Then the following are
equivalent:

(i) Q allows correction of all errors in T ;
(ii) all errors in T †T are detectable relative to Q;
(iii) for all E and E′ in T , for all x, y in Q, if x is orthogonal to y, then

Ex is orthogonal to E′y;
(iv) for all E and E′ in T , there exists a constant λ(E,E′) such that, for

all x ∈ Q,
〈Ex, E′x〉 = λ(E,E′)||x||2; (7)

(v) for each E in T †T , there exists a constant λE such that

ΠQEΠQ = λEΠQ

where ΠQ denotes orthogonal projection of A onto Q.

Proof. The equivalence of (ii) and (iii) follows immediately from our defi-
nition of detectable. The proof will proceed by showing the equivalence of
(iii) and each of the remaining statements.

Let us first establish the equivalence of (iii) and (iv). Suppose first
that (iii) holds. Consider matrices E,E′ ∈ T and two orthogonal unit
vectors x and y in Q. Then x + y is orthogonal to x − y and (iii) gives
E(x + y)⊥E′(x− y). We have

0 = (x + y)†E†E′(x− y) = x†E†E′x− x†E†E′y + y†E†E′x− y†E†E′y.

Now since x⊥y, we have Ex⊥E′y and Ey⊥E′x and the middle terms vanish
giving

x†E†E′x = y†E†E′y.

Now since dim Q ≥ 3, the orthogonality relation is a connected relation on
Q. Thus, for fixed E and E′, the product 〈Ex, E′x〉 is constant over all unit
vectors x ∈ Q.

Next, assume that (iv) holds. Then, for E ∈ T †T , there exists a scalar
λE such that x†Ex = λE for all unit vectors x ∈ Q. Thus x†ΠQEx = λE

as well. As ΠQE is a normal matrix, it is unitarily similar to a diagonal
matrix. So we may extend an orthonormal basis {xk+1, xk+2, . . . , x2n} for
Q⊥ to an orthonormal basis {x1, . . . , x2n} for A consisting of eigenvectors
of ΠQE. Since 〈xi,ΠQExi〉 = λE for all i = 1, . . . , k, we see that ΠQE acts
as λEI on Q. This immediately implies 〈x,Ey〉 = 0 for x⊥y in Q.



(iii) implies (v): Since (iii) implies (iv), we can assume that both (iii)
and (iv) hold. Let {x1, . . . , xk} be an orthonormal basis for Q. Then

ΠQ =
k∑

i=1

xix
†
i .

Let E ∈ T †T . From (iii) and (iv), there exists a constant λE such that

x†iExj = δi,jλE .

So we have

ΠQEΠQ =
k∑

i=1

k∑
j=1

xix
†
iExjx

†
j

=
k∑

i=1

k∑
j=1

δi,jλExix
†
j

= λE

k∑
i=1

xix
†
i

= λEΠQ

(v) implies (ii): Suppose x⊥y in Q and E ∈ T †T . Then

ΠQEy = ΠQEΠQy = λEΠQy = λEy.

So ΠQEy is orthogonal to x which implies that Ey⊥x as x ∈ Q.
(i) implies (iii): Using the language of superoperators, a physicist will

prove this statement in one sentence. But I want to avoid discussion of
superoperators and give proofs that are convincing to discrete mathemati-
cians. So here is a simpler, if more tedious, argument. Suppose there exists
an algorithm which, with certainty, will restore Ex to x and E′y to y. Define
a trajectory of Ex under this algorithm as a sequence of the form

x0 = Ex, x1, x2, . . . , xs = αx (α 6= 0)

where the algorithm, applied to the register in state Ex, uses s steps and xi

is the state of the system after the ith step. (Since measurements potentially
involve random selections, there can be many such trajectories.) Similarly,
let

y0 = E′y, y1, y2, . . . , yt = βy (β 6= 0)



be a trajectory of E′y under the algorithm applied to A in state Ey. Note
that since Ex is non-orthogonal to E′y, neither x nor y is zero, so none of
the xi or yi can be the zero vector either.

In each step of the algorithm either a unitary operator or a projection
operator is applied to the current state. First, consider the case where s = t
and the sequence of operators applied in the two scenarios are identical.
Since unitary operators preserve inner products and a projection operator
cannot map two non-orthogonal vectors to orthogonal vectors unless it maps
one to zero, we see that xi is non-orthogonal to yi for all i giving the
contradiction x 6⊥y.

Otherwise, there exists a step k with the following properties: in all
steps 1, . . . , k− 1, the same exact operators were applied in both scenarios,
but in step k the operators differ. Thus the kth step must have been a
measurement and different projections were applied to xk−1 and yk−1. The
same argument as above guarantees that xk−1 is not orthogonal to yk−1.
So the measurement applied in step k contains a subspace, B say, to which
neither xk−1 nor yk−1 is orthogonal. Hence there is a nonzero probability
that this measurement will map both xk−1 and yk−1 into subspace B. Note
that the images under this map cannot be orthogonal. This shows that
there exist trajectories of Ex and E′y under the algorithm which apply
the same operators in steps 1, . . . , k. Continuing in this manner and using
finiteness of the algorithm, we see that, with non-zero probability, there
exist trajectories which involve the same operators at every step. Thus
the argument of the previous paragraph shows that there is a non-zero
probability that the terminal vectors xs and yt will be non-orthogonal.
Thus the algorithm has a non-zero probability of failure.

(iii) implies (i): Since (iii) implies (iv), we can assume that both (iii)
and (iv) hold.

Fix an orthonormal basis B = {x1, . . . , xk} for Q. For each i (1 ≤ i ≤ k),
define a subspace

Vi = span{Exi : E ∈ T }.

CLAIM: For i 6= j, Vi⊥Vj .
For the proof of this claim, it will be convenient to be able to express

each Exi where E ∈ T as a linear combination of some fixed finite subset
of such vectors. Since the space of all linear operators on A ∼= C2n

is finite-
dimensional, we can find a finite subset T = {E1, . . . , Em} of T such that
every matrix E ∈ T is a linear combination of matrices in T .
Proof: Let a ∈ Vi and b ∈ Vj . Write

a =
m∑

h=1

ahEhxi, b =
m∑

h′=1

bh′Eh′xj .



Then the inner product

〈a, b〉 =
∑

h

∑
h′

ahbh′〈Ehxi, Eh′xj〉 = 0

since, by (iii), Ehxi is orthogonal to Eh′xj . This proves the claim.

CLAIM: There exists an integer ` such that dimVi = ` for all i = 1, . . . , k.
Proof: From (iii), we see that the spanning configuration

{Exi : E ∈ T }

satisfies
〈Exi, E

′xi〉 = λ(E,E′)

independent of the choice of i. So the corresponding configuration

{Exj : E ∈ T }

has the same set of angles. Consequently, we may appeal to Lemma 2 to
find a unitary transformation Uij acting on A and mapping Vi to Vj in such
a way that Uij(Exi) = Exj for all E ∈ T . In fact, if we define Uj = U1j ,
then we can choose Uij = UjU

−1
i . By the way, this proves the claim.

Now, choose an orthonormal basis for V1, say

{v1,r : r = 1, . . . , `}

starting with v1,1 = x1. Then we obtain an orthonormal basis {vi,r : r =
1, . . . , `} for each Vi by

vi,r = Uiv1,r.

Note that, by choice of Ui, vi,1 = xi for all i.
Next, define spaces W1, . . . ,W` by

Wr = span{vi,r : i = 1, . . . , k}. (8)

Now
vi,r⊥vj,s

unless both i = j and r = s. Thus the spaces Wr each have dimension k
and are pairwise orthogonal. These will give us our measurement. Clearly,
the k` vectors vi,r span a subspace of A of dimension k` which contains
our entire problem. More precisely, assuming E ∈ T and x ∈ Q, Ex lies in
this subspace and our error correction algorithm need deal only with this
subspace.

The matrix representing orthogonal projection onto Wr is

Pr =
k∑

i=1

vi,rv
†
i,r. (9)



Fig. 2. The pairwise orthogonal vectors vi,r from the spaces Vi give us, in turn,
the new spaces Wr.

Since the vi,r form an orthonormal basis forWr, there exist unitary matrices
Rr satisfying

Rrvi,r = xi for all i = 1, . . . , k. (10)

These are the error recovery operators.
Now we are ready to give our error recovery algorithm. It will consist

of two steps. The first is a measurement which projects the damaged state
onto some Ws. From this measurement, we obtain the index s. The second
step of the algorithm is then to simply apply the recovery operator Rs. Now
let us go through this rigorously.

Let O denote the orthogonal complement of our k`-dimensional working
space W1 ⊕ · · · ⊕W`. We first perform the measurement

M = {W1, . . . ,W`,O}.

CLAIM: For any non-zero x ∈ Q and for any E ∈ T , the measurement
will return Wr for some r.
Proof: We know that x is a linear combination of the xi and Exi lies in Vi

for each i. So each Exi is orthogonal to O, hence Ex is orthogonal to O.



Consequently, the measurement returns some integer r (1 ≤ r ≤ `)
and as a result of the measurement, the vector Ex has been mapped to
y = PrEx which is guaranteed to be nonzero. The second step of our
quantum algorithm is to apply the recovery operator Rr.

CLAIM: Rry is a non-zero multiple of x.
Proof: As y is non-zero and Rr is unitary, it is clear that the resulting vector
is not zero.

As a preliminary step, we choose a basis vector xi ∈ B and any E ∈ T
and express Exi ∈ Vi as a linear combination of the basis vectors vi,s:

Exi =
∑̀
s=1

τE,i,svi,s. (11)

Note that τE,i,s is determined by the inner product of Exi with each vi,s. By
construction of the basis {vi,s} for Vi, these inner products do not depend
on i. So τE,i,s = τE,j,s for any i, j (1 ≤ i, j ≤ k) and we are permitted to
suppress the subscript i.

Let us write the error as a linear combination of the matrices in our
chosen spanning set T :

E =
m∑

h=1

γhEh. (12)

Denote the damaged state by z = Ex where x ∈ Q is the initial state. We
have

z =
m∑

h=1

γhEhx

RrPrz =
m∑

h=1

γhRrPrEhx

=
m∑

h=1

k∑
i=1

γhβiRrPrEhxi

where we have expressed x =
∑

βixi in Q. Now we use Equation (11)
together with the observation that τEh,i,s is independent of i and can hence
be written τh,s.

RrPrz =
m∑

h=1

k∑
i=1

∑̀
s=1

γhβiτh,sRrPrvi,s

=
m∑

h=1

k∑
i=1

γhβiτh,rRrvi,r



=
m∑

h=1

k∑
i=1

γhβiτh,rxi

=
m∑

h=1

γhτh,r

k∑
i=1

βixi

=

(
m∑

h=1

γhτh,r

)
x

Thus the recovered state is a multiple of the initial state x and this multiple
is non-zero. ut

Early on, it was thought that the spaces E(Q) (E ∈ T ) had to be pair-
wise orthogonal. There are examples of such codes and their discovery by
Shor was a significant breakthrough. However, one important aspect of the
Knill/Laflamme theorem is the relaxation of this condition. The existence
of the spaces Wr constructed in the proof allow for this extension. Observe
that there is no guarantee that any Wr other than W1 = Q coincides with
E(Q) for any E ∈ T . It is also curious that the error correction algorithm
potentially introduces additional error to the system by projecting onto one
of the spaces Wr.

Corollary 2. For any subspace Q of the n-qubit quantum register A, if Q
allows correction of all errors in some set T of 2n × 2n matrices, then Q
allows correction of all errors in the linear span of T .

Proof. This follows from the above proof. For each i, the space Vi contains
all vectors of the form Exi where E lies in the span of T . The error cor-
rection algorithm given never assumes that the error actually lies in T , but
rather that it can be expressed as a linear combination of elements of a
finite spanning set T for T . ut

These results have important implications for our error models. For
example, if we find a code Q which allows correction of all errors of weight
at most one in E , then Q corrects any 2 × 2 matrix whatsoever acting on
any single qubit. (More precisely, the error is the tensor product of this
matrix with n− 1 copies of the identity.)

More generally, we may design a code which allows correction of some
nice subset of E and find that it in fact corrects a much wider variety of
errors. For example, we may be lucky enough to correct an inadvertent
measurement of the n-qubit register provided the acting projection matrix
lies in the span of T . One can verify, however, that any correctable error
acts in a one-to-one fashion on the code Q. This follows from statement
(iv) of the Knill/Laflamme theorem.



Henceforth, we only concern ourselves with errors belonging to the group
E .

8 Stabilizer codes

The stabilizer code formalism was introduced by Gottesman in [10]. The ap-
proach of Calderbank, et al. [7], on which this section is based, is essentially
equivalent and was developed independently.

Let A be an n-qubit quantum register and let G be an abelian subgroup
of the corresponding error group E . Some authors define a stabilizer code
as follows:

Q = {x ∈ A : Ex = x for all E ∈ G}.

Unfortunately, Q is the zero space when −I ∈ G; this is a nuisance. We
can avoid this restriction by extending the definition of our code. For an
abelian subgroup G of E , let Q be any common eigenspace of the matrices
in G. Thus

Q = {x ∈ A : Ex = θEx for all E ∈ G} (13)

where θE is some pre-specified function from G to C. A code which can
be described in this way is called a stabilizer code. Note that, since we are
ignoring multiplication of states by non-zero scalars, this terminology is
still valid (just view Q as a subspace of a projective space). Since E2 = ±I
for all E ∈ E , we may restrict to θE ∈ {±1,±i}. Of course, not all such
selections give rise to non-trivial subspaces Q.

Proposition 1 tells us how to locate abelian subgroups of E by working
in a binary space with a symplectic inner product. The goal now is to find
abelian subgroups G which give rise to codes correcting many low-weight
errors.

While Q consists of all vectors (projectively) stabilized by G, it may
not hold that G consists of all group elements which stabilize every line in
Q. We will see in a moment that the full stabilizer of Q is the subgroup
generated by G and −I.

Proposition 2. Let E′ ∈ E and let Q be a stabilizer code determined by
the abelian subgroup G. If there exists a matrix E ∈ G which anti-commutes
with E′, then E′ is a detectable error relative to Q.

Proof. For every x ∈ Q, we have Ex = θEx. So Q is a subspace of the
eigenspace of E corresponding to the eigenvalue θE 6= 0. Now, let y be any
vector in Q. We have

E(E′y) = (EE′)y
= (−E′E)y



= −E′(Ey)
= −θE(E′y)

Thus E′y is an eigenvector for E with eigenvalue −θE . Since eigenvectors
in distinct eigenspaces are orthogonal, we have E′y⊥Q. ut

On the other hand, if E′ commutes with every E ∈ G, we can easily
see that E′ fixes each eigenspace of each matrix in G. Hence, E′ maps each
x ∈ Q to some vector in Q. This shows that Q is stabilized as a subspace by
Z(G), the centralizer of G in E . However, if −I ∈ G, no element of Z(G) \G
stabilizes every x ∈ Q projectively.

Since σx does not commute with σz, the center of the error group E is
{I,−I}. The factor group

Ē = E/{±I}

is an elementary abelian 2-group with 22n elements. Multiplication of cosets
is in exact correspondence with vector addition over Z2: if e = {±X(a)Z(b)}
and e′ = {±X(a′)Z(b′)}, then

e� e′ = {±X(a + a′)Z(b + b′)}.

We will use the notation K and K̄ to denote the relationship between a
subset of E closed under multiplication by −1 and the partition of it into
cosets in Ē .

The following is an entirely standard observation from coding theory.
Let C be an additive binary code of length 2n, self-orthogonal under the
symplectic inner product. If C 6= C⊥, we can extend C to a larger code
with the same properties by inserting a tuple (a|b) ∈ C⊥ \ C and taking
the span of C ∪ {(a|b)}. Thus every self-orthogonal code is contained in a
self-dual code. We now translate this information into a statement about
the error group.

Proposition 3. If G is an abelian subgroup of E, then there exists an
abelian subgroup H of E containing G having cardinality 2n+1. In other
words, every maximal abelian subgroup of E consists of 2n+1 elements.

A maximal abelian subgroup H has 2n+1 distinct linear characters. The
corresponding group H̄ has 2n linear characters and each of these extends to
a character of H: they are precisely the characters χ satisfying χ(−I) = 1.
Since the matrices inH commute, they may be simultaneously diagonalised.
Suppose U is a matrix such that U†EU is diagonal for every E ∈ H. Then
the map

χj : H → C



mapping E ∈ H to the row j, column j entry of U†EU is a linear character
of H. In this way, we obtain 2n characters all satisfying χ(−I) = −1. Since
these are all distinct (exercise), they yield precisely the non-identity coset
of the subgroup consisting of characters of H̄.

Now G is a subgroup of H and Q is a common eigenspace of the matrices
in G. Since the characters of H̄ give a complete basis of eigenvectors for the
matrices in H, Q admits a basis B of characters. As each E ∈ G has the
same eigenvalue independent of the character chosen in B, these characters
form a full coset of the dual subgroup of Ḡ in the character group H̄∗. If Ḡ
has size 2k, then its dual subgroup Ḡ∗ has size 2n−k. Thus the coset giving
a basis for Q has this size and, as any set of distinct characters is linearly
independent, we have:

Theorem 2. Let Q be the stabilizer code constructed as in (13) from the
abelian subgroup G of E containing −I. If G contains 2k+1 elements, then
Q has dimension 2n−k.

Now if C is a self-orthogonal code and G = {±X(a)Z(b) : (a|b) ∈ C},
then the subgroup of E constructed in the same way from the dual code
C⊥ is precisely the centralizer Z(G). This follows directly from Lemma 1.

In view of the Knill/Laflamme theorem, it is natural to define the min-
imum distance of a quantum code Q as the minimum weight of any non-
detectable error in E .

Theorem 3 (Calderbank/Rains/Shor/Sloane). Let A be a quantum
register with error group E. Let G be an abelian subgroup of E containing
−I and arising from the binary code C which is self-orthogonal under the
symplectic inner product. Let Q be constructed as in (13). Then the mini-
mum distance of the quantum code Q is equal to the smallest weight of any
binary 2n-tuple in C⊥ \ C.

Proof. let E ∈ E . If E 6∈ Z(G), then EE′ = −E′E for some E′ ∈ G. So E is
detectable by Proposition 2. On the other hand, if E ∈ G, then Ex = θEx
for all x ∈ Q. Such an error is also detectable by definition. ut

We now have a concrete target. If we can find a binary additive code
C of length 2n which is self-orthogonal under the symplectic inner product
such that the dual code C⊥ contains no words of weight less than d aside
from those in C, then the stabilizer construction yields a quantum code
Q having minimum distance d and dimension equal to 2n−k. Thus, by the
Knill/Laflamme theorem, Q will encode n−k qubits into n qubits and will
correct any error E ∈ E of weight at most b(d− 1)/2c.



9 Some examples

We have easy access to a large number of interesting abelian subgroups
which, in turn, give us non-trivial quantum codes. The groups themselves
were introduced in Section 4, but I’ll repeat the construction here.

Let C1 be an additive binary code of length n. Suppose G1 is a generator
matrix for this code. Let C2 be an additive subcode of the dual code C⊥

1

and let G2 be a generator matrix for C2. Now consider the binary code of
length 2n whose generator matrix is(

G1 0
0 G2

)
.

The codewords in C are precisely the 2n-tuples (a|b) for which a ∈ C1 and
b ∈ C2. Thus, if (a|b) and (a′|b′) both belong to C, we have

〈(a|b), (a′|b′)〉 = a · b′ + a′ · b = 0 + 0 = 0.

So C is self-orthogonal. Hence the group

G = {±X(a)Z(b) : a ∈ C1, b ∈ C2}

is abelian. The stabilizer construction (13) thus gives us a quantum code
of dimension 2n−k1−k2 where k1 denotes the dimension of C1 and k2 that
of C2. This construction is due to Steane and, independently, Calderbank
and Shor.

The dual code of C under the symplectic product has a similar descrip-
tion:

C⊥ =
{
(a′|b′) : a′ ∈ C⊥

1 , b′ ∈ C⊥
2

}
.

Now C2 ⊆ C⊥
1 and C1 ⊆ C⊥

2 . So the minimum weight of a tuple in C⊥ not
in C is the smaller of the two values

min{wtH(a′) : a′ ∈ C⊥
1 , a′ 6∈ C1}, min{wtH(b′) : b′ ∈ C⊥

2 , b′ 6∈ C2}

where wtH(a) = |{i : ai 6= 0}| denotes the ordinary Hamming weight of
a binary tuple. This gives us the minimum distance of the corresponding
stabilizer code.

10 The GF (4) trick

If E = ±⊗ si is a matrix in the error group, then there are four choices for
each si. So far, we have used the correspondence E ↔ ±(a|b) where bi = 0 if
si = σx, and so on. Since there are four choices for si, it is natural to replace
Z2×Z2 by an alphabet of size four in such a way that the symplectic inner



product on Zn
2 × Zn

2 is replaced by a natural inner product. This approach
was successfully taken up in [8].

Let F4 = {0, 1, ω, ω̄} denote the finite field of order four and replace the
correspondence (4) by the following:

I2 7→ 0, σx 7→ 1, σy 7→ ω, σz 7→ ω̄.

Under this group isomorphism Ē → Fn
4 , an error E of weight k is mapped to

a quaternary n-tuple of Hamming weight k. But the multiplicative structure
of F4 has no obvious counterpart in Ē . Of course, the ordinary inner product
on F yields values in F. We now show that a slight modification gives us
an inner product useful for our purposes. Recall the trace takes on a simple
form

Tr(α) = α + α2

in this small field. We now define the trace inner product

a ∗ b = Tr(a · b)

where a · b =
∑

āibi denotes the ordinary Hermitian inner product.

Proposition 4. Let E and F be elements of E and let a and b be the
corresponding tuples in Fn

4 . Then EF is equal to FE or −FE depending
as Tr(a · b) is equal to 0 or 1. Thus a subgroup of E is abelian if and only if
the corresponding code is additive and self-orthogonal under the trace inner
product.

Proof. If E = ⊗si and F = ⊗ti, then EF = ⊗siti and FE = ⊗tisi. Ob-
serve that siti and tisi anticommute if and only if si 6= ti and neither is
equal to the identity. Consider the table

ᾱβ 0 1 ω ω̄
0 0 0 0 0
1 0 1 ω ω̄
ω 0 ω̄ 1 ω
ω̄ 0 ω ω̄ 1

Clearly, the term Tr(āibi) contributes one to the sum Tr(ā · b) if and only
if the corresponding Pauli matrices anti-commute. ut

Of course, much more is known about codes which are self-orthogonal
under the ordinary Hermitian inner product. Fortunately, for codes linear
over F4, the two concepts of self-orthogonality coincide.

Theorem 4. Let C be a linear code over F4. Then C is self-orthognal
under the trace inner product ∗ if and only if C is self-orthogonal under the
Hermitian inner product.



Proof. For a, b ∈ C. If a·b = 0, then clearly a∗b is zero. Conversely, suppose
C is self-orthogonal under the trace inner product and let a, b ∈ C. Then
both a ∗ b = 0 and (ωa) ∗ b = 0 so that a · b must equal zero. ut

11 Further reading

The theory of quantum computation and quantum information is already
quite substantial. Two good starting points for the reader who wants to
investigate this are are the book [13] by Neilsen and Chuang and the survey
article [5] by Berthiaume. Some readers will wish to see quantum coding
theory from a physical perspective. For this, I recommend the paper of Knill
and Laflamme [12], but there is also an extensive discussion of quantum
codes in [13].

In many ways, quantum coding theory parallels classical coding theory,
particularly with an alphabet of size four. MacWilliams identities for quan-
tum stabilizer codes were first found by Shor and Laflamme in [18]. Since
then, Rains has led the way in the study of weight enumerators of quantum
codes. (See [15] and the references therein.)

Only a few quantum codes are known which are not stabilizer codes.
In [14], Rains, et al. describe a 5-qubit quantum code of dimension 6 and
minimum distance 2 which does not arise from the stabilizer construction.
This was found with the aid of a computer. Yet this code has larger dimen-
sion than any stabilizer code of length five having minimum distance two
or more. It would be interesting to identify further non-stabilizer codes. In
particular, the Knill-Laflamme theorem allows for the image of Q under a
detectable error to be isoclinic to Q (ΠQEΠQ = λEΠQ) and not simply
orthogonal to Q. The non-stabilizer code just described has ΠQEΠQ = 0
just as all stabilizer codes do. I know no non-trivial examples of codes with
some λE 6= 0 (E 6= αI).

Another direction one might consider is the study of non-binary quan-
tum codes. If we replace our most basic structure, the qubit, by a 3-, 4- or
higher-dimensional complex vector space, then we will need ternary, qua-
ternary or q-ary quantum codes. These structures are investigated in [16]
and [3].
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