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Abstract

The present work is a contribution to the algebraic theory of association
schemes, where special hasis is put on arising from the
theory of error-correcting codes and of some combinatorial designs. The
main idea is to characterize a subset in a given association scheme by
its distribution with respect to the relations of the scheme. This yields
some powerful methods for the study of subsets whose specific properties
can be expressed in terms of their distribution. Various theorems arc
obtained in this way about generalized concepts of codes and z-designs.

. SUBSETS IN ASSOCIATION SCHEMES

CONTENTS

List of symbols

DINTRODUCTION . . . . . o 0 0 v o e e e e e

. ASSOCIATION SCHEMES . . . . . . ... ... .. ...

2.1. Definitions . . . . . . . . . . ..o
2.2. The Bose-Mesner algebra . . . . . . . . . . .. ... ..
2.3. The eigenmatrices Pand @ . . . . . . . . . . . ... ..
24 Bxamples . . . . . . . 0.0 o e e e e
2.5. Extensions of an association scheme . . . . . . . . . . ..
2.6. Duality in association schemes
2.6.1. Partitions of orthogonal matrices
2.6.2. Dual of a regular scheme . . . . . . . ... . ...
2.6.3. Duality in strongly regular graphs . . . . . . . . . .

3.1. Inner and outer distribution . . . . . . . . . .. ...
3.2, Linear programming . . . . . . . . . . . . .. . ... -
3.3. Cliques in association schemes

3.3.1. The Elias theorem . . . . . . . . . . .. .. ...

3.3.2. The linear-programming bound . . . . . . . . . . .
3.4. Designs in association schemes . . . . . . . .. . . . ..
3.5, Characteristic matrices . . . . . . . . . . . .. .. ...

. AN INTRODUCTION TO ALGEBRAIC CODING THEORY .

4.1. The Hamming schemes . . . . : . . . . . .. .. . ...
4.1.1. Bigenmatrices and Krawtchouk polynomials
4.1.2. Codes in Hamming schemes . . . . . . . .. . . ..
4.1.3. Orthogonal arrays . . . . . . . .. ... ... ..

4.2. The Johnson schemes . . . . . . . . . . . . . .. ..
4.2.1. Eigenmatrices and Eberlein polynomials . . . . . . .
4.2.2. Binary codes with constant weight . . . .. . . . . .
423 tDesigns . . . . . . . ... .o e

4.3, Classical inequalities for codes
43.1. The Plotkinbound . . . . . . . ... .. .. ...
43.2. The Singletonbound . . . . . .. . . ... . ...
4.3.3. The Hammingbound . . . . . . . . . . . . « « . .



5. POLYNOMIAL SCHEMES . . . . . . . . . . . . .. . ..
5.1. Definitions and preliminaries . . . . . . . . . . .
5.1.1. Orthogonal polynomials . . . . . . . . . . .. ..
5.1.2. The Mac Williams inequality . . . . . . . . . . . .
5.2. P-polynomial (= metric) schemes and codes . . . . . . . .
5.2.1. Preliminary results . . . . . . . . . . . . .
5.2.2. The Hamming bound and the perfect codes
5.2.3. Distribution matrix ofacode . . . . . . . . . . ..
5.3. Q-polynomial schemes and designs . . . . . . . . . .. -
5.3.1. Preliminary results . . . . ... . . . . .. . . .
5.3.2. The Rao-Wilson bound and the tight designs . . . . .
5.3.3. Regular designs and subschemes . . . . . . . . . . .

6. ADDITIVE CODES IN HAMMING SCHEMES . . . . . . .
6.1. Inner product and duality in Abelian groups . . . . . . . .
6.2. The Mac Williams identities on dual codes . . . . . . . . .
6.3. Weight distribution of cosets and subschemes . . . . . . . .

REFERENCES . . . . . . . . . . . . . ie e o

List of symbols

Ay >

dy

d
Ey(u)
Gy
H,
H(ng)
I

J

Ji
J(n,v)
K (w)

M
N
P
p®
Q
R
r
S
5
T
t
Yy
Wi

(X.R)

inner distribution of ¥

Bose-Mesner algebra of (X,R)

distribution matrix of ¥

adjacency matrix of the relation R,
minimum distance of a code

Hamming distance

Johnson distance

Eberlein polynomial of degree k&

matrix [H,, Hy, ..., Hil

characteristic matrix of ¥

Hamming scheme of length n over a g-ary alphabet
identity matrix

all-one matrix

minimal idempotent of A

Johnson scheme of weight n and length v
Krawtchouk polynomial of degree k
subset of N, containing zero

set of ifitegers 0, 1, ..., n

first eigenmatrix of (X,R)

intersection number of (X,R)

second eigenmatrix of (X,R)

set of n + 1 relations Ry, Ry, ..., Ryon X
external distance of a code

orthogonal matrix diagonalizing A

degree of a design

subset of N, not containing zero

maximum strength of a design

valence of the relation R,

Hamming weight

association scheme on the set X

subset of X (code, design)

dual of an additive code ¥

restriction of (X,R) to ¥

designed distance

rank of the matrix J,

distance function of a metric scheme
designed strength

polynomial of degree k, specifying an ¢igenmatrix
vector characterizing Y as a subset of X'
sum polynomial @y(z) + Dy(2) + ... + Puf2)



cardinality of a set, absolute value of a number
largest integer not exceeding the argument
Hermitian norm of a vector or a matrix

inner product on an Abelian group

transpose of a matrix D

conjugate transpose of D

set of [X]-vectors over the ficld F

set of |X|x |X’| matrices over F

set of polynomials in z over F

subset of polynomials of degree < k in F(z]

—1 —

1. INTRODUCTION

Research in coding theory may be divided into three main parts. The first
way, opened by Shannon 5?), consists in a study of the theoretical possibilities
offered by the principle of coding for correction of errors in certain commu-
nication systems (cf. for instance Gallager 2%)). At this level there already arise
some algebraic concepts, such as the minimum distance between distinct code-
words; among codes having the same length n and the same minimum dis-
tance d, the best is the one containing the largest number of words.

It is therefore natural that many authors applied themselves to construct
“good” codes of fixed parameters n and 4. In fact, for both theoretical and
practical reasons, most researchers, following Slepian %) in that respect,
restricted their interest to linear codes defined over finite fields.

The above aspects are certainly the most important if, adopting the point
of view of information theory, one considers codes as devoted to the correc-
tion of errors occurring on a noisy channel. The reader will find an excellent
treatment of error-correcting codes in Berlekamp’s book ) and a recent sur-
vey of constructive coding theory in a paper by Sloane ), including a table
of the best known binary codes.

It remains to be specified what constitutes the third approach, the one to
which belongs the present work. In the most general sense, it is the algebraic
and combinatorial theory of codes defined to be any subsets in some finite metric
spaces, namely the Hamming spaces 2°). This covers subjects as various as the
following ones: upper bounds to the number of words in codes of given length
and minimum distance (cf. for instance Johnson 33)), the duality in linear codes,
introduced by MacWilliams 4S), or also the theory of perfect codes (cf. Van
Lint %)) and of some other combinatorial configurations (cf. for instance
Assmus and Mattson 4)). Let us already mention a rather precise question
which appears throughout the theory: what can be said about a code when
its distance distribution is known? (Cf. Delsarte 14-16),)

The starting point of the present work was the simple observation that the
distance relations in a Hamming space form an association scheme as defined
by Bose and Shimamoto ). It turns out that this yields numerous results in
classical coding theory. Moreover, many thecorems obtained in this manner
can be extended to more-general schemes than those of Hamming spaces; in
particular to the “Johnson schemes”, which are themselves interesting in coding
theory for the study of constant weight codes considered by Johnson *4).

These are the reasons why the author decides to use, from the beginning,
the method of association schemes which really seems to be the most suitable
for several aspects of algebraic and combinatorial theory of codes. Let us
specify here that the combinatorial configurations in which one will be inter-
ested are the orthogonal arrays introduced by Rao ) and the t-designs de-
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fined by Hanani 3°); these arise quite naturally in the study of Hamming and
Johnson schemes, respectively.

After having briefly mentioned its background, let us now give a summarizing
account of this thesis.

Chapter 2 is an introduction to the association schemes (for short, the
schemes) with n classes on a finite set X. Adopting in sec. 2.1 a slightly more
general definition of a scheme than the original concept, its Bose-Mesner alge-
bra®) is described (sec. 2.2), that is, the (n + 1)-dimensional commutative
algebra generated by the adjacency matrices Do = I, Dy, ..., D, of the rela-
tions R, of the given scheme.

One is led to consider the cigenvalues of the D, and to define (sec. 2.3) the
eigenmatrices P and Q of the scheme as follows: the element Py, of the square
matrix P, of order n + 1, is the ith eigenvalue of Dy, for i,k =0, 1, ..., n
Then @ is defined to be |X|P~%. It turns out that the eigenmatrices play a
very important role in the theory. For this reason, their properties are examined
in detail; especially, it is shown that each of them satisfies a certain ortho-
gonality relation.

Some examples are given in sec. 2.4; in particular, a short description of the
case n = 2 which corresponds to the strongly regular graphs introduced' by
Bose ®). Thereafter (sec. 2.5) it is indicated how a scheme with s classes on a
set F can be extended, in a natural way, to produce a scheme with ("}*) — 1
classes on the set F™. The simplest case, s = 1, yields the Hamming scheme
of length m over the “alphabet” F. Other schemes of some interest in coding
theory are also obtained in this manner.

Finally, in sec. 2.6, a concept of duality is introduced which applies to cer-
tain types of schemes; essentially, those whose automorphism group contains
a regular Abelian subgroup. When applied to strongly regular graphs, this
duality has the following property: a graph has the same parameters as its
dual (or as the complement of its dual) if and only if it is of the Latin square
type, in the sense of Mesner %2).

In chapter 3 the concerns are already near to those occurring in coding theory:
one examines the subsets ¥ of a set X on which an association scheme is defined.
The way in which the pairs of points in ¥2 and in XX ¥ are distributed with
respect to the relations R, is the subject of sec. 3.1; first, the inner distribution
of Y is defined to be the (n + 1)—tuple a = (@, - - - , a,) Where g, is the average
number of points of Y being ith associates of a fixed point of ¥; next, the dis-
tribution matrix of Y is defined in a similar manner.

A result which turns out to be very fruitful is the fact that the product aQ
of the inner distribution of ¥ by the cigenmateix @ is an (n + I)-tuple o-
nonnegative real numbers. This observation leads to certain linear-programf
ming problems (sec. 3.2) defined by submatrices of P or Q.

The concept of a clique is the subject matter of sec. 3.3. For a given subset
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Mof N={0,1,..., n}, with Oe M, a subset Y of X is called an M-clique
if the component g; of its inner distribution is zero for all i ¢ M. One takes the
opportunity to generalize, in sec. 3.3.1, a theorem due to Elias (cf. Berlekamp ©),
p. 318) and to locate the place of the Johnson schemes in coding theory. Sec-
tion 3.3.2 contains the application of the linear-programming method to the
study of cliques: an upper bound is obtained to the number of points in an
M-clique. An interesting consequence is that, when Y is an M-clique and Z an
M-coclique (i.e. an M-clique with = N— M U {0}), then [Y] |Z]| < |X]
holds.

A “dual” concept is introduced in sec. 3.4. For a given subset T of N— {0},
a subset Y of X is called a T-design if its inner distribution a has the property
that the components (aQ), of the product aQ are zero for all k € T (it turns
out that this purely algebraic definition corresponds, in some cases, to inter-
esting combinatorial configurations). The use of the linear-programming
method yields a lower bound to the number of points in a T-design. The last
point (sec. 3.6) concerns the characteristic matrices ') of a subset Y < X.
These provide a useful tool especially in the theory of designs.

Chapter 4 is entirely devoted to coding theory; more specifically, to the
Hamming schemes (sec. 4.1) and the Johnson schemes (sec. 4.2).

The Harnming scheme H(n,q) is defined by the distance relations between
n-tuples over a g-ary alphabet. In sec. 4.1.1 the explicit form of the eigen-
matrices P and Q is obtained; it turns out that they are equal and that
P (i) = P, can be considered as a Krawtchouk polynomial 37) of degree k in
the variable i. Equivalently, P (= Q) is the matrix of the Mac Williams trans-
form (cf. MacWilliams “6); MacWilliams, Sloane and Goethals #%); Del-
sarte 19)).

The linear-programming bound is then applied in sec. 4.1.2 to the codes of
length n over a g-ary alphabet F'; in particular, to the codes with a designed mini-
mum distance 8, i.e. the M-cliques in H(n,g) with M = {0, 8,6+ 1,..., n}.
The binary case is examined more in detail and the method is illustrated by
a numerical example.

Reformulating a previous result 1#), we cxhxblt in sec. 4.1.3 the meaning of
T-designs in H(n,g) for a set T of the form {1, 2, ..., 7}: they are the orthog-
onal arrays of strength v with n rows over F. This concludcs the general study
of Hamming schemes; the particular case of additive codes is postponed to the
end of this work.

For F = {0,1} and integers n,v such that 1 << n < v/2, the set of v-tuples
of weight n in H{v,2) itself is an association scheme, with 7 classes, for the
distance relations; one calls it a Johnson scheme, using the notation J(n,v).
In sec. 4.2.1 explicit formulas are derived for the eigenmatrices P and Q of
J(n,v). It turns out that these matrices have “polynomial properties” similar to
those of the Hamming schemes: Q,,, and P, , can be represented by means of
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polynomials of degree k in the variables i and (v 4 1 — i), respectively,
which are in fact related to some formulas discovered by Eberlein *°). There-
after, the use of the linear-programming bound in the theory of binary con-
stant-weight codes is briefly explained (sec. 4.2.2).

The combinatorial meaning of T-designs with 7' = {1, 2, ..., t} appears
to be at least as interesting in the Johnson schemes as in the Hamming schemes:
itis proved in sec.4.2.3 that they are nothing but the classical r-designs S,(z,n,v).
So the linear-programming method yields a lower bound to the parameter 4
of 7-designs with fixed 7, » and v; as an example, it is shown that 4-designs
Ss(4, 8, 17) do not exist.

Treating simultaneously the two types of schemes (Hamming and Johnson)
we show in sec. 4.3 how certain classical inequalities of coding theory are
implied by the lincar-programming bound. Referring to the authors whe dis-
covered them for the Hamming spaces, the names are used of the Plotkin
(sec. 4.3.1), Singleton (sec. 4.3.2) and Hamming (sec. 4.3.2) inequalities (cf. for
instance Berlekamp ©)). The specific properties of codes achieving each of the
three bounds are also briefly described.

Chapter 5 is central. Starting from polynomial properties which the Hamming
and Johnson schemes have in common, in sec. 5.1 an axiomatic definition is
given of “polynomial schemes”. Roughly spoken, an association scheme is
said to be P-polynomial if, for a fixed k and i running through N, the element P, ,
of the eigenmatrix P is representable by means of a polynomial @,(z,) of de-
gree k in a suitable variable z,. The concept of a Q-polynomial scheme is defined
analogously from the properties of the eigenmatrix Q. }

The orthogonality relations satisfied by P and @ mean that, for a P- or Q-
polynomial scheme, the set {®,(2)} is a family of orthogonal polynomials (cf.
Szegd 7°)). Some results about this classical theory are recalled in sec. 5.1.1.
It is also shown that the sum polynomials ¥y(z) = Do(z) + ... + P(2),
which play an important role in the following, form themselves a family of
orthogonal polynomials. Next (sec. 5.1.2) a generalization is obtained of an
inequality due to MacWilliams *#), which has a certain significance in theory
of codes and designs.

A thorough study of P-polynomial and Q-polynomial schemes is undertaken
in secs 5.2 and 5.3, respectively. Although both theories are formally similar,
it is indeed better to treat them separately.

In sec. 5.2.1 it is first shown that a scheme of relations R, is P-polynomial
if and only if it is metric, in the sense that the mapping ¢ of X2 onto N defined
by o(x,y) = i for (x,y) € R, is a “nondegenerate distance”. The metric schemes
are in fact a particular case of the so-called perfectly regular grapbs (cf. Hig-
man 1)), The inner distribution of a subset ¥ of X, or a “code”, is called its
distance distribution. Then two fundamental parameters of a code are intro-
duced, from its distance distribution a: the minirum distance d and the external

— 5=

distance r. The meaning of d is clear. As for r, defined to be the number of
nonzero components (aQ), of index k # 0, its meaning appears afterwards.
Application of the Mac Williams inequality yields r > [(d— 1)/2]; it is shown
later on that equality is a criterion for “perfect codes”.

In the framework of metric schemes we examine in sec. 5.2.2 the straightfor-
ward extension of the Hamming bound *°) for codes with given minimum dis-
tance d, and the corresponding concept of perfect codes of order e = [(d— 1)/2].
The most interesting result is a generalization of the Lloyd theorem (cf. for
instance Lenstra 3°)): a perfect code of order e in a P-polynomial scheme can
only exist if the sum polynomial ¥,(z), called here the Lloyd polynomial, has
e distinct zeros in the set {z;, ..., z,}. An explicit formula is also obtained
for the distance distribution of a perfect code, only depending on e and on
the “parameters” of the scheme.

The distribution matrix B of a code ¥, examined in sec. 5.2.3, can be defined
as follows: the rows and columns being numbered by the points x € X and
the integers i € N, respectively, the (x,i)-entry of B is the number of points
yeY at distance p(x,y) = i from x. It is shown that the knowledge of the
distance distribution and of the columns By, B, ..., B,_, is sufficient to
determine the whole matrix B. In addition, the result explains the meaning
of the external distance r: each point of X is at distance less than or equal to r
from at least one point of Y. Certain “regularity properties” of codes are also
examined. In particular, it is proved that d >> 2r— 1 is a sufficient condition
for a code to be completely regular in the sense that any row B(x) of the dis-
tribution matrix B only depends on the minimum distance between the given x
and the points of Y. An example concludes the section; the distribution matrix
is computed for the Steiner system S(5, 8, 24) in the Johnson scheme J(8, 24).

The structure of sec. 5.3 on Q-polynomial schemes looks like that of the
preceding one, the “designs of given maximum strength” playing here a similar
role as the “codes of given minimum distance”. We describe more in detail
the concept of Q-polynomial schemes in sec. 5.3.1, without being able yet to
give a combinatorial formulation of it. -

The property of subsets ¥ of X in which one is most interested is that of being
a T-design with T'= {1, 2, ..., 7} for some integer v. Then Y is simply said
to be a T-design, by extension of the usual notion. Two parameters, determined
from the inner distribution a, play an important role: the maximum strength t
and the degree 5. The first one is the largest integer © such that Y is a r-design,
the latter is the number of nonzero components of the n-tuple (a4, ..., a,).
Application of the MacWilliams inequality yields s > [1/2]; it is shown later
on that equality is a criterion for the so-called “tight designs”.

Let us emphasize here the formal duality between the theories of secs 5.2 and
5.3 resulting from the following correspondence between the parameters:
d«rd' =1t 41, rer =s This duality was already present in a paper de-
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voted by the author '4), at least implicitly, to the Hamming spaces, for which
the four parameters are well defined.

The inequality obtained by Rao 3°) for orthogonal arrays of strength ¢ in
H(n,g) and, more recently, by Wilson and Ray-Chaudhuri 7*) for classical
t-designs in J(n,v) is extended, in sec. 5.3.2, to r-designs in any Q-polynomial
scheme. By extension of Wilson’s terminology 7#), a r-design is called a tight
design of order e = [t/2] whenever it achieves this generalized Rao—Wilson
bound. In the case of Hamming schemes, the tight designs are in fact equivalent
to the generalized Hadamard codes, as defined by the author '4). A necessary
condition is obtained for the existence of a tight design of order e, very similar
to the Lloyd theorem on perfect codes, in terms of the sum polynomial ¥ (z)
called here the Wilson polynomial. The result reduces to theorems obtained by
Wilson 74) and by the author %) for the Johnson and Hamming schemes,
respectively.

The discussion of Q-polynomial schemes ends, in sec. 5.3.3, with some results
on regularity properties of a design Y of given maximum strength ¢ and degree s.
Essentially, it is shown that f >> 25— 2 is a sufficient condition for Y to define
a subscheme. This result was known for s = 2 in the cases of Johnson schemes
and Hamming schemes (for linear codes) with the following respective terminol-
ogies: the quasi-symmetric block designs (cf. Goethals and Seidel 2%)) and the
two-weight projective codes (cf. Delsarte !%)). A few examples are given to
illustrate the theory; in particular, the remarkable codes discovered by
Kerdock 36) are examined in some detail.

Chapter 6 treats the additive codes (= group codes over an Abelian group F)
in Hamming schemes, which are a generalization of the linear codes over finite
fields (cf. Assmus and Mattson 2) and MacWilliams %) for theoretical bases
and fundamental results or linear codes). In the class of additive codes the
formal duality emphasized above becomes quite precise.

A general concept of duality among subgroups of a finite Abelian group is
given in sec. 6.1 by use of the group characters. As the additive codes of
length n over F by definition are the subgroups of the Abelian group F*, the
concept applies to this class of codes. One obtains, in sec. 6.2, a version of the
Mac Williams identities on the weight (or distance) distributions of dual additive
codes (cf. MacWilliams “5) and Pless %) for the original theorem on linear
codes). The result implies that the values of the parameters d' = ¢ 4 1 and
r’ = s of a code are nothing but those of 4 and r, respectively, for the dual
code.

Finally, the question of deciding whether an additive code Y of degree s
defines a subscheme of H{n,g), with s classes, is examined in sec. 6.3. The
result is the following: Y forms an association scheme for the distance rela-
tions if and only if the distribution matrix of its dual code contains exactly
s + 1 distinct rows. Moreover, when this condition is satisfied, one obtains
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an interesting representation of the dual scheme, in the sense of sec. 2.6, on
the cosets of the dual code. The theory is applied to both Golay codes (cf. for
instance Pless *¢)) which define remarkable association schemes, including the
strongly regular graphs discovered by Goethals and Seidel 2%), Beriekamp,
Van Lint and Seidel 7), and the author 13-15),
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2. ASSOCIATION SCHEMES

The present chapter contains elements of an algebraic theory of the associa-
tion schemes defined by Bose and Shimamoto '), which constitute a very paalr-
ticular case of the coherent configurations recently introduced by Higman **).

2.1. Definitions

Let X be a finite set with at least two elements and, for any integcl: nzl,
let R = {Ro, Ry, ..., R} be a family of n + 1 relations R, on X; in other
words, n + 1 subsets of the Cartesian square X2, If (x, ) belongs to R, the
point y € X will be said to be an ith associate of the point xeX. )

The pair (X,R) will be called an association scheme with n classes if the three
following conditions are satisfied:

Al. The set R is a partition of X? and R, is the diagonal relation, ie.,
Ry = {(x,x)| xeX}.

A2. Fori=0, 1, ..., n, the inverse R,~! = {(»,x) | (x.y) € R;} of the rela-
tion R, also belongs to R.

A3. For any triple of integers 4, j, k=0, 1, ..., n, there exists a number
™ = p;.® such that, for all (x,3) € R,:
[{zeX| (x2) e R,(z)) € R} = pis™. 2.1

The p; ,® are called the intersection numbers of the sch_e.me '(X,R).
Let us now consider a pair (R,,R,) with R; = R;~*. The positive integer
v, =p,,® (= v, =p,©) is called the valence of R, (and of R)). In fact v,
is the number of ith associates of a fixed point x:

v={{zeX| x)eR]} 22)

which is independent of x. Any relation R, € X* having this property will
be called regular. . N
The above definition is slightly more general than the original one due to
Bose and Shimamoto 1°); the latter is obtained when axiom A2 is replaced
by the following. )
A’2. The relations R, are symmetric: R,"! = Ryfori=0,1,...,n

In this case, the scheme (X,R) will itself be called symmetric. For an
arbitrary association scheme (X,R), it is easy to show that the smallest
partition R of X? satisfying A2 and R > R, namely

RE={(RUR~]i=0,1,...,n},
yields a symmetric association scheme (X,R), which could be called the
symmetric closure of (X,R). :

2.2. Bose—Mesaer algebra

Let us first introduce some notations from matrix algebra. For two finite
nonempty sets X and X", we shall denote by C(X,X") the set of matrices S of
type | X| x| X’| over the complex field C, where the rows and columns are
numbered by the elements of X and X", respectively, the (x,x)-entry of S being
written as S(x,x’) for x € X, x’' € X". In the case |X’| = I we shall omit X’ in
the notations, so C(X) denotes the set of column vectors ¢ of order | X}, the
x-entry being ¢(x). Similar notations will be used for the real field R.

Partitions # = {X;| i=0,1,...,n} and &' = & k=0,1,...,n}0f
the two sets X and X, respectively, induce an obvious decomposition of any
matrix SeC(X,X") intoc (n + 1) (0’ + 1) submatrices; we shall denote by
S € CX,X,), by S, e C(X,X,") and by 5 e C(X,,X") the restrictions of §
to the Cartesian products X, X X/, XXX, and X, x X", respectively. Then, for
a suitable numbering of rows and columns, we have

So,0-+-Sox-- - Som S©
S= S‘l.o Stk Sew | = é‘” .3
S‘,,_o Sux Sun S‘(u)

=[S ...8 ...5% ]

For X and X" with the same cardinality, any matrix S e C(X,X") will be called
orthogonal whenever it satisfies

58 =|x]1, 24

where § denotes the conjugate transpose of S and I is the unit matrix of C(X,X).
Then § is an orthogonal matrix in €(X",X). For the classical definitions of
matrix sum and product, the set C(X;X) has the structure of an | X|2-dimensional
linear algebra over C, having I as the multiplicative identity. As usual, a matrix
D eC(X,X) is called normal if it commutes with [.

Any relation R, is described by its adjacency matrix D, e C(X,X), defined
as follows:
1 for (x,y)eR,,
0 for (x,y) ¢ R,.

Next, let J denote the all-one matrix: J(x,y) = 1 for all x,y € X. Then R, is
a regular relation if and only if D, commutes with J. In fact this is equivalent
to the condition D, J = J D, = v, J, where v, is the valence of R,.

The following theorem, essentially due to Bose and Mesner ®), gives an
algebraic form of the axioms A2, A3 of an association scheme.

Dixy) = {
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Theorem 2.1. Let R = {Ro, Ry, .-+ R)ybeasetofnt1 relations on X,
satisfying A1, and define A to be the linear subspace of C(X,X) generated by
the adjacency matrices D; of R,, i=0,1,...,n Then (X,R) is an associa-

tion scheme, with n classes, if and onlyif Aisa commutative (n + 1)-dimen-
sional subalgebra of C(X,X), all of whose elements are normal matrices.
Proof. Assuming that (X,R) is an association scheme, let us first prove the
“only if” part of the theorem. Bquation (2.1) can be written as follows:

D, D, =t§opa,;‘” D, Li=01,...,m 2.5

Indeed, for any (x,y) € X?, the (x,y)-entry of both members of (2.5) is equal
to the number of peints z€ X such that (x,2) € R, and (z,)) € R,. Hence the
linear space

A= {‘éa,D,l o, e C} 2.6)

is closed under matrix multiplication and, therefore, constitutes a subalgebra
of C(X,X) whose dimension is n 4 1 since the D, are linearly independent
(by Al). It is clear that A is commutative since Py =ps® implies
D, D; =D, D, by (2.5). On the other hand, the matrix form of Ry = R
is D, = D,T. Hence the commutativity of A together with axiom A2 clearly
implies that each matrix in A is normal.

Conversely, assuming that A is a commutative algebra of normal matrices,
we now give the sketch of a proof for the “if” part. It can be shown that A
admits a basis of Hermitian matrices (cf. the proof of theorem 2.2). Hence A
is closed with respect to the transformation D — D in C(X,X). From this,
condition A2 readily follows. On the other hand, expressing the product
D, D, (= D,; D) in the basis {Do, - -.» Da} of A, we obtain equations like
(2.5). This being the matrix form of condition A3, we have shown that (X,R)
is an association scheme.

The linear algebra (2.6) will be called the Bose-Mesner algebra (ot BM alge-
bra) of the association scheme (X,R). Axiom Al implies that the matrices I
and J belong to A, since Do == I and X D, = J. Before examining the struc-
ture of A (theorem 2.2), we need some notations and definitions. Given a par-
tition ' = {X\' |e=0,1,..., n'} of the finite set X, let us define diagonal
matrices I € C(X",X"), for k = 0,1,...,n, as follows:

1 for x'eXy,
e = { @
and I, (x',y) =0 for x' # y'. Obviously, the I, generate a commutative
(' + 1)-dimensional subalgebra of C(X",X"), isomorphic to C**+*. They form

0 otherwise,
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the basis of minimal, mutuall, i
t . A ly orthogonal, idempotents of thi ;
indeed, using the Kronecker symbol 8, we have ’ * of this subalgebra;
I'r PJ = 6!‘.' Pr,
szﬁmtion, Let e C(X,X") be an orthogonal matrix. To the partition n’ of
X’ correspond the following Hermitian matrices J, € C(X,X):
Jo=|X|"tSI .8 =|X["15.8, 29

fork=0,1,...,n, where S, i icti
L., « is the restriction of S to X xX,’'. Clearly, th
J, form the basis of minimal idempotents of a subalgebra of CZX,X), wl:;’ch i:

similar, under unitary transf i
by the I',. ry transformation, to the subalgebra of C(X",X") generated

0gr s, 2.8)

i‘l;e:rer: tl2102 Let (X,R? be. an association scheme with n classes, and let X’ be
: -: lo ; samelca:dmahty as X. Then there exists a partition n' of X’ into
Sec(;;f)sesw;:;: ,SO s(kl <n, “;1;:1 |Xo'| =1, and an orthogonal matrix
] X, o= (1, ..., I)T, such that the matrices J,, J,
f’wen by (2.9) form a basis of the Bose-Mesner algebra of theosch;;n'e. e
ar;o{i kl:t A denote .the BM algebra of (X,R). According to theorem 2.1 and
2 el ;9 own tesult don co.mmutative sets of normal matrices (cf. Marcus and
A.mc ), p. 77), there exists an orthogonal matrix § € C(X,X") diagonalizing
: to each D € A corresponds a diagonal matrix 4 € C(X",X") such that
- D=|X|-1548, (2.10)
3:;: dxafc{nalAelcmenfs of A being the eigenvalues of D. When D runs through A
matrix /A runs thr Y X ich is i :
the x ough a subalgebra A" of C(X",X”), which is isomorphic
W:;t D be a.matrix of A having the maximal number of distinct eigenvalues
by enote tlns number .by n’ 4 1 and the eigenvalues of D by A, 4,,- 2, i
en thcfe exists a partition z’ of X" into n’ 4 1 classes X/, 0 << k ’<n’ ) "i;
that the image 4 € A’ of D has the form RS

A=ZhTy @11

wher.e the I, are defined by (2.7). Since the A, are distinct, there exist pot
nomials fi(z) over C satisfying f,(4,) = 8,4, for i, k =0, ’1, n ng?m);
(2.11) we ’deduce {;(:/1) = I}, using also (2.8). Therefore, the I, beiong to the
a.lgebr:.i A atlxd. this implies n’ < . In fact, by a similar argument, which will
!:c omm:ed, it is not difficult to show that the I', generate the whole algebra,
ie., equivalently, n’ = n. Hence the images (2.9) of I' I, in A fg 9
basis of orthogonal idempotents of A. o e
Fma.lly, we observe that the all-one matrix J, which belongs to A, admits | X
as an eigenvalue of multiplicity 1 associated to the eigenvector j = (1, . 1)"!
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Hence it follows that one of the classes of &', which we shall assume to be Xy,
contains a single clement, the corresponding submatrix S, of S being equal
to &) for some number ¢ with ze* = 1. Since we may take e = 1 without
loss of generality, this concludes the proof.

Definitions. For an association scheme (X,R) and a fixed point e € X, the par-
tition 7 (X,e) of X is defined to consist of the following n 4 1 classes:

X,={xeX|(x)eR)}), O0<i<n (.12

On the other hand, for a set X’ of the same cardinality as X and for an orthog-
onal matrix S e C(X,X’) diagonalizing the BM algebra of the scheme, we shall
denote by = (X,8) a partition of X" into # + 1 classes X/, 0 < k < m, with
[Xo'| = 1, such that the column spaces of S, (=), Sy, - . ., Sy are the com-
mon eigenspaces of all matrices in the algebra.

In the proof of theorem 2.2, we have essentially established the existence
and uniqueness of z (X",S) = n’. Let us also emphasize that the basis (2.9)
of minimal idempotents of A is unique, although S is not unique.

Given a pair of partitions 7 (X,e) and = (X",S), we shall use the following
notations for the cardinalities of the classes:

o=X|, m=|%]
Clearly, v, is the valence of R; and the present notation agrees with (2.2). On
the other hand, we have g, = rank (S,) == rank (J,). The u, are called the
multiplicities of the BM algebra.
2.3. The eigenmatrices P and Q0

Given the two “natural” bases {D,} and {J,} of the Bose-Mesner algebra‘
of a scheme, let us consider the linear transformations of one of them into the
other; first we write

D, = ‘zo}’.(i) Ji, k=0,1,...,n (2.13)

The complex numbers Py(0), Py(1), . . ., Py(n) defined by (2.13) are the eigen-
values of D,. From these we construct the square matrix P of order n + 1
whose (i,k)-entry is P,(i):
P=[Pi); O0<ik<n] 2.149
Since P is nonsingular, there exists a unique square matrix Q of order n + 1
over C such that
PQ=QP=|X|L (2.15)

The matrices P and Q will be called the eigenmatrices of the association scheme.
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Writing Q,(i) for the (i,k)-entry of Q, as in (2.14), we derive from (2.13) and
(2.15) the following system:

Jp = ]X|—x'£‘; o@D, k=0/1,...,n 2.16)

Using the partition 7 (X,e) of X defined in (2.12), we obtain an equivalent
form of (2.16), namely

Ju(x,e) = | X| 1 Qu(d), VxeX, .17

Since | X] J, is the all-one matrix, this yields Qo(#) = 1 for all i, which is to
be compared with the obvious identity Po(i) = 1.

Let us now briefly examine the relations between the eigenmatrices and the
parameters vy, 4y, p,.,*. Since P(0) is the eigenvalue of D, associated to the
cigenvector S, = j, we have Py(0) = v, = valence of R,. On the other hand,
considering equality of the traces in both members of (2.16) we deduce, since
tr (J) = py and r (D) = IX' ot

04(0) = py = rank (Jo)- (2.18)

The intersection numbers p, ,*” can be expressed as “rational functions” of
the eigenvalues P(u). Indeed, the equality between the corresponding eigen-
values in both members of (2.5) gives

P Py(u) = kéopu(n P (u), u=01,...,n .19

Conversely, the numbers P (x) are “algebraic functions” of the p; ;. In order
to show this fact, let us introduce the square matrix L; of order n 4 1 whose
(k,j)-entry is p, ;® for k,j=0, 1, ..., n (cf. Bosc and Mesner ®)). Then, as
can be easily verified, (2.19) is equivalent to

PL, P! = diag (P{(0), P,(1), . . ., Pim)).

Hence the P,(u) are the eigenvalues of L,. (Moreover, we observe that the cor-
respondence D, — L, gives an isomorphism between the BM algebra of the
scheme and the algebra generated by Lo, Ly, - . ., Ly)

The derivation of the eigenmatrices from the parameters p, ;> has been
recalled only for completeness. In the present paper, for the two families of
schemes that will be examined in detail (cf. ch. 4), we shall obtain the eigen-
matrices in very different manners.

The following theorem describes some orthogonality relations satisfied
by the cigenmatrices. We first introduce a notation: to an (1 + 1)-tuple
¢ = (o, €1, - + - » Cx) Of complex numbers ¢; we associate the diagonal matrix

4, = diag (co, €1, - - - 5 Ca)- (2.20)
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Theorem 2.3. Let P and Q be the eigenmatrices of an association scheme (X,R).
Let v, be the valence of R, and y, the rank of J,. Then the following two
equations are satisfied:

BAuP =|X]| 4y, (2:21)

34, 0 =\x| 4, 2.22)
Proof. For a point e € X and an orthogonal matrix S € C(X,X") diagonalizing
the BM algebra, let us consider the partitions 7 (X,e) and = (X',S) of X and

’

X', respectively. They yield a decomposition (2.3) of S, with n =nr' and
So = j. From (2.9) and (2.17) we deduce

Stk Sox = Oul) S0 (2.23)

for ik =0, 1, ..., n. Using the symbol ¥ for the direct sum of matrices,
we can write (2.23) as follows:

{£5)=(Z5)

Multiplying both members to the left by § and to the right by P, we readily
obtain, by (2.4) and (2.15),

P((k) go.k = Sl,k s(.o» (2-24)

for ik =0, 1, ..., n. Using (2.23) and (2.24) we have two expressions for
the numbers S o7 S, S’o_,; equality between them gives

P*(k) So,x go.k = 0« St,or Si.0-

Since 8,07 810 = | X, = v, and Sox So.x = 0u(0) = sy, by (2.18) and (2.23)

with i = 0, this can be written in matrix form as
P dp =4, 0, (2.25)

by use of the notation (2.20). The desired equations (2.21) and (2.22) then
follow from (2.15) and (2.25).

The above proof has been adopted to show how the numbers P,(k) and
Q4(¥) can be derived from some partitioned form of an orthogonal matrix S
(cf. (2.23) and (2.24)). However, there is a more direct proof : the orthogonality
relations J, J, = 4, J, when expressed in the basis {D,} give, by (2.5) and
(2.16),

;z; 0:) QN PP = |X] 8,0 QR
For k = 0 this is equivalent to (2.22), as can be readily verified.
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By definition, the Bose~Mesner algebra is closed with respect to both trans-
formations D — DT and D — D*. On the other hand, the idempotents J, are
Hermitian matrices. In fact, it is easy to show that the correspondence
J,— J,* (= J,T) acts as a permutation on the set {Jo, Jy, ..., J,}. Hence
it is clear, by (2.16), that the conjugate of any given column Q; of the eigen-
matrix Q also is a column of Q: we have @, = (,* for J, = J,*. Analogously,
the columps P, of P satisfy P, = P/* for D, = D7, ie. for R, = R~

For a symmetric association scheme (X,R) the eigenvalues of the adjacency
matrices D, are real. Hence the matrices P, Q, J, are also real. In this case, it
is sufficient to consider the BM algebra over the real numbers.

For given i,j, let us write the product Q,(1) Q,() in the basis of the Qx(u):

) Q) =k§‘h./m Qu(w), u=0,1....nm (2.26)

for some complex numbers g, ,* uniquely defined. Although these numbers
have no clear “combinatorial” meaning, they have properties similar to those
of the p, ,® (cf. (2.19)), besides the obvious symmetry 1., =g,

Lemma 2.4. The g, are nonnegative real numbers. Moreover, they satisfy
9y = p bue for Je=J* @27

Proof. To a given column vector ¢ € C(X) we associate the diagonal matrix
A4 e C(X,X) defined by 4 (x,x) = $(x). On the other hand, let Se Cx,X)
be an orthogonal matrix diagonalizing the BM algebra. Then, for the partition
&(X",S) of X' and for given i,j =0, 1, ..., n, the following identity holds:

ISasii=Ea®lSdll>  for Q=0% @B

where || 4]] = (tr (44))/* denotes the Hermitian norm of a matrix 4. This
is obtained by straightforward verification, from (2.26), by use of
(S8 (x,y) = Qu() for (x,) e R, (cf. (2.23)). The details are left to the
reader.

For fixed r, let ¢ be a nonzero vector in the column space of S,. Since S is
orthogonal, this implies 8, ¢ = 0 for k3 r and §, 4 = 0. Hence it follows
from (2.28) that ¢, is real and nonnegative.

To show the second part of the lemma, we use (2.28) with ¢ = (1, ..., )T
= S, and 4 = I Since S is orthogonal, we obtain | X|? x4, 8, , = 1X]2 9.,
which yields the desired result (2.27).

Concluding this rather technical section about eigenmatrices, we give in-
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equalities that will be useful in the following: for all ik = 0, ,..,.n

PO <v, |06 < e 2.29)

The first one simply follows from the fact that v,”! D, is a stochastic matrix,
so that its eigenvalues have an absolute value less than or equal to unity.
Then the second inequality follows from (2.25).

2.4. Examples

In ch. 4 some schemes connected with coding theory will be examined in
detail. Here we briefly describe a few other “classical” examples.

Example 1. Let X be a finite set of cardinality » > 2 and let R, be a sym-
metric relation on X having no pair in common with the diagonal relation R,.
Then (X,R,) is called a graph of order v. The graph is said to be regular if R,
is regular, it is strongly regular if (X,R) is an association scheme with two
classes for R = {R,, Ry, R}, Ry =X*— (R, u R,). This concept was first
introduced by Bose *). Clearly, the complementary graph (X,R,) of (X,R,) is
then also strongly regular.

According to theorem 2.3, the eigenmatrices P and Q of an association
scheme with two classes can be expressed in terms of the valences v,, the
multiplicities 4, and some real numbers ry, s as follows:

1 v, v, 1 Hy B2
P=11 r n, Q=1 pirfe, Basyfvg . (2.30)
I s s U opinfvs pysyfv,

The conditions (2.15) are classical identities on the parameters of strongly
regular graphs; for instance the useful equation (v, — 5,) (v, — r;) = v Sy Fa.
With only the following exceptions: b= =0w—-12 s;=r =
(102, sy =r, = (-1 F Jv)2, it can be shown that the eigen-
values r, 5; are integers such that, for a suitable ordering, ry >0, 5, <—1.
For this we refer to Seidel 1),

To complete the description of association schemes with two classes, let us
examine the nonsymmetric case, i.e. R, = R,"., It is easy to show that the
skew-symmetric matrix D — D, — D, then satisfies D J = Oand D? = J— 1.
In other words, D is the kernel of a skew-symmetric Hadamard matrix of order
v+ 1 (cf. for instance Wallis 73)). In fact, the concept of a nonsymmetric

association scheme with two classes on v points is equivalent to that of a skew-

symmetric Hadamard matrix of order v + 1.

Example 2. Let X be a finite group and denote by X, = {1 b X, ..., X, the
conjugacy classes of X, i.e. the subsets of the form {z-'az| ze X} for some

’
|
!
|
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aeX. Then we define relations R,, Ry, ..
Ri={xy) |y ixekX). 31

It is easy to check that (X,R) is an association scheme, The eigenmatrices of
this scheme are closely related to the irreducible characters yq, vy, . . ., p, of
the group (cf. for instance Hall 2#)): for any x € X, the characters are given by

Ya(%) = 078 p 2 PK) = py 12 Q).

The equations (2.21) and (2.22) here are the classical orthogonality relations
of the theory of group characters. On the other hand, lemma 2.4 also reduces
to a well-known resuit.

.+ R, on X as follows;

Example 3. Let X be a finite Abelian group of period » and let X, = {1}, x,,
-+ +» X, be the central classes of ¥, i.c. the subsets of the form {a'}, where a
is a fixed element in X and ¢ runs through the positive integers which are rela-
tively prime to . Defining the relation R, from X, as in (2.31), one readily
shows that (X,R) is a symmetric association scheme. Here the cigenmatrix P
has integral entries and satisfies P2 = |X] I, i.e. P = Q (cf. Delsarte and
Goethals 7)), .

Example 4. For a prime power g, let @ be a primitive root in the Galois field
GF(q). Then, given an arbitrary divisor s of ¢— 1, we consider the partition
of GF(q) into s + 1 classes C = {0}, Cy, ..., C, with the following defini-
tion, for r=(¢g— Dfsand 0 < i <5~ 1:

Cl+l = {(I)‘, (0‘+', wzﬂ-l’ vy -1+ l}'

The classes Cy, ..., C, are the cyclotomic classes of GF(g); they simply are
the cosets of the subgroup of order r in the multiplicative group of GF(g).
Next, we define the set K = {K,, ..., K,} of relations K, on GF(g) as fol-
lows: K, = {(x,)| x— ye C,}. It is easy to show that (GF(g),X) is an asso-
ciation scheme; this will be called the cyclotomic scheme with s classes. Here
the parameters p,; ,® are the so-called cyclotomic numbers (cf. Storer %)),

2.5. Extensions of an association scheme

Let there be given an association scheme (F,K) with s classes K, ..., K,
on a set F of cardinality g. For an integer m > 1, we consider two clements
X=(X1 ..., %), Y =1, ..., yu) Of the mth Cartesian power X = F™,
Let g(x,y) be the number of integers 7, 1 < i < m, such that (x,y,) € K, and
define the following s-tuple: e(xy) = (g:(x.,y), ..., o,(x)). The number n
of distinct nonzero values assumed by e(x,y) in R* when x and y run through
X only depends on s and m. In fact, n 4 1 is the number of m-combinations
with repetitions of s + 1 distinct things, so that n = -1




— 18 —

Let 9@ = (0,...,0), 0, ...
we define the set R = {Ry, Ry, ..

, 0™ be the distinct values of ¢(x,y). Then
., R,} of relations R, on X as follows:

Ry = {(xy)| e(xy) = ¢} 2.32)

It is not really difficult to show that (X,R) is an association scheme, with
n classes. This will be called the extension of length m of the initial scheme
(F.K).

The simplest case is s = 1, i.e. K= {K,,K,}. Then (F,K,) is the complete
graph of order q. The extension (X = F™,R) of the scheme (F,K) with one
class will be denoted by H(m,q) and will be called the Hamming scheme of
length m over F. The number n of classes of (X,R) clearly is equal to m. The
mapping g, of X? onto {0, 1, ..., n} is called the Hamming distance over X;
it will be denoted by dy in the rest of this work. By definition, dy(x,y) = p,{x.))
is the number of integers i for which x, and y, differ from each other. It is easily
scen that dy has the classical properties of a distance. An important part of the
present work is devoted to the concept of “metric schemes” (cf. sec. 5.2), which
is a natural generalization of the Hamming schemes (cf. sec. 4.1).

For F = GF(q), q being a prime power, let us also consider the extensions
(X = F™,R) of the cyclotomic schemes over F (cf. example 4 in sec. 2.4), for
any divisor s of g— 1. We shall briefly describe two interesting cases (besides
s = 1, which leads to the Hamming schemes):

(i) For s = g— 1, the scheme (X,R) will be called the spectral scheme of
length m over F. The pairs (x,p) of vectors x,y € X belonging to a given rela-

tion (2.32) are those for which the difference z =x— y has a specified .

“spectrum” -, i.e. a fixed number of components z, assuming each of the
values of the field F. For given m and g, the spectral scheme is a “refinement”
of the Hamming scheme H(m,g), in the sense that the partition R of X2 is finer
for the first than for the second one.

(ii) For g =1 (mod 2), s = (¢— 1)/2, the extension (X,R) of the cyclotomic
scheme with s classes over F = GF(g) will be called the Lee scheme of length m
over F. Let us examine the connection with the Lee metric %), when ¢ is an
odd prime. The Lee distance dy(x,y) between two vectors x,yeX is defined
as follows:

di(xy) = 1§xlx' - }’ll,

where | o] is the integer among 0, 1, . . . , s which is congruent to + « modulo g.
It is easily seen that we have di(x,7) = X i, gx(x.y), for a fixed permutation
Gy .-, i) of (1, ..., 5). Consequently, if two pairs (x,y) and (x’,y") are in

the same relation R, of the Lee scheme, then they satisfy di(x,y) = dp(x",)")-
However, the distance relations in the sense of Lee do not yield, in general,

S SV S U SO PO NP SO
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an association scheme. To give a scheme, these relations need to be refined;
a suitable refinement is precisely that of the Lee scheme.

The above examples all have applications in coding theory. For instance,
as will be examined in sec. 4.1, the Hamming scheme H(m,g) is a convenient
framework for studying the “distance distribution” of a code of length m over F
(for the Hamming metric). We shall now examine another illustration of the
concept of extension, leading to a scheme (X,R), defined on the set X = Fam,
which is a natural framework for investigating the “joint distance distribution”
of two codes of length m over F (cf. MacWilliams, Mallows and Sloane 47)).
First, let us consider the direct product of two copies of the scheme (F,K) with
one class; we denote this simply by (F2,K?). The definition, rather obvious, is
the following: for i =0, 1, 2, 3, the relation (K?), over F? is the set of pairs
(o), (B.B)) satisfying « = p and «' =, a=p and a' # §', a & B and
o =, a# B and o # B, respectively. Then, for an integer m > 1, the
extension of length m of (F2,K?) is a symmetric association scheme with
n= ("% — 1 classes. In the binary case (i.c. | F| = 2), we point out that
(X,R) is isomorphic to the spectral scheme of length m over GF(4).

2.6. Duality in association schemes

In sec. 2.3 we have seen how a partitioned form (2.3), with ' = n, of an
orthogonal matrix S e C(X,X") corresponds to an association scheme with n
classes. We shall now examine this correspondence more in detail and, using
such partitions of orthogonal matrices, we shall introduce a concept of duality
for certain association schemes.

2.6.1. Partitions of orthogonal matrices

Let X and X’ be two finite sets, with the same cardinality, and let S be an
orthogonal matrix in C(X,X”). We consider a partition ¢ = X/ k=01,
..., n'} of X' into n’ + 1 classes, with »’ > 1. Clearly, the matrices

Jo=|X|"* S8, k=0,1,...,7, 2.33)

are linearly independent and form a set of orthogonal idempotents in the
algebra C(X,X). Using these matrices we define a mapping fof X*into Cv+1
as follows:

[X]=1F(xp) = Jo(xD)s - - -5 Tl 234

for all x,yeX. Let n+ 1 be the number of distinct values assumed by f;
the partition ¢ will be said to be of type (n,n’) with respect to S. Let 9@, g,
..., Q™ denote these values. To each Q' we attach a relation R,(o) on X:

R(@) = {xN| fx) =0}, i=01...,m (2.35)

Before examining association schemes, we shall give in a lemma the first con-
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sequences of the above definitions. This will lead us to the useful concept of
“symmetric partitions”.

Lemma 2.5. For any o of type (n,n’), one has n > »’, and the idempotents J,
are linear combinations of the adjacency matrices of the relations Ri(a).
Proof. First we define the complex numbers Q,(i) to be the components of the
(' 4+ 1)-tuple @9, fori=0,1,...,n:

20 = (Qo(), 1) - -+, Q) (2.36)

Then, if D, stands for the adjacency matrix of R,(o), we can write J, in terms
of Dy, ..., D, as follows, using (2.34) and (2.35):

L=|XI""Z 0Dy k=0,1,...,n @37

Since the J, are linearly independent over C, this is only possible if n' < n.
Hence the lemma is proved. .

Definitions. Let ¢ be a partition of a set X” which is of type (n,n") with respect
to a given orthogonal matrix S € C(X,X") and let f be the corresponding map-
ping (2.34). Then ¢ will be called symmetric if n is equal to »’ and if f(x,x) is
constant for all x in X; it will be called regular if all relations R,(c) are regular.

We now give two results, converse of each other, showing the equivalence
between the concepts of association schemes and of symmetric partitions of
orthogonal matrices. No proof will be given for the first theorem, which is
essentially a new form of theorem 2.2.

Theorem 2.6. Let (X,R) be an association scheme with n classes and let
S e C(X,X") be an orthogonal matrix diagonalizing the Bose-Mesner algebra
of the scheme. Then the partition o = =(X",S) of X" is regular and symmetric,
of type (n,n), with respect to S. Moreover, R = {Ro(0), . .., Ru.(0)} holds.

Theorem 2.7. Let ¢ be a partition of X’, which is symmetric of type (n,n) with
respect to an orthogonal matrix S & C(X,X"). Then (X,{R,(0)}) is an associa-
tion scheme with n classes and S diagonalizes the Bose-Mesner algebra of
the scheme. Moreover, o = n(X",S) holds.

Proof. Let us first show that R(d) = {Ry(0), ..., Ru(0)} satisfies axiom Al
(sec. 2.1). By definition, R(o) is a partition of X2. On the other hand, from
(2.33), (2.34) and the orthogonality of S we readily deduce

SN 1,..., )T =|X]4,, (2.38)
Hence two pairs (z,z) and (x,)) with x % y cannot belong to the same R,(o).
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Therefore, since f(z,2) is assumed to be constant, one of the relations, which
we shall take to be Ry(c), must be the diagonal; so condition Al is satisfied.

To prove that (X,R(0)) is an association scheme, we use lemma 2.5 with
n' = n. The adjacency matrices D; of the R(0) can now be written as linear
combinations of the idempotents J,. Consequently, the D, generate a com-
mutative (n -+ 1)-dimensional algebra of normal matrices in C(X,X). Hence,
by theorem 2.1, (X,R(0)) is an association scheme with n classes, whose BM
algebra admits Jo, Jy, . .., J, as minimal idempotents (cf. theorem 2.2).

Finally, we observe that S diagonalizes the J, and, therefore, the whole
BM algebra. From this it also follows that the partition o is identical to
#(X",S), which concludes the proof.

2.6.2. Dual of a regular scheme

Definition. Given an association scheme (X,R), let S'e C(X,X") be an orthog-
onal matrix diagonalizing the Bose-Mesner algebra and let e be a point of X.
Then (X,R) is said to be regular with respect to e and to S if the partition 7(X,e)
of X is regular with respect to § and if $© is equal to (1, 1, ..., 1) for
X, = {e}.

Without loss of generality (cf. theorem 2.2), we assume that S contains the
column Sy = (1, .7 ., 1)T. Then we denote by ¢’ the corresponding point of X,
50 that X,’ = {e’} is one of the classes of the partition n(X",S). We are now
able to define a duality for regular schemes.

Theorem 2.8. Let (X,R) be an association scheme, with » classes, which is
regular with respect to e€X and to Se€ C(X,X"). Then, for the partition
7 = t(X,e) and for R' = {R(7)}, the pair (X",R") also is an association scheme
with n classes, being itself regular with respect to ¢’ and §. The partitions cor-
responding to these schemes satisfy 7(X,5) = v(X,e) and n(X",5) = o(X',e").
Moreover, the valences v,/, the multiplicities 4,’ and the eigenmatrices P',Q"
of (X’,R’) can be derived from those of (X,R) by the formulas

o =py M =v, P=0 Q=P (2.39)
Proof: We shall use the method of sec. 2.6.1, interchanging the roles of X and
X' and using the orthogonal matrix 3 instead of S. For the pattition T = 7(X,e)
into classes X, = {e}, X, . - . , X, given by (2.12), we define like in (2.33) the
idempotents

I =1x}-18®ws®,  i=0,1,...,m (240)

in the algebra C(X’,X"). Let P be the first eigenmatrix (2.14) of (X,R) and let
X, = {¢'}, X1’ ..., X, be the classes of #(X",S). Then, since $' is the all-
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one row vector, it follows from (2.24) that the (x’,¢')-entry of J;/, with x’ € X',
is equal to

T/ e) = [ X]71 Bix St,oXx) <
= |X|~* Pk). .41)

Next, we introduce the mapping f* of (X”)? into C**!, as in (2.34), using
here the idempotents J;":

X7 ) = ' &, - -

The regularity of t(X,e) with respect to S implies that, for a fixed y' € X”, the
set of values assumed by /*(x’,y") for x’ running through X" is independent of y'.
Therefore, it follows from (2.41) that f* assumes exactly n -+ 1 distinct values
in C"+1, pamely the n 4 1 rows P® of P. Since f'(x’,y") satisfies a condition
similar to (2.38), this also shows that f”(x’,x") is constant. In other words, thi
partition ©(X,e) is symmetric of type (m,n) with respect to 5. Hence, by theorem
2.7, (X*,R’) is an association scheme with n classes, its BM algebra is diagonal-
ized by 8, and the partitions t(X,e) and n(X,S) are equal. )

Using the same numbering for the relations R,’ = Ry(x) of R’ as for the
rows P®? of P, we have

» YD) (242

eX'|(e)eR} =X, k=01,...,n

Hence the partitions (X’,e’) and n(X",S) are equal. Consequently, it follows
from the definitions and from theorem 2.6 that (X",R’) is regular with respect
toe and to S,

Finally, let us prove (2.39). According to (2.17) the second eigenmatrix Q'
of (X',R") is given by the following equation:

)= X|™t Q/k),

Comparing this with (2.41), we have Q' = P or, equivalently, P’ = Q, which
concludes the proof.

vx'eX,'

Definition. In the situation of theorem 2.8, the association scheme (X, R’) will
be called the dual of (X,R) with respect to ee X and to S e C(X,X").

This duality is involutive in the sense that (X,R) is then itself the dual of
(X",R") with respect to ¢ e X’ and to e C(X',X). The following theorem
describes an interesting class of agsociation schemes which actually have a dual.
We shall use the convenient notation {x,x’) of a symmetric “inner product”
for the irreducible complex group characters of an Abelian group. More de-
tails about this subject are given in sec. 6.2.
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Theorem 2.9. Given a finite Abelian group X (written additively), let (X,R) be
an association scheme which is invariant under translation in X':

() eR)=>(x+z y+2eRy, (2.43)

for each ze Xand i =0, 1, ..., n. Then (X,R) has a dual (X,R’) with respect
to e = 0 and to the symmetric matrix S e C(X,X) of group characters of X,
defined by S(x,x") = {x,x) for x,x’ € X. Moreover, the dual itself is invariant
under translation.

Proof. It is well known that S is an orthogonal matrix diagonalizing the ad-
jacency matrix of any relation satisfying (2.43), and therefore, the BM albegra
(2.6) of (X,R). It is also easy to prove that (X,R) is regular with respect to the
unit e = 0 and to the matrix S. According to theorem 2.8, this shows the exist-
ence of a dual scheme (X,R"). Looking at the construction of the dual of an
association scheme, the reader will readily check that (X, R’) satisfies (2.43) where
R, is replaced by R,.

Remark. After discovery of this duality, the author became aware of the follow-
ing fact (private communication with P. J. Cameron): The Bose-Mesner
algebra of an association scheme of the type considered in theorem 2.9 is a
particular case of a Schur ring. Moreover, Tamaschke 7*) has defined a duality
for certain Schur rings which is closely related to the above concepts; in fact,
theorem 2.9 should be considered, essentially, as a particular case of Ta-
maschke’s results.

2.6.3. Duality in strongly regular graphs

Let (X,R) and (X*,R’) be two symmetric association schemes, both with two
classes, dual of each other. For i = 1, 2, the strongly regular graph (X",R/)
will be called a dual graph of (X,R)). Using formulas (2.39), we can express the
parameters v,’, r,’, 5;" of (X",R") in terms of vy, ry, s, as follows, witho = | X| :

=) ey =—(0, + 5, (v 1),
(ri—s)r =—r (v + s (v— 1)y,
(re—51) 81" = (L4 r) (01 + 5, (0 — DY (v— 1 — vy).

From the last two equations we obtain (ry — $,) (ry"— 51) = v, by sub-
traction, using the orthogonality conditions. Hence, in the “normal” case
where r, and s, are integers, a strongly regular graph (X,R,) can have a dual
only when r, — s, divides v. It is interesting to consider the cases of a graph
having the same parametess as its dual (i) or as the complement of its dual (ii):

(i) First, we assume r, = r/, § = s, v; = v,". Then we have ri—s)P=v
and the parameters can be written in terms of two positive numbers ¢ and ¢
as follows: v =g, ry =1t, 5, =1t—¢q, v, = (g— 1){g— 1)

(i) Next, we assume r, =g, 5y =ry, 9, =v;. Again we have



—2 —

(ry— $,)* = v and the parameters are of the form v = ¢, r; = ¢, 5, = t—17,
vy =t(g+ 1)

The graphs having such parameters are exactly those considered by Mesner 53y
under the names of pseudo Latin square graphs (i) and negative Latin square
graphs (ii). Most of the known strongly regular graphs satisfying the duality
conditions of theorem 2.9 belong to one of these classes. Two remarkable
examples which are not of this “Latin square type” are treated in sec. 6.3
from the point of view of linear codes (cf. Delsarte 1%)).

N
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3. SUBSETS IN ASSOCIATION SCHEMES

Given a scheme (X,R) and a subset Y of X, we are interested here in the fol-
lowing question: how are the subsets Y* and XX Y of X? distributed with
respect to the relations R, ?

We shall use the notation N= {0, 1, ..., n} throughout the rest of this
work. The columns of a matrix 4 € C(N,N) will be written Aq, Ay, ..., A,
the ith component of A,, i.e. the (,k)-entry of 4, being A,(i) like in (2.14).
The symbols P and Q will always denote the eigenmatrices. Unless other speci-
fication, the summations X are taken over the set N.

3.1, Inner and outer distribution

Let R = {Rq, Ry, - .., R,} be a set of n + 1 relations on X, satisfying the
conditions Al and A2 (sec. 2.1). For a nonempty subset Y of X, let us define
the inner distribution of Y with respect to R to be the (n -+ 1)-tuple & = (ao,
ay, . .., a,) of nonnegative rational numbers a; given by

a =|Y]-|R A Y. G.1)

In explicit language, g, is the average number of points of Y being ith asso-
ciates of a fixed point of ¥. Clearly, we have ao = 1, Za, = |¥| and a; = a;
for R, = R,~*. We shall often consider a” as a column vector in R(N).
Next, let us introduce the distribution matrix of Y with respect to R (= outer
distribution of ¥) to be the matrix B € R(X,N) whose (x,i)-entry is given by

B(x,) = | R ({x}x )], 3.2)

for x € X, i € N. By definition, B(x,i) is the number of points of ¥ being ith
associates of x. Let B(x) stand for the row of B corresponding to a given
xeX. If B(y) is constant for all points ye Y, then ¥ will be called a regular
subset of X, In this case, B(y) is equal to the inner distribution a of Y. Clearly,
Y is regular if and only if, for each ie N, the restriction R, N Y2 of R, to ¥
is a regular relation on ¥, the valence being B(y) = a,. An interesting problem
is to obtain sufficient conditions on a for a subset ¥ < X to be regular. Some
results on this question will be given in ch. 5 for the so-called “polynomial
schemes”.

In order to treat the above concepts by matrix methods, we shall characterize
Y S X by the vector $r € R(X) defined as follows:

for xe¥,

1
$rx) = { 0 for xeX—Y.

Then the definitions (3.1) and (3.2) can be formulated in terms of the adjacency
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matrices D, of the R, by eqs (3.3) and (3.4), respectively:
a,=|Y|"' ¢y D, ¢y, (3.3)

B =[Dg ¢y, Dy $y, «.., Dyéyl (3.9

Clearly, a is obtained from B by the formula & = | ¥|~* ¢,7 B. The next three
results give, for the association schemes, more interesting relations between a
and B.

Theorem 3.1. Let (X,R) be an association scheme and let Y be a subset of X.
Then the inner and outer distributions of ¥ with respect to R satisfy

BTB=|Xx]-!|Y|Fd,P, 3.5
where P and O are the cigenmatrices of-the scheme and 4, is defined as in
(2.20). '

Proof. For i,je N, let us calculate the (i,j)-entry of BT B from (3.4). Using
(2.5) and (3.3) we readily obtain, for R, = R,~!:

(BT B) (ij) = ¢y" D\* Dy ¢y ,
=|¥| g P an (3.9

Defining b= a0, we have |X|a =DbP, by (2.15). Hence (3.6) becomes,
according to (2.19):

(8" B) (i) = |X|~* | Y] X b, () P,(.
Since Py(u) = P*(u) for R, = R,~%, this is exactly the desired formula (3.5).

Corollary 3.2. The rank of the matrix B is equal to the number of nonzero
components of aQ.

Proof. Since P is nonsingular we have, by (3.5), rank (B) = rank (BT B) =
rank (4,,), from which the corollary follows.

Theorem 3.3. The components aQ, of the row vector aQ are nonnegative
real numbers. Moreover, for a given k, the component aQ, is zero if and
only if B Q, is the zero vector.

Proof. Multiplying both members of (3.5) to the left by § and to the right
by Q we obtain J BT BQ =|X||¥| 4,,, by (2.15). Equality between the
corresponding diagonal entries can be written as follows:

1B Qul|2 =|X] | ¥} a Q VkeN, 3.7

where || || stands for the Hermitian norm. This clearly leads to the conclu-’
sions of the theorem.
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Remark. The inequalities aQ, > 0, which will play a very important role in
this work, can be derived in a more direct way from the definition (3.3): using
(2.9) and (2.16) we obtain

aQu=|X| Y|~ " Ju by = |¥|*|| Sk 4|l % (3.8)

for an orthogonal matrix S diagonalizing the BM algebra. These identities
obviously imply aQ, > 0. Together with (3.7) they also show that, for a
given k, the following four equations are simultaneously satisfied or not satis-
fied:

a0, =0, BQ,=0, St¢y=0, Ji¢r=0.

3.2. Linear programming

The conditions aQ, > O suggest using the linear-programming method for
the study of subsets Y < X whose specific properties are some linear equa-
tions (or inequalities) satisfied by the inmer distribution a. Such are the
“cliques” and “designs” examined in secs 3.3 and 3.4.

First, we shall recall some well-known results about linear programming
(cf. Simonnard %)), with notations adapted to our problem. Let A = [A4,(i)]
be a matrix of R(N,N) such that A,({) =1 and A,(0) >0 for all ,keN.
On the other hand, let M be a subset of N, with 0 ¢ M, and let M* = M — {0}.
Then we define the linear-programming problem (4,M), with m = | M*| real
variables b,, i € M*, and n inequalities, as follows:

“Z‘]‘ biA) >0, keN*, (3.9)
(4,M) b, =0, ie M*, (3.10)
maximize g =“2".lb,. @.1n

An (n + 1)-tuple b= (b,, by, . . ., b,) is called a program of (4,M) if it satis-
fies (3.9) and (3.10) with b, =1 and b, =0 for ie N— M. For instance,
1,0,...,0)is a program with g = 1.

In our applications, the set of programs will always be bounded (cf. lemma
3.5); equivalently, it will be a convex polyhedron. In this situation there exists
at least one maximal program, i.c. a program for which the function g is maxi-
mal. We shall denote by g(4,M) the maximum value of g over the set of pro-
grams, (Clearly, g(4,M) > 1.)

It is useful to examine the dual problem (A,M)’ of (A, M), with n real variables
B, ke N*, and m inequalities:
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X B Ai) <0, ie M*, (3.12)
keN
(A4,MY fr =0, keN®, (3.13)
minimize y = 5 fx 4:(0). (3.14)
keN
An (n + I)-tuple = (B, B, - . -, By is @ program of (4,M)’ if it satisfies

(3.12) and (3.13) with B, = 1; it is a minimal program if, besides, it gives the
smallest value to the function y.

The most important theoretical results about duality in linear programming
can be summarized as follows, in the case of a bounded set of programs of
“AM):

Theorem 3.4. (i) The problems (4,M) and (4,M)’ admit at least one extremal
program (i.c. a maximal and a minimal program, respectively). Each pait of

programs b of (4,M) and B of (4,M)’ satisfies g < y. Morcover, the extremal

values of g and y are equal.
(i) For each pair (b,@) of extremal programs, the following two sets of equa-
tions hold: ' ’

ﬁ.( T b A.(i)) =0, VkeN®*, (3.15)
eM

b.( E.." B A.(l)) =0, VieM®* 3.16)

Conversely, if a pair (b,8) of programs satisfies (3.15) and (3.16), then itisa
pair of extremal programs.

To conclude this section, let us give two results about the problems (4,M)
and (4,M) when A is taken to be one of the cigenmatrices, P or Q, of a
symmetric association scheme with » classes.

Lemma 3.5. The set of programs of (P,M) is bounded by b; < y, and the one
of (Q,M) by b, < v, for all ie M.

Proof. We shall prove the second part. From (2.15) we readily obtain the fol-
lowing identity, for an arbitrary (» + 1)-tuple b:

? (v.— Pi(k) ? b, Q)= |X| (bo v,— by).

By (2.29) and (3.9) the left-hand member is nonnegative when b is a program

of (Q,M). Hence, with b, = 1, we deduce b, < v;. \

Lemma 3.6. Bach minimal program B of (P,M)’ satisfies §, < 1 for all je N.
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Moreover, it satisfies 8, = 1 for a given j if and only if the following condi-
tions holds, for every maximal program b of (P,M):

P ﬂ‘( IR Pu(u)) =0, V(ik) #3G0)

The same proposition remains valid when P is replaced by Q and p;, S by
9.

Proof. Let b and B be two extremal programs of (P,M) and (P,M)’, respec-
tively. By use of (3.14) and (3.16), with 4 = P, it is easy to check that we bave

vor= b 3 0Pw)P0

= Zl’um ﬂa( 2_: b, Ph(“)),

1.k
according to (2.19). Since b is a maximal program of (P,M), it satisfies
3 b, = g = y. Hence, using p,,,* = v,, we obtain

yv,0—p)= Z P ﬂt( 2_: b, Pk("))-

LK) % (4,0

As each term of the right-hand sum is nonnegative, by (3.9) and (3.13), this
yields the desired results about (P,M)’. The reasoning is exactly the same for
(Q,M)'; it is essentially based on lemma 2.4.

3.3. Cliques in association schemes

Let R = {R,| ie N'} be a family of » + 1 relations on X satisfying Al and
A2 (sec. 2.1) and let M be a subset of N with 0 € M. Then a nonempty subset
Y of X will be called an M-clique with respect to R if it satisfies

RNY'=0, VieN—M, @1

ie., équivalently, if any two points of Y are jth associates for some je M.
The main problem we shall now consider is to find an upper bound to the
number of points in M-cliques.

3.3.1. The Elias theorem

In this section, all relations R, are assumed to be regular, although X,R)
not necessarily is an association scheme. Then it is possible to derive infor-
mation about cliques ¥ < X from results on cliques ¥’ in certain subsets X’
of X, Essentially, the argument is due to Elias; it led to the important Elias
bound in coding theory (cf. Berlekamp €), p. 318).
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Let L be a nonempty subset of N. Then, for a point e € X, we define a sub-
set Cy(e) of X as follows:

Cue) = {zeX| (e,2) e R}
teL
This could be called a crown of centre e. By assumption, the cardinality of Cy(e)
is independent of e: if v, denotes the valence of R,, then

jcue)] = I v, (3.19)
feL

Theorem 3.7. Let L and M be subsets of N, with 0 e M. If Y is an M-clique
with respect to R, then there exists a crown X’ = Cy(e) and an M-clique
Y’ < X' satisfying | X[~ |Y| <|X|"t| Y]

Proof. Let us first establish the following identity, for an arbitrary subset ¥
of X:

B|¥A @] =Y T v, (3.19)
xeX teL

The left-hand member is the number of pairs (x,y) with x e X, y € ¥, y € Cy(x).
The relations R, being symmetric, condition y e Cy(x) is oquivalent to
x € C1(y). Hence the number of pairs to be counted is equal to the sum of
| €] for y running through ¥, that is, by (3.18), to the right-hand member
of (3.19).

Next, from (3.19) we immediately deduce

|X) max|¥ 0 €3] > Y] Z v (3.20)

Let us choose a point eeX for which |¥ N Cy(e)| is maximal and define
X' = Cy(e), ¥ = YN X". Then (3.20) becomes | X| |¥’| = | ¥} |X'|. Since Y
obviously is an M-clique whenever Y itself is an M-clique, this proves the
theorem.

Example. Let (F*,R) = H(n,2) be the Hamming scheme of length »n over a
set F of two elements (cf. sec. 2.5). For some integer #', with 1 <n' < n/f2,
we define L = {n'}; then the crown C(e) is a sphere of centre ¢ and radius n
in the Hamming metric space. The nonempty restrictions of the distance rela-
tions R, to the sphere X’ = Cy(e) are the following subsets of (X")*:

R/ = {(* ) e@P|dua(x'¥) =24}, Jj=0,1,...,n.
It can be shown that (X”,{R,}) is an association scheme, with n’ classes, which,
up to isomorphism, is independent of the centre e; this scheme will be examined
in detail in sec. 4.2 under the name of Johnson scheme, with the notation,
J(#',n). At the present, we only want to emphasize theorem 3.7: it shows how
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upper bounds to the cardinality of cliques in the Johnson scheme J(n',n) yield
bounds of the same type for the Hamming scheme H(n,2).

3.3.2. The linear-programming bound

It is obvious, by (3.1) and (3.17), that an M-clique is entirely specified in
terms of its inner distribution a by the following condition:

a =20, VieN— M. (3.21)

Henceforth we assume (X,R) to be a symmetric association scheme. Then
theorem 3.3 implies a strong necessary condition on the distribution a of an
M-clique; in the terminology of sec. 3.2, it can be expressed as follows.

Theorem 3.8. Let Q be the second eigenmatrix of a symmetric association
scheme. Then the inner distribution of every M-clique Y in the scheme is a
program of (Q,M) such that g = |¥].

Proof. This is an immediate consequence of definition (3.21), the inequalities
20, > 0 of theorem 3.3 and the obvious identities @, = 1, Za, = | ¥/ satis-
fied by the inner distribution a.

Since, by lemma 3.5, the programs of (Q,M) are bounded, the maximal value
2(Q,M) of g is well defined and theorem 3.8 yields

| 7] < 2(Q.M), (3.22)

for every M-clique ¥ with respect to R. Inequality (3.22) will be called the
linear-programming bound for cliques. Theorem 3.4 will be used at several places
for discussion of M-cliques achieving this bound.

Example. Let us apply (3.22) to the simplest nontrivial case, i.c. to strongly
regular graphs (cf. sec. 2.4). For n =2 and M = {0,1} our definition of an
M-clique with respect to R = {Rq, R;, Ra} reduces to the usual notion of a
clique (= complete subgraph) in the strongly regular graph (X,Ry). It is left
to the reader to verify, by use of (2.30), that the linear-programming bound
(3.22) for such cliques is

1Y] <1+ 03/(—sy)- (3.23)

Let us also check theorem 3.4. We observe that a = (1, —v,/s;, 0) and
a = (1, 0, —v, /s, ;) are programs of (Q,M) and (Q,MY, respectively, satis-
fying (3.15) and (3.16) with A4 = Q. In agrecment with theorem 3.4(ii), one
has g = y = 1 — v,/s, for these extremal programs.

To conclude this section about cliques, we shall give a very general conse-
quence of theorems 3.4 and 3.8, showing the strength of the method.
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Theorem 3.9. Let M be a subset of N, withO e M, and let ¥ = N— M*. If Yis
an M-clique and Z an M-clique in an association scheme, then | Y||Z| < |X|
holds.

Progf. Let b and ¢ be the inner distributions of ¥ and Z, respectively. Then
from the eigenmatrix Q and the multiplicities u, we define real numbers
Bos - - - » By as follows:

B =(Z] ) ? s Q- (329

Clearly (cf. for instance theorem 3.8), the B, are nonnegative with f, = 1.
On the other hand, using (2.22) we readily obtain

z.: B O =1Z|"" |X] v e, (3.25)

with v, = valence of R,. Since Z is an M-clique, ¢, is zero for each i in M*.
Therefore, (3.25) shows that P is a program of (Q,M)', the conditions (3.12)
being satisfied with equality.

Next, we observe that b is a program of (Q,M) with g = | Y|, by theorem
3.8. Hence the inequality g < y for the programs b, 8 becomes

3] <2k:ﬁ' 0.0 = 2]~ {X], (3.26)
according to (3.25) with i = 0, and the thcorem4is proved.

Certain classical inequalities of coding theory can be derived from theorem
2.9, for instance the Hamming bound (cf. secs 4.3.3 and 5.2.2). The interesting
point about the linear-programming method is the fact that it also gives neces-
sary conditions on the distributions b, ¢ for pairs (¥ = M<lique, Z = M-clique)
satisfying equality in (3.26). Indeed, the reasoning has shown that equality
holds if and only if (b,B) is & pair of extremal programs. Hence theorem 3.4(ii)
with 4 = Q, when applied to this pair, yiclds, by (3.24):

S0 o) Ee, UN=0, k=1....m
These conditions (to be compared with b, ¢, = 0) could be very useful in a
study of pairs (¥,Z) achieving the bound of theorem 3.9; they would lead, for
instance, to the Lloyd theorem on perfect codes (cf. sec. 5.2.2).
3.4. Designs in association schemes

Let (X,R) be a symmetric association scheme with n classes and let T be any
subset of N* = {1, 2, ..., n}. Then a nonempty subset ¥ of X will be called
a T-design with respect to R if its inner distribution a satisfies

Ta0)=0, VkeT. (327

hY
where Q is the second eigenmatrix of the scheme. In other words, a T-design
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has the following extremal properties among the subsets of X: the general
conditions a0, >> 0 of theorem 3.3 hold with equality for each k in T.

In general, we can give no clear “combinatorial” interpretation for the con-
cept of T-design. However, as we shall see in ch. 4, some T-designs in the
Hamming and Johnson schemes are among the most classical combinatorial
configurations. This motivates the present general definition, the “conjecture”
being that T-designs will often have interesting properties. Let us also emphasize
the formal duality between the notions of cliques and designs (cf. definitions
(3.21) and (3.27)). This duality will appear throughout the text.

Several equivalent forms of the conditions aQ, = 0 have been indicated
in sec. 3.1. One of them leads to the following criterion for T-designs.

Theorem 3.10. Let Jo, Jy, ..., J, be the minimal idempotents of the
Bose-Mesner algebra of (X,R). Then a subset Y of X is a T-design if and only
if J; ¢y = 0 holds for each k in T.

Proof. The defining equations of a T-design are aQ, =0, VkeT. Now,
according to (3.8), the condition aQ, = 0 is equivalent to ¢, J, ¢y =0,
i.e. to Jy ¢y =0, since J, is positive semi-definite. Hence the theorem is
proved.

The condition ¢,T J, ¢y = O (VY k € T) specifying a T-design is to be com-
pared with the definition ¢," D, ¢y =0 (Vie N— M) of an M-clique. In
analogy to sec. 3.2.2, let us now apply the linear-programming method in
order to obtain a lower bound to the number of points in 7-designs.

Theorem 3.11. Let Y be a T-design in an association scheme of eigenmatrices
P and Q. If a denotes the inner distribution of Y, then the (n - I)-tuple
b=|Y|"'aQ (3.28)
is a program of (P, N— T) such that g = | Y}|~* | X].
Proof. From (2.15) and (3.28) we deduce « = | X|~! | Y| b P and, consequently,
b P, > O for all k. On the other hand, we have b, = 1 and all components b,
of b are nonnegative, by theorem 3.3. Hence, for a T-design, b is a program
of (P, N—T). Finally, for this program we have g =b P, =|Y|~1|X|,
which concludes the proof.

According to lemma 3.5, the programs of (P,M) are bounded, so that the
maximal value g(P,M) of g is well defined, and theorem 3.11 gives the linear-
programming bound for designs:

|¥] = | X|/gP, N— T). (3.29)
Example. Let us examine the combinatorial meaning of designs for a strongly
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regular graph (X,R,) and apply the lincar-programming bound in this simple
case (cf. sec. 2.4). Let {¥,Z} be a bipartition of X such that (Y,R; N ¥Y?) and
(Z,R, N Z?) are regular subgraphs of (X,R,), and assume the valences satisfy
val (R, N Y2) + val (R; N Z?) > val (R,). Then {¥,Z} will be called a
regular bipartition.

On the other hand, for T = {2}, we consider the T-designs ¥ (# X) in the
association scheme (X,R) with R = {Ro, R,, R;}. It is not difficult to show
that these two concepts are equivalent: Y is a T-design if and only if {Y, X — Y}
is a regular bipartition of X.

Using (2.30) we easily obtain the maximal value of g for the problem (P,M)
with M = {0,1}; the result is g(P,M) = 1— v,/r,. Hence, using the identity
(v, — 5,) (v — 1) = vs, rp, we can write (3.29) as follows:

[¥] > 1+ o,/(—s,). (3.30)

It turns out that the (unique) maximal program b of (P,M) satisfies bP, = 0.
Therefore, if a regular bipartition {¥, X~ Y} achieves (3.30), then the inner
distribution of Y is a = (1, —v,/sy, 0), ie., equivalently, ¥ is a clique in the
graph (X,R,) achieving the linear-programming bound (3.23).

Remark. The definition of T-designs in a symmietric association scheme (X,R)
can be extended so as to admit the possibility of “repeated points”. Let us
briefly outline this generalization. For a nonzero vector ¢ € R(X) with inte-
gral nonnegative components ¢(x), we define the distribution of ¢ to be the
(n + 1)-tuple a = (a5, 4y, . .., a,) of rational numbers a; given by

a;,=($T )71 (47 D: ¢), (3.31)

where D, is the adjacency matrix of R,. In particular, when all components
#(x) are 0 or 1, this is exactly the concept of the inner distribution (3.3) for the
subset Y < X such that ¢, == ¢. For any ¢, the same argument as the one
leading to (3.8) shows that the numbers aQ, are nonnegative when a is de-
fined by (3.31).

Given a subset T of N*, the vector ¢ will be called a T-design if its distri-
bution a satisfies (3.27). In the case § = ¢, for some subset ¥ < X, the de-
sign is said to be simple (without repeated points). In the general case, consid-
ering $(x) as “the number of occurrences of a point x in the design”, one is
interested in the total number of points, i.e. the integer i = ¢7 ¢y.

Given a T-design ¢ of distribution a, it is not difficult to show, like in
theotem 3.11, that the (n + L)-tuple b= A2 (¢" ¢)a Q is a program of
(P, N— T) with g = h~* (¢T $) | X|. It follows that the linear-programming
bound (3.29) is valid in the general case when | Y| is replaced by k. Indeed
we can write B

b2 B $T ) > | X|/e®, N— T);
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the right-hand inequality is simply £ < g(P, N— T); as for the left-hand
inequality, it follows from the obvious property $(x) [p(x)—11=0. As a
consequence, we observe that a T-design achieving the linear-programming
bound, ie. & =|X|/g(P, N— T), must satisfy $(x) = 0 or 1 for all x; equiv-
alently, ¢ must be simple.

3.5. Characteristic matrices

For an association scheme (X,R) with n classes, let S e C(X,X") be an orthog-
onal matrix diagonalizing the Bose-Mesner algebra and let X', X3/, ..., X,
be the classes of the partition &(X",S) of X" (cf. sec. 2.2). Given a nonempty
subset Y of X, we shall denote by H, the restriction of S to the subset Y XX,
of XxX'. In particular, H, is the all-one vector. The matrices H,, called the
characteristic matrices of Y, will be a useful tool especially for the study of
some T-designs (see sec. 5.3). We now givea few general results. We start with
an equivalent formulation of theorem 3.10.

Theorem 3.12. Let Hy, Hy, . . ., H, be the characteristic matrices of a subset ¥’
of X for a symmetric association scheme (X,R). Then Y is a T-design with
respect to R if and only if H,T Hy = 0 holds for each k in T.

Next, we shall derive some formulas on the matrix products H, f, and
H, H,. We use the notation D, | Y for the adjacency matrix of R, N Y2, i.e.
for the restriction of D, to Y2. For the rest, the notations are the same as in
ch. 1.

Theorem 3.13. The characteristic matrices H; of a given subset ¥ of X and the
adjacency matrices D, | ¥ are related by

H. A, = }': Q) (D] 1) (3.32)

Proof. This is an immediate consequence of the definition (2.16) of the eigen-
matrix Q since, by (2.9), Hy H, is the restriction of the matrix |X] J, to Y2

Lemma 3.14. Let a be the inner distribution of Y. Then the characteristic
matrices of Y satisfy
(18 Hlj* =17 {3 9. P@Q), for Q=0 (3.39)

Proof. Let us substitute ¢y for ¢ in the identity (2.28). Then we obtain ifmfae-
diately the desired result by using (3.8), remembering that H; is the restriction
of S, to YXX/".

Theorem 3.15. For given integers i, t € N, assume the inner distribution a o'f Y
satisfies g, P(a Q) =0 for k= 1, 2, ..., n Then the following equation
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holds, for Q; = Q,*:
0 if i),
B H = { i J (3.39
|rj1 if i=j
Conversely, (3.34) implies ¢,,,*(a Q;) =0 for O, = Q,* and all k > 1.
Proof. Assuming ¢,,*(a Q) =0fork =1, 2, ..., n we can write (3.33) as
follows, using (2.27):

”Hi Hjl?=| le Hi 04y (3.35)

This proves (3.34) for i # j. Let us now examine the case i = j. By theorem
3.13 we have tr (ff, H) = tr (H, B,) = 45, | Y]. It is casily seen that this,
together with (3.35), implies [|H, H,— |¥|I|| =0 and, consequently,
8,8 =YL

In order to prove the converse result, we first observe that all terms
4..:“(a Q,) of the sum Xin (3.33) are nonnegative real numbers, by lemma 2.4
and theorem 3.3. On the other hand, condition (3.34) exactly means that 55
reduces to its term | Y| 4, 8, ; of index k = 0. Hence all terms with k > 1
must be zero whenever (3.34) is satisfied.

To conclude this section let us indicate, without proof, how the distribution
matrix B introduced in sec. 3.1 can be expressed in terms of the matrices S, P
and H,; it is given by

B=|X|"'S(A,Ho® 8, H, & ... oA, H,) P,

where @ stands for the direct sum. This equation, together with (3.8), could
be used to give another proof of theorem 3.1.
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4. AN INTRODUCTION TO ALGEBRAIC CODING THEORY

In the present chapter we shall examine in detail two types of finite metric
spaces having the structure of association schemes: the Hamming schemes and
the Johnson schemes, which we already mentioned in secs 2.5 and 3.3.1. These
appear to be the natural frameworks for a theory of codes, especially for its
combinatorial aspects.

4.1. The Hamming schemes

Let F be a finite set of cardinality ¢ >> 2 and let # be a positive integer.
We make the nth Cartesian power X = F* of F a metric space by defining the

Hamming distance dy(x.y) between two points x = (x;, ..., x,) and y =
(15 - - -5 yu) Of X as follows:
du(x)) ={{j|1 <j<n x#y}. @“.n

In other words, the distance between two points is the number of coordinate
places in which they differ. Next, we define the distance relations R,, R,,
..., R, in an obvious way; two points of X are ith associates whenever they
are at distance {:

Ry = {(xy) e X?| dy(xy) = i}. 4.2
It is easy to show, by verification of the axioms, that (X,R) is a symmetric
association scheme for R = {Ry, Ry, ..., R,}. An algebraic proof of this

result is implicitly contained in the argument of theorem 4.2. For given n
and ¢, we call (X,R) the Hamming scheme of length n over F, and denote it by
H(n.q).

4.1.1. Eig ices and Kr houk polynomials

Let us provide F with the structure of an Abelian group, in an arbitrary way.
We shall use an additive notation for the group operation and take the sym-
bol 0 (zero) for the identity. The Hamming weight of an element x in the group
X = F* then by definition is the number of nonzero components x; of x.
This allows to write (4.1) as follows:

du(xy) = wu(x—)), VxyeX. @“3)

Consequently, the distance relations (4.2) are invariant under translation in X,
i.c. they satisfy (2.43), and it is well known that the matrix S of group charac-
ters of X diagonalizes the Bose-Mesner algebra of the scheme. Let us examine
this more closely in order to obtain an explicit form of the eigenmatrices.
Let (,8) + {a,8) be an inner product on the group F, i.e. a symmetric
mapping of F2 into € such that, when « runs through F, the mapping
f +> {&,p) runs through the group of complex characters of F. The inner prod-
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uct is described more in detail in sec. 6.1. We shall need the following result
(cf. theorem 6.2):
g—1 for a=0,

2 (a,p) = { 4.4

""‘< ’ —1 for a€ F*, “4
with F* = F— {0}. Next, keeping the same notation (x,y), let us extend the
inner product to the group X = F* by defining, for x = (x;, ..., X,) and
y=0n ..., 7€X,

»
xyy =1 pds “.5)
=1
from the inner product {x,y;) of the components x,,y; € F. It can easily be
verified that (4.5) is then itself an inner product on X; we shall call it the
natural product on X.

Let us briefly apply these notions to the binary case (g = 2), which might
be more familiar to the reader. For «,8 € F = {0,1}, we have («,8) = (—1)*.
Hence the natural product of two binary a-tuples x and y can be written as
{x,y) = (—1)=, where [x,y] = x, 5, +... + Xy, (mod 2) is the scalar prod-
uct of x and y considered as vectors over the binary field. '

We now go back to an arbitrary ¢ > 2 and define the weight partition
o= {X5, X, ..., X,} to be formed by the classes of elements having a con-
stant weight:

Xi= {xeX|wa®) =k}, k=0,1,...,n 4.6)

The cardinality of X, (= valence of R,) is equal to v, = (§) (g —1)*. On the
other hand, with a normalization adapted to our problem, we introduce the
Krawtchouk polynomials (cf. Szegd 7)) as follows: for given 7 and g, and an
integer k =0, 1, ..., n, the polynomial

k

K = Z 1Y (g— D+ (';) (:) @"n

J=0
in the indeterminate 1, will be called the Krawtchouk polynomial of degree k.
(We use the notation () =u@@—1)...(m—j+ 1)/jl.) It is easy to check
that K,(») actually is a polynomial of degree k in the variable u. This fact
appears even better from an equivalent expression of the Krawtchouk poly-
nomials, the verification of which is left to the reader:

k
) = Z o @@= 1 ("".) (")
k—i/ \i
im0

Before deriving the eigenmatrices of the Hamming scheme (theorem 4.2), we
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give a relation between the concepts introduced above (natural product, weight
partition and Krawtchouk polynomials).

Theorem 4.1. The natural product (4.5) and the Krawtchouk polynomials are
related by the following equation, for uk =0, 1, ..., n:
.EX {x,x"y = Ky(u), VxeX,. (4.8)
x'eXy

Proof. First, we consider a fixed subset J of {1, 2, ..., n}, with | 7| =k, and
we compute the contribution o(J) to the left-hand member of (4.8) afforded
by the (g — 1)* elements x’ € X, such that x, 7 O for all ie J. Using (4.5) we

obtain
=] [(2=)

By (4.4) we see that the number under brackets is equal to g — 1 or —1 accord-
ing to whether x, is zero or not. Hence, denoting by j the number of non-
zero components x, with i € J, we have ¢(J) = (1) (g— D*~*.

On the other hand, the number of choices for J corresponding to a given j
is equal to (%) (&), for wy(x) = u. Therefore, adding up all integers c(J), we
obtain exactly the fight-hand member of (4.7), which concludes the proof.

Theorem 4.2. The eigenmatrices P and Q of the Hamming scheme H(n,g) are
given in terms of the Krawtchouk polynomials by
P =D =K(), ik=01...,n

Moreover, H(n,g) is self-dual with respect to the zero of X and to the matrix
S € C(X,X) defined from the natural product by S(x,x) = {x,x").

Proof. Let us consider the weight partition o = {X,} of X" (= X) and the
corresponding submatrices Sy € C(X,X;) of S. Using theorem 4.1 we obtain
the following formula for the (x,y)-entry of S §i:

50 ) = T G —2x)
= Ky(wu(x —y)). 4.9

According to (4.2) and (4.3), wa(x — y) is equal to # if and only if (x,) belongs
to R,. Hence, using the incidence matrices D; of the R,, we can write (4.9) as
follows:

58, = E‘.o K@) D;. (4.10)

On the other hand, the matrices J, = |X|~* S, Sy, for k=0, 1, ..., n
form a set of mutually orthogonal idempotents of C(X,X). Since, by (4.10),



— 40 —

the J, belong to the BM algebra of the scheme, they are the minimal idem-
potents of it. Comparing (4.10) to the definition (2.16) of the cigenmatrix Q,
we deduce 0,(9) = K, (i) for all ik.

Finally, with the definitions of sec. 2.6, it can easily be shown that (X,R)
is dual to itself with respect to e = 0 and to S, the partitions n(X,S) and
7(X,e) being both the weight partition ¢. The details of the argument are
omitted. Then it follows from theorem 2.8 that the eigenmatrices P and Q
are equal, which concludes the proof.

Applying theorem 2.3 to the Hamming scheme H(n,g), we obtain the well-
known orthogonality relations on the Krawtchouk polynomials:

g n n
Z K4) K.(i)( g)“" 1) =g (J) @—1F 8,

=0
for r,s =0, 1, ..., n. Consequently, the polynomials Ko(4), Ky (1), . . . , K()
form “the” family of orthogonal polynomials on the set N = {0, I, ..., n}
with respect to the weight function w defined by w(i) = v, = g, = () (g — 1)".
From a classical result about orthogonal polynomials (cf. Szegd 7°), p. 42),
we deduce the following useful recurrence relation on the Ky(u):

(4 1) Ky 1 () =
*k+@—D—-H—g) K@) —(g—1D (r—k + 1) Ky, (). @.11)

4.1.2. Codes in Hamming schemes _

A code of length n over an alphabet F by definition is a nonempty subset Y
of X = F* provided with the Hamming distance (4.1). The clements of Y are
called the codewords. The linear-programming bound (3.22) yields an upper
bound to the number of codewords in codes submitted to restrictions of the
following type: the distance between codewords can only assume some specified
values. Indeed, if M is this set of values, such a code is nothing but an M-clique
in the Hamming scheme.

Particular cases, being most important in theory of error detecting or cor-
recting codes, are provided by sets M of the form

M=1{0808+1,...,n}, @.12)

‘for some integer 8 with 1 <8 < n. An M-clique in H(n,g) then is a g-ary

code of length » having the property that the minimum distance between dis-
tinct codewords is at least equal to 8. Since the best code of given parameters
n, g, 8 is the one containing the largest number of words, many authors were
interested in obtaining upper bounds to the number of codewords in such
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codes. As for the binary case (g = 2), the most important from a practical
point of view, let us especially refer to a paper by Johnson 33).

The numerical values computed up to now for the linear-programming bound
| Y] < £(Q,M) lead to the hope that it will, in many cases, improve the known
bounds (cf. also sec. 4.3). McEliece, Rumsey and Welsh, who discovered the
linear-programming bound for codes independently of the author, have ob-
tained more than promising results in this direction (private communication
by R. J. McEliece). Unfortunately, a general explicit formula for g(Q.M)
seems to be out of the question; each case is a specific problem and, for relative-
ly large values of n, one needs a computer. .

Before giving an example treatable by hand, let us describe a method which
allows to simplify the computation of g(Q,M) in some important particular
cases. A subset M of N={0, 1, ..., n} ,with 0 e M, will be called even if
it contains only even numbers and odd if it has the following two propertics:

(eM, i=0(mod2), iZD=(—1eM),
(ieM, i=1(mod2), i<n—1)=(@+1eM)

For instance, the set (4.12) is odd whenever 4 is an odd integer.
Next, let us definc the set N'= {0, 1, ..., m n+ 1}. To a given odd sub-
set M of N we associate the even subset M’ of N’ given by

M = {leN'| i=0(mod2), i—leM}u {0} @.13)

It is easy to show that M - M’ is in fact a 1-1 correspondence between the
odd subsets of N and the even subsets of N, with the following relation be-
tween cardinalities: m’ = [(m + 1)/2] for m = |M*| and m' = | M.

Theorem 4.3. Let M be an odd subset of N, and M’ be the corresponding even
subset (4.13) of N'. On the other hand, let and Q' be the eigenmatrices of
the Hamming schemes H(n,2) and H(n + 1,2), respectively. Then g(Q,M) =

£2(Q',M") holds, for g = 2. .
Proof. The theorem follows from two remarks: (i) For a given program b of
(O, M), the (1 + 2)-tuple b’ = (by', - . ., bas1") dofined by
b {b,_, + b for i=0(mod?2),
! 0 for i=1(mod2),

with b_, = b,,, = 0, is a program of (Q',M), satisfying b = Xb,. (ii) For
any program b’ of (Q',M") the (n + 1)-tuple b = (o, . . ., by) defined by
(m—i+ Db’ for i=0(mod2),

A+ )by for i=1(mod2),

is a program of (Q,M), satisfying 3 b, = Zb,. Both results can be obtained

(n+l)b,={
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from the properties of Krawtchouk polynomials with ¢ = 2; the details of
the argument will not be given.

It is obvious that such a double correspondence with b, = X b, between
the programs of (Q,M) and (Q',M") suffices to prove that the maximal values
of g = Xb, and g’ = X b/ are equal.

The above result shows that, for ¢ = 2 and an odd subset M of N, we may
replace the linear-programming problem (Q,M) by the simpler problem
(Q'.M"), provided we are only interested in knowing g(Q,M) and at least one
maximal program of (Q,M).

On the other hand, for ¢ = 2 and an even subsct M’ of N’, we observe the
following: any (n + 2)-tuple b’ such that b/ = 0 for all ie N’ — M’ satis-
fies b Q) =V Q,,,_, for all k € N'. Hence the even problem (Q’,M") con-
tains in fact only [(n 4 1)/2] inequalities b’ Q' >0 in the [(m + 1)/2]
variables 5,’.

Example. Let us examine the binary codes ¥ of length 7 = 13 and de-
signed minimum distance 8 = 5, ie. the M-cliques in H(13,2) with
M=1{0,56,...,13}. To the odd subset M of N corresponds the even sub-
set M’ = {0, 5, 8, 10, 12, 14} of N’. According to theorem 4.3, the linear-
programming bound is | Y] < g(Q',M"). The inequalitics b’ Q,’ > 0 of the
problem (Q’,M") are the following:

2by —2b —6by’ —10b,; —14b, > —Il4,
—5bs’ —5by' +11byy' +43b;,' +91by = 91, °
—12bs +12by" +4by' —100by,’ -364b,, > —364,

9bs’ +9by' —39b,," +1215by,’ +1001 5,/ > —1001,
305 —30bs' +38by,° —22by," —2002b,, >-—2002,
—5bs' —5by +27byo' —165by," +30035,, > —3003,
—40bs" +40by —T72byo" +264b,, —34325,, >-3432,

the function to be maximized being g’ = 1 + b’ + ... + by,’. The easiest
way for obtaining the coefficients Q,’(7) in the above system is to use the
recurrence relation (4.11) on the Krawtchouk polynomials; this yields
4+ 1) Qeea'() = (14—-20) QD) — (15— k) Qb ‘().

One can solve the problem (Q’,M") by hand, using the simplex algorithm.
It turns out that there is a unique maximal program, namely b’ = (1, 0, 0, 0,
0,0,42,0,7,0, 14, 0, 0, 0, 0). Hence we deduce g(Q’,M’) = 64. In fact the
linear-programming bound | Y] < 64 is the best possible since there actually
exists a binary code Y of length 13 and minimum distance 5 containing 64 code-
words; such a code can be derived from the Nordstrom-Robinson code %)
(cf. also Gocthals 2*)).

[
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4.1.3. Orthogonal arrays

Since the eigenmatrices P and Q of the Hamming scheme H(n,g) are iden-
tical, the problem of codes with a designed minimum distance is related, at
least formally, to the problem of T-designs (cf. sec. 3.4) for sets T of the form

T={,2,...,7v—1,71} 1€t <n; “4.14)

in particular, the linear-programming bound (3.29) for T-designs is
Y| > ¢*/g(Q,M) where M is the set (4.12) with 6 = v+ 1.

In this section it will be shown that such T-designs are in fact classical com-
binatorial configurations, namely the orthogonal arrays (without repeated rows)
introduced by Rao *%).

Definition. To a code Y of length n over F corresponds the array whose rows
are the words of Y. Let T and A be positive integers, with = <Cn. Then Y is
said to form an orthogonal array of strength v and index A if, in each z-tuple
of distinct columas of the array, all z-tuples of symbols of F appear exactly
A times. Then, obviously, | ¥| == 1 ¢* holds.

Before showing the equivalence between this definition and the concept of
T-design, we need some notations. For an integer 7, 1 << v <, let us con-
sider a t-tuple (w,, ®,, ..., ®,) of symbols w, € F and a r-tuple L = (i,, i,,

.., i;) of distinct integers i,, with 1 < i, <\ n. For a given code Y of length n
over F we shall denote by m(w,, ..., ;) the number of codewords xeY
such that
X, = w,. (4.15)

The above definition means that ¥ forms an orthogonal array of strength =
if and only if the following equation holds:
mywy, @, ..., @) =|Y]| g7 (4.16)

for each choice of the w; € F and of L. As in sec. 4.1, we shall assume F has
the structure of an Abelian group.

Xy, = @y, Xgy = W35 + -0
1 2

Theorem 44. For agivenset T= {1, 2, ..., 7}, with1 <v<n,acode ¥
is a T-design in H{(n,q) if and only if it forms an orthogonal array of strength 7.
Proof. For a t-tuple L = (iy, i,, . . . , i) of distinct integers i, with 1 < i, <n,
and an integer k, with 0 < k < 7, we define the following subset of X = F":

XD ={XeXy|x'=0 for istiyi,..., L},

where X, is the weight class (4.6) of X. Clearly, the union X(L) = X,(L) Vv
X(L)V...UX(L) of these sets is the subgroup of X consisting of the ¢*
elements x’ satisfying x,” = O for i % iy, ..., I,
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Next, let H, € C(Y,X,) be the characteristic matrix of ¥ deduced from the
matrix .S of the natural product on X (cf. sec. 3.5), i.e. Hy(x,x") = {x,x") for
xeY, x’ € X,. Using (4.5) and (4.15) we have, for x’ € X;(L):

(BT Ho) () = X (xX)

=T mw;, ..., 0) (%) ... {wux). 417
LY 24

Let us first assume Y forms an orthogonal array of strength 7. Then, substi-
tuting (4.16) into (4.17), we obtain, by the well-known properties of the inner
product:

(HT Ho) (x) = Y] 8o,n 4.18)

Now, for any given x’ € X,, there exists an L such that x’ € X,(L). Hence (4.18)
is valid for all x' €X, and for k=0, 1, ..., t. Therefore, it follows from
theorem 3.12 that Y is a T-design.

Conversely, we assume eqgs (4.18) are identically satisfied for x" € X; and’

k < v, ie. Yis a T-design. Then, for a fixed v-tuple L, we deduce from (4.17)
and (4.18) the following system of ¢° linear equations in the ¢* unknowns
mywy, ..., @) )
X mywy, ...
wpF

» @) <ﬂ’nx|,') e (w»xt,'> = |Y| 80,5

where x’ is any element of the group X(L). It is well known that the above
system admits a unique solution, namely (4.16). Hence Y forms an orthogonal
array of strength 7, which concludes the proof.

Owing to. theorem 4.4, we may apply the linear-programming bound (3.29)
to orthogonal arrays of a given strength 7. The example examined in sec. 4.1.2
gives, without extra computation, 4 > 8 for the index 4 of binary orthogonal
arrays of strength 4 having 13 columns. Here also the bound is achieved. One
may expect that the linear-programming bound will often be stronger than the
few known results on the problem. In particular, as will be seen in sec. 5.3.2,
it is always at least as good as the Rao bound %%),

4.2. The Johnson schemes

Let n and v be integers, wit 1 <7 < v. In the Hamming space of length
v over F= {0, 1} let us consider the sphere of radius n centred at the point
@©, ..., 0), that is, the following subset X of F*:

X = {xeF"| wy(x) =n}. 4.19)

Clearly, | X| = (). In the rest of this section, we always assume 1 <7 < v/2.
This will imply no loss of generality, since the spheres of radius n and v—n
are equivalent under translation in F.
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The Hamming distance dy(x,y) between two points x,y € X obviously is an
even integer not exceeding 2n. For convenience we define the Johnson distance
dy(x,y) to be

dix,y) = Y dy(x,y), VxyeX; (4.20)

equivalently, # — dy(x,y) is the number of coordinate positions p in which the
v-tuples x and y satisfy x, = y, = 1. Then d\(x,y) assumes all integral values
between 0 and n. Next, like in sec. 4.1, we introduce the distance relations
Ry, R,, ..., R, from (4.20):

R, = {(xy) e X?]| dilx,y) = i}.

It is easy to show, and of course well known, that the partition R = {Ro, Ry,
..., R} of X? yiclds a symmetric association scheme (X,R) with n classes.
A rather indirect proof of this result will appear, implicitly, in lemma 4.5
below. We observe at this point, leaving the verification to the reader, that the

valence of R, is
n\ [v—n
v =()( X ) 4.21)
i i

For given n and v, with 1 < 7 < v/2, we shall call (X, R) the Joknson scheme
J(n,v), by reference to the aut.hor who first considered codes in the metric space
(X,d)), i.c. binary codes of length v and constant weight n (cf. Johnson 34)).
It turns out that the Johnson bound 23:3%) for binary codes of specified mini-
mum distance in the space (F*,d) depends on bounds of the same type for
constant weight codes. (See also the Blias theorem in sec. 3.3.1.) Apart from
this application in classical coding theory, the Johnson scheme provides an
excellent framework for ‘a study of the t-designs (cf. sec. 4.2.3), which here
play a very similar role’ ‘#s the orthogonal arrays in the Hamming schemes.

4.2.1. Eigenmatrices and Eberlein polynomials

In order to apply the general theory, we first need explicit formulas for the
cigenmatrices P and Q. The situation is not so simple as in Hamming schemes
because here, at our starting point, we do not have an orthogonal matrix
diagonalizing the adjacency matrices D, of the relations R,.

For a given integer i, with 0 <<i < n, let us define the following linear com-
bination of the matrices D, in R(X,X) :

oY (0)an

kni
Obviously, the C, generate the same algebra as the D;. To see what these C,
really are, it is convenient to introduce the mapping f of the set F* onto the
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Booleanl\oftbc set V=1{1,2,..., v} given by char doecdon
x= (X, X3y ..., X+ f(xX) = {peV|x,=1}. 4.23)

Clearly, fis a bijection which maps the elements of a given Hamming weight u
onto the w-subsets of ¥ (i.e. the subsets of cardinality %); in particular, the
images f(x) of the points x € X are the n-subsets of V. It is casily seen that
a pair (x,5) of X? belongs to R, .., if and only if the intersection f(x) N f(¥)
is a k-subset of V. Consequently, the integer C(x,y) defined by (4.22) is the
number of i-subsets of £ (x) N f(»).

The following lemma contains an implicit proof of the fact that (X,R) actually
is an association scheme (cf. theorem 2.1). It gives a complete description of the
Bose-Mesner algebra in the basis of the C,.

Lemma 4.5. The matrices C,, Cy, ..., C, satisfy
ming.0)

camy (DN e

=0
Proof. Let ¥, be the set of k-subsets of V. For « = f(x), § = f(y) € ¥, with
anBeV,, it follows from the definitions that (C, C)(x,») is equal to the
number of triples (¢,n,y) € ¥V, X ¥, X V, satisfying ¢ S a,n = fand fUn S .
In order to calculate this number, let us first fix the values of [N f] =i
and | £ N ] =j. For given i, j, the number of choices for £, 1 and y then is

(20 )0 = (27

respectively. The verification is left to the reader.

We now need the expansion of (%) (3) in the basis of polynomials (7) of the
variable u. Starting from well-known combinatorial identities (cf. Riordan °),
p. 7), we obtain

-2 (O @

Hence, remembering C(x,)) = (%) for « N f e ¥,, we deduce from (4.25) and
(4.26) that C, C, is a linear combination of Cp, Cy, ..., C, in which the
coefficient of C, is

(L= 2 ()0

=0

To complete the proof it only remains to be shown that the coefficients are
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the ones given by (4.24). This is casily checked by use of the identity (4.26)
for the above summations in i and j.

Let us now examine the Bose-Mesner algebra A of the Johnson scheme
J(n,v) and its three bases {C;}, {D.}, {/;}. Lemma 4.5 shows that, for a given r,
the products C, C, are lincar combinations of the C, with 0 <sr<r. In
other words, Cy (== J), Cy, . .., C, generate an (r + 1)-dimensional ideal A,

~inA, with

Iy=AchAhe...cA=A @27

On the other hand, given a chain of ideals like (4.27), there exists a unique
numbering of the minimal idempotents J, of A such that {J,, J;, ..., J;}isa
basis of A, for r =0,1,...,n.

Let us now calculate the components of C, in this basis. For 0 <s <r <n,
we have

r i
C = 3] r,t Jis C, = 3] 0y Ip
1=0 )

for some real numbers g, 0.,;- Using the orthogonality relations J; J, = 8, ; J,,
we readily obtaii the following expression for the product C, C,:

-1

C Ci=¢ns G +J§° (/%] (Qr.l - er.l) Iy (4.28)

Comparing the coefficients of C, in the right-hand members of (4.24) and (4.28)
we deduce g,,, = (% (), from which the desired expansion follows:
r

n—i\ [v—r—i
C, = Z ( ) ( ) Ji. 4.29)
r—i n—r

i=0
This shows, in particular, that the components of C, in the basis {Jo, Jy,
..., J,} are all nonzero. Hence the rank of C, is equal to the sum of ranks
of the J, for i=0, 1, ..., r. So the following equation holds for the multi-
plicity 4, = rank (J):
4y = rank (Cp) — rank (C,-;). (4.30)

In order to determine the rank of C,, let us introduce the matrix 4, € R(X, V)
characterizing the inclusion of i-subsets in n-subsets of V. More precisely, using
the mapping (4.23), we define

1 for ¢<f(x),
AxH = { 4.31
xH 0 otherwise, @3n

for xe X and £ e V,. Since the (x,y)-entry of C, is the number of i-subsets £
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being contained in both f(x) and f(5), we have C, = 4 4,", which shows that
C, and A, have the same rank. Next, we use a result due to Kantor 35) saying
that 4, has maximal rank: rank (4)) = |V}] = (), fori=0, 1, .., n. Hence
we know, by (4.30), the parameters 4, of the Johnson scheme J(n,v):

v o\ v—241/v
m=(,->'(,-_1)= v—i+1_(i)' 4.32)

We are now ready to give, in explicit form, the eigenmatrices P and Q. It
turns out that the formulas can be written in terms of expressions discovered
by Eberlein 1°). In fact, this is not accidental: the problem considered by
Eberlein is equivalent to the computation of the cigenvalues and eigenvectors
of the matrix L, = [p, ,/*] for the Johnson scheme (cf. sec. 2.3).

Given an integer k, with 0 < k < n, we define the Eberlein polynomial E(u),
in the indeterminate u, as follows:

k
n—j\ [n—u\ [v—n+}
Exuw) = Z (—1)"’( 1)( . )( +H ) (4.33)
k—j/\ J j
smo
It is easy to verify that E,(v), which has degree 2k in , has in fact degree k
in the indeterminate z = u (v + 1 — u). We also give, without proof, another

useful formula for the Eberlein polynomials:

E“"’i_ij—" ]y’

Theorem 4.6. The eigenmatrices P and Q of the Johnson scheme J(n,v) are
given by

P() = E(), Q) = mo" By(), 439

forik =0, 1, ..., n where Ey(u) is the Eberlein polynomial (4.33), v, is de-
fined by (4.21) and g, by (4.32).

Proof. Let Do, D, . . ., D, be the adjacency matrices of the distance relations
R,. Using a well-known identity on binomial coefficients and, thereafter, eq.
(4.29), we can solve the system (4.22) for the D, as follows:

Dpy = Z(—w-* (,:) c
- SIS e ()

w0 rmi

49 —

By definition (2.13), P._4(i) is equal to the number inside the square brackets
in the latter expression. On the other hand, this pumber is precisely the value
E,_ (i) given by (4.33). Hence the first part of (4.34) is proved. Then the second
formula is obtained by use of the general relation (2.25) between P and Q.

Theorem 2.3, when applied to the eigenmatrix P of the Johnson scheme J(n,v),
implies that the n + 1 Eberlein polynomials @,(z) = E\() in the variable
z=u(v + 1—u) form “the” family of orthogonal polynomials on the set
of n+ 1 numbers z, =i(v+1—i), i=0, 1, ..., n, with respect to the
weight function w given by w(z,) = u;. Indeed, (2.21) can be written as fol-
lows:

z ¢'(zl) ¢.l(zl) b= (v) v 6!m
i=0 n

forr,s =0, 1, ..., n Like any class of orthogonal polynomials, the Eberlein
polynomials satisfy a three-term recurrence relation, which is very useful for
computation. We give it here, without proof :

(k+ 1) By i) =@ (0 —m)—k (v—2k) —u v+ 1—uw) B+
© =k +D@—n—k+ 1) E_,0) @35

Finally, let us examine the “functions” Q(2) corresponding to the eigen-
matrix Q = [Q(k)]. Clearly, for a given i, there is a unique polynomial p(z)
of degree not exceeding n, in the indeterminate 2, such that Q,(k) = p(k) for
k=0, 1, ..., n Using the sccond formula (4.34), we transform the recur-
rence relation (4.35) on the E, into a “difference equation” on p(z) = Q4(2)-
Elementary computation yiclds, with m = v —an:

=) m—Dpz+1)=[nm—z@@—2)—ifv+1 —DIp)—22 pz—1).

1t is easily verified that a polynomial p(z) of degree less than or equal to n
cannot be a solution of this equation unless it has degree i. Consequently, it
follows from (2.22) that {Qo(2),. .., Qu(2)} is “the” family of orthogonal poly-
nomials on the set {0, 1, ..., n} with respect to the weight function w given
by w(i) = v,.
4.2.2. Binary codes with constant weight

A binary code of length v and constant weight n by definition is a nonempty
subset Y of the sphere (4.19) provided with the Johnson distance (4.20). Like
in the Hamming scheme (sec. 4.1.2), the linear-programming bound
| Y] < £(Q,M) can be applied to such codes which are M-cliques in the
Johnson scheme J(n,v).
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Example. Let us examine the binary codes Y of length v =8 and weight
n = 4 having the property that the Johnson distance between distinct code-
words is either 2 or 4. In other words, Y is an M-clique in J(4, 8) for the set
M = {0, 2, 4}. The linear-programming problem (Q,M) is here very simple.
It turns out that the unique maximal program is &’ = (1, 0, 12, 0, 1). Hence
| ¥] < 14 holds for all codes Y in the family. In fact, this bound is tight since
there exists a well-known code Y’ containing 14 codewords and having a’ as
inner distribution, namely the set of incidence vectors of points and planes in
the Euclidean geometry EG(3, 2).

As we have already mentioned, the cases M = {0,8,8 + 1, ..., n} are the
most important ones for applications in classical coding theory: the M-cliques
in J(n,v) are the constant weight codes with designed minimum distance 3 (in
the sense of the Johnson distance). The best known upper bounds to the num-
ber of words in codes with given parameters v, n, § are essentially due to
Johnson 34).

In sec. 4.3 it will be shown that the linear-programming bound | Y| < g(Q,M)
implies certain standard combinatorial or geometric inequalities. Hence one
may expect it will often improve the known resuits. However, here is an example
unfavourable to this bound: for v = 12, n = 5, 8 = 3, it gives g(Q,M) = 15,
whereas the largest code having these parameters contains only 12 words (cf.
Johnson 3%)). The very few numerical results obtained by the author do not
allow him any grounded conjecture about comparison between the linear-
programming bound and Johnson's results; to progress further, one should
use a computer.

42.3. t-Designs

To complete the paraliclism with sec. 4.1, we shall now exhibit the intrinsic
meaning of 7-designs of type (4.14) in the Johnson schemes. Let us first give
a definition, in terms of coding theory, of the ¢-designs introduced by Hanani *°).
Here we exclude repeated blocks.

Definition. To a binary code Y of length v and constant weight n corresponds
the array, over F = {0, 1}, whose rows are the words of ¥. Let v and A be
positive integers, with T < n. Then Y is said to form a v-design if, in each v-
tuple of distinct columns of the array, the z-tuple of symbols 1 appears exactly
A times. Such a design is usually denoted by Sy(z.mv).

It is convenient to include ¥ = 0 in the definition: any code Y forms a 0-
design S,,(0,n,0) with Ao = | ¥|. It is casily seen that, if ¥ forms a 7-design
S,(v,n,0), then it also forms an i-design S, (i,n,v), for i=0, 1, ..., 7, with

v v—i
( ) A =Y]| ( ) (4.36)
n n—i
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Theorem 4.7. Fora givenset T= {1, 2,...,t} with1 < v <n, acode Yis
a T-design in J(n,v) if and only if it forms a 7-design Sy(z,n,v).

Proof. Using the matrices 4, defined by (4.31) we first observe that the fol-
lowing equations are sufficient and necessary conditions for a code ¥ < X
to form a r-design:

AT ¢y =|X|" V[ AT ¢y, O0<i<rw @37

Indeed, let £ be an i-subset of V= {1, 2, ..., v}. Then the component
(A4, $5)(#) in the left-hand member of (4.37) is, by definition, the number 4,(£)
of codewords x € Y such that ¢  f(x). Now, the property of a r-design is
precisely the fact that 2,(£) is constant, for a fixed i < v, its value 4, being
given by (4.36). Hence the characterization (4.37) of a v-design simply fol-
lows from the obvious identity (4, ¢x)(8 = -

On the other hand, the system (4.37) is equivalent to the one obtained when
AT is replaced by C, = 4; A7, that is, since {J,, ..., J.} generate the same
linear space as {Cy, . .., Ci}, to the following system:

Je ¢y = |X|~‘ lYl Jebx
=X~ |¥[oodx, O<k<T, 4.38)

as J is ortliogonal to Jo = |X|~* $x #x7 for k = 1. Now, by theorem 3.10,
the conditions (4.38) are the exact definition of a T-design Y in the Johnson
scheme. Hence the theorem is proved.

Let us illustrate this result on the example of sec. 4.2.2. It turns out that the
maximal program &' = (1, 0, 12, 0, 1) of (Q,M), with v =8, n == 4 M=
{0, 2, 4}, satisfies 2’ Q, = 0 for k = 1, 2, 3. So, by definition (3.27), the maxi-
mal code ¥’ is a T-design in J(4, 8) for T = {1, 2, 3}. Hence theorem 4.7 is in
agreement with a well-known result in finite geometry: ¥ forms a 3-design
51(3, 4, 8).

According to theorem 4.7, the linear-programming bound (3.29) leads to a
lower bound to the parameter A of t-designs S(v,,v) with fixed values of
7,n,v. Indeed, using (4.36) with i = 7, 4, = A, we obtain

v—T
D( )/‘(P’M’ for M={t+LT+2...,n). @)
n—t

(In fact, this inequality remains valid for the more general definition of -
designs which admits the possibility of “repeated blocks™; see the remark at
the end of sec. 3.4.)

Example. We shall consider the problem of 4-designs S.(4,8,17), ie. v =4,
n =8, v=17. It is easy to check that the parameters 1, given by (4.36) are
all integers if and only if A is divisible by 5. Our next analysis will lead to the
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conclusion that 1 = 5 is impossible, so leaving 4 = 10 as the first open ques-
tion. In fact, the smallest A for which a design has been constructed is 1 = 15,
the result being due to Alltop *).

Let us give explicitly the inequalities b P, >0 of the linear-programming
problem (P,M), with M = {0, 5,6,7, 8}, in the variables bs, bg, by, bs:

Tby +0bs —5b, —8b = — T2,
—_32b, —I18bs +Tby +28bg > —1008,
by +52by +Th, —56bs > —4704,
45b, —60bs —35b, +70b, > 8820,
—81bs +24b; +49b, —56b; > —T506,
38b, +10bs —35b;, +28by > —2352,
2b, —12bs +13b, —8by > — 288,
—4b, +3bs —2b, +b = — 9

The function to be maximized is g = 1 + bs + bg + b; + by. The best way
for computing the coefficients Py(i) = Ex(i) appearing in the above system is
of course to use the recurrence relation (4.35) on the Eberlein polynomials E(u).
The problem can be treated by hand and the following values are obtained
for the unique maximal program: bs = 4752/175, bs = 7722/175, b, = 624/25,
by = 429/25; whence g = 572/5. (In fact, b is 'the solution of b P, = 0 for
k = 1,2,7,8.) Therefore, applying the linear-programming bound (4.39), we
deduce A > 25/4, which shows the nonexistence of a 4-design Ss(4, 8, 17).

It will be shown in sec. 5.3.2 that the linear-programming bound (4.39) for
7-designs implies an inequality recently obtained by Wilson and Ray-Chaud-
huri 7%), namely | Y] > () for ¢ = [7/2]. This reduces to Fisher’s inequality 2°)
for e = 1; the general result was conjectured by Petrenjuk $4), who first proved
it for e = 2. In the above example of S.(4, 8,17), the Petrenjuk-Wilson in-
oquality becomes A > 4, which leads to no conclusion.

4.3. Classical inequalities for codes

In this section we shall treat simultaneously the Hamming schemes H(n,g)
and the Johnson schemes J(n,v) and indicate, without going into details of
the proofs, how certain well-known “combinatorial” inequalities follow from
the linear-programming method. We shall only consider the problem of M-
cliques with M= {0,4, 8+ 1, ..., n} for some positive integer 4 <n,ie.
the problem of codes with designed minimum distance 4.

As we have seen in secs 4.1.1 and 4.2.1, the socond cigenmatrix Q of both
types of schemes corresponds to well-defined polynomials Q(2) = 1, @1(2),

.., OJ(z) over the rational numbers, with deg (Qx(2)) = k, such that Q,(%)
is the (i,k)-entry of @ for ik =0,1,...,n For example, the polynomials of
degree k =1 are
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Q@) =n(g—1—qz in H(n,q),

= 1
0.(2) _;(v—n)

Given a polynomial a(z) in the indeterminate z, with rational coefficients,
whose degree does not exceed n, we consider its expansion
a(z) = o Qo(2) + o Q1) + .. . + o Qul(z) (4.40)
in the basis {Q.(z)}. For a fixed integer 4, with 1 < 8 <»n, the polynomial
o(z) will be said to be S-positive if it satisfies o = 1, o, > O for all &, and
ofi) <O for i=8, 8+ 1, ..., n In other words, «(2) is d-positive if and
only if the (1 + 1)-tuple & = (g, @, . . . , %) is a program of the linear-pro-
gramming problem (Q,M)’. For this problem the function y to be minimized
is simply given by y = «(0). Therefore, according to theorem 3.4, the linear-
programming bound (3.22) for codes ¥ with designed minimum distance dis
equivalent to the following:

|¥] <o) for all -positive a(z). (@41

(nv—n)—vz) in Jnv).

4.3.1. The Plotkin bound

Let us restrict ourselves to polynomials of degree one with «p =1, ie.
az) = 1 + a, Q,(z). The largest value of «, for which a(z) can be 3-positive
is the solution of «(8) = 0. This choice leads to the Plotkin bound; its analytical
expressions are easily obtained from (4.41) and the above formulas for Q,(2):

Y} <qéfgé—n(g—1) for gd>ng—1),
Y| <vdfwd—n(@w—n) for o¢d>n(w—n),

in the schemes H{nq) and J(n,v), respectively. In fact, the first inequality is
essentially due to Plotkin *7), the latter was discovered by Johnson *2).

The second part of theorem 3.4 implies that a code Y achieving the Plotkin
bound is necessarily equidistant of distance 8, in the sense that the distance
between any two distinct codewords is equal to 8. Moreover, the same theorem
also indicates that Y is a {1}-design.

In the case of a Johnson scheme J(m,v) let us now translate these properties
in more-usual combinatorial terminology. Given a binary code Y of length v
and constant weight n, we define the incidence relation I between the set ¥
of “points” and the set ¥ = {1, 2, ..., v} of “blocks” (cf. Dembowski '*),
p. 1) to be:

(4.42)

I={(x))eYXV| x, =1}

We are interested here in the incidence structure (Y,¥,I) which is the dual of
the one implicitly used in sec. 4.2.3 for defining z-designs in J(n,v).
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The consequence of the above remarks about the Plotkin bound can be ex-
pressed as follows: For given parameters n,v,, with v § >n (v — n), acode Y
satisfies equality in (4.42) if and only if the incidence structure @,V.Dis a
2-design, which may have repeated blocks. Using the notation S,(2,n',v") for
this design, one can derive the parameters n,v,8 of the code from n',v,A" by
the formulas n (W —1)= &' (v'—1), v’ =v'nand d =n— 12"

4,3.2. The Singleton bound

Here we take for «(z) the polynomial of minimal degree v =n—3+ 1
vanishing at points z=4, 8 -+ 1, ..., n and satisfying ag = 1. So, one has

w2)=c(l—2/0)(1—2/@+1)...(0—z/n),

for some nonzero rational number ¢ = a(0). It is not difficult to find out ex-
plicit formulas for the components «,/c of the polynomial a(z)/c in the basis
{Q«(2)}; it turns out that these components aro all positive for k=0, 1,
..., 7 (cf. Delsarte %) in the case H(n,g)). The only numerical value we really
need is for k = O since the condition &, = 1 then fixes the value of c; the
results are

ce=gq in H(n.g),

() o

Since a(z) is 8-positive, we may apply (4.41), with a(0) = ¢. For a Hamming
scheme we obtain in this way the Singleton bound *%) |Y| < g%, with
t=n—4+ 1. The same name will be given to the corresponding bound
| ¥] < O/ for a Johnson scheme. It must be noticed that both results can
be derived by means of very simple counting arguments.

Let us emphasize the combinatorial structure of codes achicving the Singleton
bounds: In H(n,g), these maximal codes are the orthogonal arrays of strength v
and index A =1 (cf. theorem 4.4); in J(n,v) they are the Steiner systems
S(z,n,v), ie. the v-designs with 1 =1 (cf. theorem 4.7). Essentially, in our
approach, these results are consequences of theorem 3.4(ii) and the fact that
o, &g, - . . , & ArC positive.

Explicit formulae can be obtained for the inner distribution a of the ortho-
gonal arrays of index 1 in H(n,q) and of the Steiner systems in J(n,v), as solu-
tions of the following equations:

2Q0.=cd, for k=01,...,7 (4.43)
with g =1, @, =@, = ... = a,_, = 0. For a derivation of such formulas
by combinatorial methods, the reader is referred to Goethals 24) and to

Marguinaud *°).
1t is interesting to observe the following fact about the linear-programming
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problem (Q,M) for the Hamming scheme H(n,g) with ¢ > max @G, n—8+2):
the solution a of (4.43) with g =1 and a, = 0 for 1 <i <4 is always a
program of (Q,M); this has been verified by Piret (private communication).
So we have programs a and a of (Q,M) and (Q,M)’, respectively, such that
g = y = ¢*. Hence (a,a) is a pair of extremal programs. Consequently, in the
very particular case ¢ > max (8, n — & + 2), we have an analytical expression
for the linear-programming bound, namely g(Q,M) = ¢°, witht =n—38 + 1.

4.3.3. The Hamming bound

For e = [(6—1)/2] let us define P,'(k) = Po(k) + P,(K) + ... + P.(k)
from the eigenmatrix P and, then,

a, =(P/()P/O)?, k=0,1,...,n

It can be shown that the polynomial aZ) given by (4.40) vanishes for
z=26, 8+ 1, ..., n and, therefore, that a(z) is d-positive. Moreover, one
has a(0) = | X|/P./(©); so (4.41) yields

Y] <(vo+ vy + ...+ )7 |X].

This inequality, which we shall call the Hamming bound, is the obvious “sphere-
packing bound” ifi a finitc metric space with regular distance relations (cf.
Hamming ?°) and Freiman 2!)). The codes achieving this bound are said to
be perfect. The question of perfect codes in the more general “metric schemes”™
will be examined in detail later on (cf. sec. 5.2.2).

The perfect codes in Hamming schemes were investigated by several authors.
Let us quote the strongest general result, due esseatially to Van Lint 14) and
to TietAviinen 72): For 3 < d<n, and ¢ being a prime power, the only
triples (n,q,8) for which there exists a perfect code in H{m,g) are thosc of the
two Golay codes, namely (23,2,7) and (11,3, 5). The uniqueness of the
binary Golay code has been recently proved by Snover °%); an interesting
open problem is the uniqueness of the ternary Golay code. The known results
about perfect additive codes are summarized in theorem 6.6. For a survey of
the whole question, the reader is referred to Van Lint 42).

After having recalled there are “very fow” perfect codes in the Hamming
schemes, one must say that, for 1 << 8 < n, there is not a single one known
in the Johnson schemes. It is tempting to risk the conjecture that such codes
do not exist. Certain results contained in the present work could be useful to
attack this problem; especially the generalized Lloyd theorem of sec. 5.2.2
and theorem 4.7 about t-designs.
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5. POLYNOMIAL SCHEMES

In the preceding chapter we have exhibited several analogies between two
types of association schemes which are important in coding theory: those of
Hamming and of Johnson. Especially, let us emphasize the existence of families
of orthogonal polynomials related to the eigenmatrices P and Q. In the present
chapter we shall take these “polynomial properties” as axioms and undertake
to set up a theory of the corresponding association schemes.

Let us point out, without going into details, that, apart from the above-
mentioned “coding schemes”, there exist other types of association schemes to
which the theory can apply. Here are two interesting cases: (i) the scheme of
alternating bilinear forms over the binary field (cf. Cameron and Seidel 12)),
which is also of some use in coding theory; (ii) the,scheme of finite projective
geometries (cf. for instance Dembowski %), p. 29). For both cases the author
succeeded in obtaining explicit formulas for the eigenmatrices. In fact, the
families (i) and (ii) are related, at least formally, to the Hamming schemes
and to the Johnson schemes, respectively; some generalizations of the Kraw-
tchouk and Eberlein polynomials follow from the theory.

5.1. Definitions and preliminaries

We shall denote by R[z] the linear algebra of polynomials, with real coeffi-
cients, in the indeterminate z and by R,[z] the (k + 1)-dimensional subspace
of R{z] formed by all polynomials of degree less than or equal to a given
integer k > 0. On the other hand, we shall use the notation N = {0, 1, ..., n}.

Definition. Let P,Q € R(N,N) be the eigenmatrices of a symmetric association
scheme with n classes. Let there be given n + 1 distinct nonnegative real
numbers z, =0, z,, ..., z,. For a fixed k € N there exists a unique poly-
nomial @(z) € R,[z] such that

Dy(z) = Pu(i), VieN, 5.1)

where P,(i) is the (i,k)-entry of P. If ®,(z) has degree k, for all k € N, then the
association scheme will be said to be P-polynomial with respect to the z.
A Q-polynomial scheme is defined analogously from the matrix Q.

Let us make two obvious remarks: (i) The condition deg ($,(z)) = k in
the definition of a polynomial scheme can be replaced by B(2) € R.[z].
(i) For a P-polynomial scheme, we have z, = ¢ (P;(0)— P,(i)) for some
positive constant ¢ which may be chosen arbitrarily.

5.1.1. Orthogonal polynomials

From theorem 2.3 it follows that the polynomials @,(z) satisfy orthogonality
relations. For future use we shall need some results and notations about such
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orthogonal polynomials. Except for one theorem, the matter is absolutely
classical; the reader is referred to Szegd 7°).

Let us consider a set {zo =0, zy, ..., 2.} of n+ 1 distinct real numbers
z,, with z,, . .., z, >0, and a weight function w, defined on this set, assuming
only positive values w(z,). From thesc data we define the scalar product f.8)
of two real functions f,g of the variable z by the formula

(f9) = B wled £ ) (2. 62

The number ( £,f)*/? is called the norm of f; it is zero if and only if /(z) vanishes
forz=124 ..., 2z,

Next, for an arbitrary choice of the norms o, >0, we define the family of
orthogonal polynomials Do(z), Dy(2), ..., Du(z), With deg (DP(2)) = k and
$,(0) > 0, by the orthogonality relations:

(@,8) =02 by O<kj<n. (5.3)

1t is well known that these conditions determine uniquely the set {®@,}. (The
choice ®,(0) >0 is admissible since @,(z) cannot vanish for z = 0; it is
equivalent to ¢,(—oo) > 0.) In the following, the normalization will be chosen
such that -

&,(0) = 0ifoe?, O0<k<n (5.4)

which is always possible. The only remaining arbitrary parameter now is go.

Before going further into the theory let us apply this to polynomial schemes.
The next result simply is a reformulation of theorem 2.3 in the terminology of
orthogonal polynomials.

Theorem 5.1. Let (X,R) be a P-polynomial scheme. Then the set {Du(2)} de-
duced from P as in (5.1) is, for the normalization (5.4) with a,? = {X], the
family of orthogonal polynomials on the set {zo, zi, - - -, Z} for the weight
function w(z)) = Q:(0). The same result holds when the roles of P and Q are
interchanged. ’

Proof. For P-polynomial schemes, the orthogonality rclations (5.3) follow
from (2.21) and the normalization (5.4) follows from P.(0) = v, The cor-
responding result for Q-polynomial schemes is a consequence of (2.22) and
(2.18).

It is known (cf. Szegd 79, p. 42) that orthogonal polynomials satisfy a
unique recurrence relation of the following type:

Yie1 Prar(2) = (0 —2) Pul2) — a2 D 1(2), (5.5)

where &, ¥y, @, are real numbers, with w, = (0)f0- 1)? and y, >0 for
k=1,2,...,n For convenience, we also define y, = 0. Substituting z = 0
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into (5.5) we easily obtain, by use of (5.4),
U = Vi + Dis1 Vasr (5.6)

The reader could check this result for the formulas (4.11) and (4.35) given
above for the Krawtchouk and Eberlein polynomials.

Next, let us introduce the sum polynomial ¥'\(z) of degree k, fork=0,1,
..., n, derived from the ®,(z) as follows:

Y\ (2) = Po(2) + Pi(@) + . . . + Pul2). ()]

It is not difficult to show that W,(z) vanishes for z = z,, ..., Z,. On the other
hand, we consider the scalar product [f,g] associated to the weight function
w(E)=zwz)fori=12,...,n:

i8] = W@ f @) £(e) = ()

Theorem 5.2. The polynomials ¥y(z), P1(2), - . . , Pa-1(z) form the family of
orthogonal polynomials on the set {zy, . .., z,} for the weight function w'(z,).
More precisely:

Pu¥)] = Pes1 O t® Ouse 0<kj<n—1
Proof. We shall only give the sketch of the reasoning, without going into de-
tails. By use of (5.5) and (5.6) it is first shown that the sum polynomials (5.7)
satisfy the following equations:

Yerr Pier@) = (0 — D) V() — o' 7 ¥ 1(2), (5.8)

with @’ = ypeq (1 + ©44y) and @ Py = Ouy 1 Vae1- Next, we verify that
[¥,,11 =0 holds for all k > 1. Owing to the recurrence relation (5.8), this
implies [¥,,2'] = O for all k£ > j, which is equivalent to [¥,F,] = 0 for all
k#j.

Finally, let us compute the norm o, of ¥, i.. 0, = [¥;,¥,]. From the
recurrence relation (5.8) on the family of orthogonal polynomials ¥y(z), we
deduce, applying the general theory,

3 2
Ox Yee10n41

= “’tl =
Opy'? Y& 0 2

The solution obviously is 6, = Y441 Ors12, Which concludes the proof of

the theorem.

As the polynomials ®,(z) and ¥y(z) corresponding to the Johnson scheme
are not really classical, we give for them, in table I, the values of the parameters
appearing in the above formulas. .

Going back to the general theory we finally apply to the family {¥,} two
well-known results on the zeros of orthogonal polynomials.
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TABLE I

Parameters of J(n,v), withm =v—n

P-polynomials Q-polynomials

z i(v+1—19) i

w | (= | 00

km—k+1)@—k+1)

S K -2 E—2%+2)
2 v\ /m\/n o\ fo\v—2k+1
* (n)(k)(k) (n)(k) k1

mn@+2)—vk@—k+1)

Loy - mn—k (v—2k) W% FD

" v\/m—1\/n—1 o\ 7o\ (m—k)(n—k)

o (")) QOGS

1 —k(n—k

o mn4+1—k(v—2~—2) @+ Hm ) )

(—2k—1)(w—2k+1)

—k+D(m—k)@O—k
-2 (v—2%+1)

@y Ve (m—k)y(n—k

Theorem 5.3. For a given e {1, 2, ..., n—1}, the polynomial ¥,(z) has e
distinct real zeros, located in the interior of the smallest interval containing
24,22, -+ 3 Zu

Let us denote by py, Pz, - - ., Pe the zeros of Y (z). To a given p» corte-
sponds the Christoffel number wy defined as follows (cf. Szeg 7°), p. 48), with

0,2 = [V, 0]
-1

wot = B @pdle/fs  k=12..e )
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into (5.5) we easily obtain, by use of (5.4),
oy = ¥Yp + Ops1 Yrs1. (5.6)

The reader could check this result for the formulas (4.11) and (4.35) given
above for the Krawtchouk and Eberlein polynomials.
Next, let us introduce the swm polynomial W\(z) of degree k, for k =0, 1,
.., n, derived from the P (z) as follows:

Yi2) = Po(2) + B1(2) + . . . + Pul2). &)

It is not difficult to show that ¥,(z) vanishes for z = z,, .. ., zZ.. On the other
hand, we consider the scalar product {f,g] associated to the weight function
wE)=zwz)fori=12,...,n

/gl = Ex w(z) S (z) 8(z) = (2/.8)-

Theorem 5.2. The polynomials Py(z), ¥i(2), . . . » ¥a-1(2) form the family of
orthogonal polynomials on the set {zy, . . . , z,} for the weight function w'(z).
More precisely:

o] = Y41 0041* Oy 0Kk j<n—1.
Proof. We shall only give the sketch of the reasoning, without going into de-
tails. By use of (5.5) and (5.6) it is first shown that the sum polynomials (5.7)
satisfy the following equations:

Vaet Praa(@) = (0 — 2) V(@) — @ 72 Vi1 (), (58

with o' = yees (1 + O4e1) 80d @) Pp = Opsq Yes1. Next, we verify that
[¥..1] = 0 holds for all k >> 1. Owing to the recurrence relation (5.8), this
implies [¥y,z'] = 0 for all k > j, which is equivalent to [¥,¥,] = 0 for all
k#j

Finally, let us compute the norm o,’ of ¥, i.e. 6,'* = [¥),¥,]. From the
recurrence relation (5.8) on the family of orthogonal polynomials ¥,(z), we
deduce, applying the general theory,

42 2
Ox , Va+1%4a
=w =

7
Og—1 yr0:?

The solution obviously is 0,2 = y,,; 0xe12, Which concludes the proof of
the theorem.

As the polynomials @,(z) and Py(z) corresponding to the Johnson scheme
are not really classical, we give for them, in tabie I, the values of the parameters
appearing in the above formulas. .

Going back to the general theory we finally apply to the family {¥,} two
well-known results on the zeros of orthogonal polynomials.
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TABLE 1

Parameters of J(n,v), withm = v—n

P-polynomials Q-polynomials

z i +1—1) i
v\v—2+1 - m\ /n
“e (r) i+l (i)(i)

km—k+Dn—k+1)

. Vx k2 s
2 o\ /m\/n (n nNv—2%+1
* (")(k)(k) ”)(k)m

o mn—k (v —2k) mn(@+2)—vk(w—k+1)

(v — 2k) (v — 2k + 2)

v\ /o\ (m—k) (n—K)
e
@+ 1) (m—k)@n—k)
w—2k—1)(v—2k+1)

o | Q)

o mn+1—k(v—2k—2)

@—k+ D (m—k)(r—K)
G—29@—2k+1)

oy | m—k)(n—k)

Theorem 5.3. For a given e€ {1, 2, ..., n— 1}, the polynomial ¥,(z) has e
distinct real zeros, located in the interior of the smallest interval containing
25,230 3 Zpe

Let us denote by py, P, - - -, P the zeros of ¥, (z). To a given p, corre-
sponds the Christoffel number w, defined as follows (cf. Szegd 79), p. 48), with

a_,'z = [WI,W,]:

=1
wt =l§°(97,(p,)/6,’)’, k=12...,e (5.9
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Theorem 5.4. Let f(z) vary through the set R, [z). Then the e-tuple (w,, w;,
.., wJ) of Christoffel numbers associated to the zeros p, of ¥,(2) is the
unique solution of the following system of linear equations:

.5_31 wef(p) = “_Zl 2, wz) f (2). (5.10)

5.1.2. The Mac Williams inequality

This section is devoted to a generalization of an inequality first discovered
by MacWilliams “4) in the theory of linear codes. It relates two parameters
which will play a very important role in the rest of our study.

Definition. Let 8 = (o, a3, . . . 5 @) be an (n -+ 1)-tuple of real numbers a;.
Then the integer s(a) is defined to be the number of nonzero components 4,
for 1 <i<n and #(a) is defined to be the largest 7 such that 4, =a, =
.. = a, = 0. If a, is non-zero, £(a) is taken to be zero.

Theorem 5.5. Let there be given a P-polynomial scheme. Then, for all (n + 1)-
tuples & with a, # 0, one has s(aQ) > [#(a)/2]. The same proposition holds
when the roles of P and Q are interchanged. '
Proof. Using (2.15) we can write, for arbitrary (n + 1)-tuples a and b:

(@ Q) ®PHT =|X|ab". (5.11)

For a P-polynomial scheme, we have P,(i) = ®y(z)) with deg (Py(2)) = k.
From a and b we construct the polynomial A(z) = by Po(2) + . . . -+ b, P(2),

with 7 = ¢(s). Since, by definition, @, = ... = a, = 0, eq. (5.11) becomes
Zeoated =11 (abo+ 5 ab) 5.12)

We shall assume s(a0) < [t/2]. Then, obviously, there exists a polynomial
9(2) of degree [#/2) vanishing at each point z, such that 80, 3 0, with i =0,
1,...,n For a given a we now choose b such as to have b,y =...=5,=0
and f(z) = (y(2))*. Then (5.12) can be written as follows:

0= ao"_ﬂo (=) 20)- (5.13)

Indeed, the components b, of (z) in the basis {P,(z)} are deduced from the
values f(z,) by the formula | X]| b, = T B(z)) @u(k).

Since Q(0) = p, is positive, the right-hand member of (5.13) cannot be
zeto for ay # 0. Hence we are led to a contradiction and the first part of the
theorem is proved. The second part is obtained by exactly the same argument.
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5.2. P-polynomial (= metric) schemes and codes

The Hamming and Johnson schemes have at least two common properties:
they are defined by the distance relations of some metric space and they are
P-polynomial. More precisely, H(ng) and J(n,v) are P-polynomial for z, =i
and z, = i (v -+ 1 —{), respectively. In this section, it is first shown that the
coincidence between metric and P-polynomial properties is quite general.
Thereafter, the “codes” in these “metric schemes” are investigated in detail.

5.2.1. Preliminary results

Given a symmetric association scheme (X,R) with n classes, we define the
mapping ¢ of X2 onto N = {0, 1, ..., n} as follows:

e(xy)=k for (x))eR,

The scheme will be said to be metric if g is a distance over X satisfying a con-
dition of “nondegeneracy”: for any two points x,y at distance g(x,y) = k
from each other, with 1 < k < n, there exists at least one point at distance 1
from x and at distance k — 1 from y.

The graph (X,R,) of a metric scheme could be called a perfectly regular graph
in agreement with the definition of Higman 3!). In graph terminology, the dis-
tance g(x,y) is the length of the shortest path between x and y in (X,R,).

It is obvious that the axioms of a metric scheme can be expressed in terms
of the parameters p; ,® by the following two conditions: p, /¥ # 0 for
k=i+jand

(/P # 0= (i—j| <k <i+)) (5.14)

Theorem 5.6. A symmetric association scheme is P-polynomial if and only if
it is metric.

Proof. First, let us assume the given scheme is metric. Using (5.14) and the
general relation (2.19) on the cigenmatrix P, we have, for all e N,

Py(1) Py(4) = p1,x** Y Py i) + Pxn.km Py) + p1a* "D Prs(@). (5.19)

As p, &+ is nonzero, this shows, by induction on k, that Py(1) is a poly-
nomial of degree k in P, (). Let us define z, = ¢ (v, — P,(4)) for an arbitrary
constant ¢ > 0. By (2.29) the numbers z, are nonnegative, with z, = 0. More-
over, they are distinct. Indeed, z, = z; would imply P,(i) = P,()), for all k,
which is impossible unless / = j since P is nonsingular. Hence, by definition,
the scheme is P-polynomial with respect to the z,.

Noxt, we assume the scheme is P-polynomial with respect to some
numbers z,. From theorem 5.1 it follows that the corresponding poly-
nomials ®,(z) satisfy a recurrence relation like (5.5). Writing it at point
z =z, = c (v, — P;(1)) we obtain precisely (5.15) for suitable values of the
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p1.4", namely
k+1) . =1 k) — -1 ¢ £ — p—1
Pra D =™y, PiaP =v—ctay, PV ="l oy P

Hence we have p, ,** # 0 and p, " = 0 for |k —i| 2 2. These are part
of the conditions (5.14) for a metric scheme. In fact it can be casily shown,
by induction, that this “part” is equivalent to the whole of the conditions,
which concludes the proof.

Let Y be a nonempty subset of X for a metric scheme (X,R); we call Y a
code in (X,R). The inner distribution a of ¥ with respect to R is called the
distance distribution of the code. From a we define two fundamental param-
eters d and r as follows (cf. sec. 5.1.2):

d = t(a) + 1 = minimum distance of Y,
r = s(aQ) = external distance of Y.

The meaning of the first parameter is clear, at least for |¥| = 2: the integer d
is the smallest value assumed by the distance g(x,y) for distinct points x,y € ¥.
The significance of the concept of external distance will appear below.

A code ¥ will be said to be trivial when it is X itself or when it contains
only one point. From now forth we shall only consider nontrivial codes. Then
it is easy to show that the parameters satisfy 1 Lrod<n

On the other hand, using theorem 5.5, we have an interesting inequality on
d and r, namely )

r= [(d—D2] (5.16)

As will be shown in theorem 5.14, the codes satisfying equality are the perfect
codes of which we now recall the definition in the terminology of metric
schemes: A-subset ¥ < X is a perfect code of order e, for some integer e > 1,
if the spheres S.(y) of radius e centred at the points ye Y form a partition
of X, with the usual definition of a sphere:

S = {xeX|0<olxy) <e} 517
5.2.2. The Hamming bound and the perfect codes

An obvious “sphere-packing” bound for codes Y of a given minimum dis-
tance 4 in a metric scheme results from the following argument: the spheres
(5.17) of radius e = [(d— 1)/2] centred at the points of Y bave to be dis-
joint; this yields the inequality | Y} |S.00)] < | X[, which we call the Hamming
bound. Clearly, the perfect codes of order e can be defined to be the ones achiev-
ing this bound.

In the present section, we shall obtain a very strong necessary condition on
perfect codes in terms of the polynomials &(z) corresponding to the eigen-
matrix P. It is a generalization of the Lloyd theorem %) on perfect codes in
the Hamming schemes (cf. for instance Lenstra 37)).
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Theorem 5.7. (i) Let ¥ be a code of minimum distance 4 in a metric scheme
(X,R). Then the following inequality holds, with e = [(d— 1)/2]:

17i (o + vy + ... +v) <|X]. (5.18)

(i) Let a be the distance distribution of Y. If ¥ is a perfect code of order e,
i.e. if it satisfies equality in (5.18), then its external distance r is equal to e
and the sum polynomial

Y (2) = Do(2) + P1(2) + . . . + Pul2) (5.19)

vanishes at the e distinct points z,, 1 <k < n, such that aQ, # 0.

Proof. The first part is obvious, by the geometrical argument sketched above,
as vy + v, + ...+ v, is the volume |S.0)| of the sphere (5.17). However,
in order to show that the Hamming bound (5.18) is implied by the linear-
programming bound, and to prepare the proof of the second part, we shall
use an algebraic method.

By definition, Y is an M-clique in (X,R) for M= {0,d, d+1, ..., n}
Hence (cf. theorem 3.8) the distance distribution a of Y is a program of (Q,M)
with g =]Y|. From the polynomial (5.19) we construct an (n + 1)-tuple
a = (g, a5, - - ., %) as follows:

@ = (Flzlv), (5.20)

with v, = W,0) = v + ...+ v, Let us show that « is a program of
(Q,M)'. Using (2.25) we can write the (i,k)-entry of Q in the form Q) =
®,(z,) pxfvi. So we have, by (5.20),

@ 0" = (i v.)? Eo.“k Dz (Pelz)*. (5.21)

Now the degree of (¥(2))* is d— 1 or d— 2. Hence from theorem 5.1 it fol-
lows that the right-hand member of (5.21) is zero for i > d. This shows that
« is a program of (Q, M), satisfying the conditions (& @), < 0 with equal-
ity. .

Let us compute ¥ = (a QT), for this program. From (5.21) we readily ob-
tain, by using the orthogonality relations (5.3),

Y= (v)"2 (00> + ol +...+ 0,

where o, is the norm of @,(z). Since 6,2 = | X| ¢,, this becomes y = x| v
Therefore, the general inequality g < ¥ in linear programming yields the de-
sired result (5.18).

Next, we assume Y is a perfect code of order e or, equivalently, Y satisfies
equality in (5.18). This means that a and « are extremal programs of (Q,M)
and (Q,MY', respectively. Let us apply theorem 3.4(ji) to the pair (a,a). Equa-
tion (3.15) gives, by (5.20),



— 64 —

Y(z)=0 for a0, #0, 1<k<n (5.22)

By definition, the external distance r is the number of integers k, with
1 < k < n, such that aQ, # 0. Since ¥,(z) cannot have more than e distinct
zeros, (5.22) implies e > r. Comparing this to the MacWilliams inequality
(5.16), we obtain e = r. Hence the second part of the theorem is proved.

The polynomial (5.19) will be called the Lioyd polynomial of degree e. By
theorem 5.3, it always has e distinct real zeros in the interior of the smallest
interval containing z, . . ., Z.. According to theorem 5.7(ii), these zeros must
all be among the z, themselves if there exists a perfect code of order e. In the
particular case of Hamming schemes, where W¥,(z) is the Lloyd polynomial in
the original sense, this condition was used successfully for nonexistence the-
orems on perfect codes (cf. especially Van Lint 40-42y),

Remark. For the Hamming and Johnson schemes, it turns out that the Lloyd
polynomials are the P,(z) themselves up to some “translation” on the indeter-
minates and parameters. Let us denote by K(n,q:1) the Krawtchouk poly-
nomial (4.7) and by E,(n,v;u) the Eberlein polynomial (4.33). Then, for the
schemes H(n,q) and J(n,v), tho Lloyd polynomials are given by the following
expressions:
W,(Z) = Kt("_ 1) q;,z2— l)y
¥(z) = E(n—1,v—2;u—1), with z=u(+1—u),

respectively. The first formula is, implicitly, the one given by Van Lint 41) for
the usual Lloyd polynomials.

We shall now derive a formula for the distance distribution of a perfect
code of order e. We point out that the minimum distance of such a code has
tobeodd: d=2e+1=2r-+1.

Theorem 5.8. Let py, Pa, - - - » Pe be the zeros of the Lloyd polynomial ¥(2)
of degree e < [(n—1)/2] and let wy, wa, ..., W, be the corresponding Chris-
toffel numbers. Then the distance distribution a of any perfect code ¥ of
order e is given by

ay = lXI"k?lp."‘ wy P(py) + (Z(0))~* DL0). (5.23)
Proof. Let us define b =a O, whence bP = |X}| a. The minimum distance
of Y being d = 2¢ + 1, this yields b P, = 1X| 8, forj=0,1,..., 2 Using

the orthogonality relations we can write these equations in terms of the poly-
nomials Pz) as follows:

‘zo (b — ) PAz) =0, 0<j<2e
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Consequently, since Do(2), - .., ®,.(z) form a basis of R,.[z], we have, for
an arbitrary polynomial f(z) € R;..,[2),

¢§x Gi—u) 2 f2)=0. 529

On the other hand, by theorem 5.7(ii), the (» + 1)-tuple b has exactly
e + 1 nonzero components bo, by, . - -5 b,,, with the property that z,,, ...,
z,, are the zeros of the Lloyd polynomial ¥(z). Hence (5.24) becomes, for
Pi = 2yt

tz_:‘bi, pf (P = E‘IH 2, f(z)).

Applying theorem 5.4 to the Lloyd polynomials, with w(z;) = g, we deduce
by, = px~* w,. Substituting this value of b in the formula a, =|X|~'b P,
we obtain the desired result (5.23).

Example. Let us compute the distance distribution a of a perfect code Y of
order ¢ = 2 in the Hamming scheme H(11, 3). In fact, there is exactly one
linear code having these parameters (cf. Pless 56)), namely the ternary Golay
code.

The Lloyd polynomial ¥,(z) is expressed as follows in terms of the Kraw-
tchouk polynomials (cf. theorem 4.2): W, (z) = Ko2) + Ki(z) + Ky(2)- Using
for instance (4.7), one readily obtains

Wy(z) = 35 (1 —z/6) (1 — 2/9)-
Moreover, (5.9) gives the values w, = 38% 88 and w, = 38x110 for the
Christoffel numbers corresponding to the zeros py = 6 and p, = 9 of ¥,(2).
Finally, formula (5.23) yields
a=(l,0,0,0,0,132,132,0, 330, 10,0, 24),

which is the well-known weight (or distance) distribution of the ternary Golay
code. -

5.2.3. Distribution matrix of a code
The distribution matrix B e R(X,N) of a code Yin a metric scheme is de-
fined as in sec. 3.1: if o denotes the distance, then the element B(x,i) of B is
the number of points y € Y at distance o(x,y) = i from the given point x € X.
‘We shall consider the integer
o(x,Y) = x,ng’n o(x.p) (5.25)

i.e. the distance from x to the code Y. Clearly, o(x,Y) is the smallest integer i
such that B(x,i) # 0. In the following, the rows of B will be denoted by B(x)
and the columns by B, for xe X, ie N.
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Specializing theorems 3.1 and 3.3 to metric schemes we shall now derive a
result which is often very useful for actual computation of the distribution
matrix. In case of Hamming schemes, cf. Delsarte '4).

Theorem 5.9. Foracode Y of external distance rina metric scheme, the columns
of indices i =0, 1, . . . , r of the distribution matrix B generate its whole column
space. More precisely, for an integer i between r and n, the column B, is a linear
combination of the all-one vector $x and of the columns B, By, .. -, B,_.,,
with coefficients only depending on the distance distribution of Y.

Proof. Let L be the set of values of i, 1 <i<n, for which the distance dis-
tribution & of Y satisfies aQ; s 0. By definition, the external distance r is the
cardinality of L. For an integer m, with 0 <m < n—r, let us define the
polynomial

BG) = | X} 1¥|~* 2 T (1 —2/z), (5.26)
ieL

of degree m + r < n. We consider its expansion in the basis of polynomials
&,(z) corresponding to the eigenmatrix P:

) = Bo Po(2) + B, Pil) + ... + B4 D), 527

with 8, = 0 for i >m + r and B, # 0. Applying the identity
[X| BT =@ P (B QY
to the (n + 1)-tuples B = (Bo, - - - » Bw) and b = B(x) = (B(x,0), . . ., B(x,n)),
we obtain, by (5.27),
B B7() = |X|7* T e (B() 00
1t follows from theorem 3.3 that B(x) @, is zero, for all x, whenever k belongs
to N* — L. Hence, remembering the definition (5.26) of f(z), we deduce
8 BT(x) = | ¥|~* 8o,m (B(x) Qo)-

Finally, O, being the all-one vector, we have B(x) Qo = | Y| and the matrix
form of the above equation becomes

B BT = 0o.m $x™. (5.28)
AS By, is DOt Zero, this shows that the column B,,, is a linear combination
of 8o, #x and of the B, with i <m + r. By this argument, using induction
on m, we readily obtain the desired results, remembering that the (n 4+ 1)-
tuples B only depend on the distance distribution.

We shall now derive several consequences of theorem 5.9. The following
result tends to justify the terminology adopted for the parameter r.
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Theorem 5.10. Let Y be a code of external distance r in a metric scheme (X,R).
Then each point of X is at distance less than or equal to r from at least one
point of Y.

Proof. Let us assume, on the contrary, there exists a point x € X such that
o(x,Y) >r, ie., equivalently, such that By(x) =...= B(x) =0. Then
theorem 5.9 leads to the absurd conclusion that the row B(x) must be identi-
cally zero.

Given a code Y, we shall use the name of true external distance of Y for the
following integer:

eX,Y) = max e(x,1). (529

Theorem 5.10 simply indicates that r is an upper bound to the true external
distance. The interest of our concept of external distance lies in the fact that it
can be determined from the distance distribution, whereas ¢(X,Y) cannot (in
general).

Theorem 5.11. Let Y be a code of minimum distance 4 and external distance r.
Then all rows B(x) of the distribution matrix corresponding to a fixed value
of o(x,Y) are identical in the following cases: 0 < o(x,Y) <d—r and
e(x,Y)=r.

Proof. For a given integer j such that 0 <j<<d—r or j=r, let x be any
point of X satisfying p(x,Y) = j. Using the inequality of the triangle in the
metric space (X,0) we easily obtain B(x) = 8, for i =0, 1,...,, r—1. So
the first r components of B(x) do not depend on x but only on j. Consequently,
by theorem 5.9, the whole row B(x) is independent of x.

According to the terminology of sec. 3.1, a code Y is regular in a metric
scheme if and only if the number of points of Y at a given distance from a
fixed x € Y does not depend on the choice of x. Specializing theorem 5.11 to
xeY, i.e. o(x,Y) = 0, we obtain the following sufficient condition for regu-
larity. ’

Theorem 5.12. A code is regular if its minimum distance d is at least equal to
its external distance r.

For instance, the perfect codes satisfy d = 2r + 1 and theorem 5.12 implies
that these codes are regular. (Consequently, the components (5.23) of the dis-
tance distribution must be integers.) In fact, they are “completely regular” in
the sense we shall now define.

A code having the property that, for all x € X, the row B(x) of the distri-
bution matrix only depends on the distance g(x,¥) will be said to be completely
regular. (This, of course, implies regularity.)
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Theorem 5.13. If the parameters of a code Y satisfy d =2r—1, 2ror 2r + 1,
then Y is completely regular.

Proof. Assuming d > 2r — 1 we deduce o(x,Y) < d—r or ¢(x,Y) = r, for all
x € X, from theorem 5.10. Hence the complete regularity is an immediate con-
sequence of theorem 5.11.

Let us mention two recent generalizations of the perfect codes (in binary
Hamming schemes) which satisfy the condition d > 2r — 1 for being com-
pletely regular: the uniformly packed codes introduced by Semakov, Zinov'ev
and Zaitzev 52) and the nearly perfect codes defined by Goethals and
Snover 2¢).

Theorem 5.10 implicitly contains a lower bound to the number of points in
a code of a given external distance. We shall now combine it with theorem 5.7,

Theorem 5.14. Let Y be a code of minimum distance 4 and external distance r.
Then the following inequalities hold, with e = [(d — 1)/2]:

e r
Zu<lx||¥Y"'<Zo. (5.30)

Moreover, if one of the bounds (5.30) is achieved, then so is the other one.
This occurs if and only if Y is a perfect code of order e. A necessary condition
for the existence of such a code is that all zeros of the Lloyd polynomial of
degree e belong to the set {z, ..., z,}.

Proof. Let us define u = p(X,Y), i.c. the true external distance (5.29). By def-
inition, each point of X belongs to at least one sphere S (y) of radius u centred
at some point y € Y. Hence we deduce |X| <|S.»)| |Y]|. As we know, by
theorem 5.10, that u is at most equal to r, this clearly yields the right-hand
inequality in (5.30) since vo 4 ...+ v, is the volume |S,(y)|. Moreover,
equality is only possible if 4 = r and if the spheres S,(y) form a partition of
X for y running through Y, which is precisely the definition of a perfect code
of order r. The other results to be proved were already contained in theorem 5.7.

Let us now examine in more detail the properties of the polynomial (5.26)
with m = 0, which we call the minimal polynomial of Y :

B = x| Y]~ T A —z/z). (5.31)
taL

By definition of L and r, it has degree r = | L| and vanishes at the r points z,,
with 1 < i < n, such that aQ, s 0. So it only depends on the distance dis-
tribution a of Y. It turns out that, in many cases, a simple look at its minimal
polynomial gives interesting information on a code:

Theorem 5.15. Let Y be a code of minimum distance d and external distance r.
Let B be the (n 4 1)-tuple of components of the minimal polynomial () in
the basis {P,(z)}. The following propositions hold:
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() Id—1>r thenfo=F=...=Becrr=1

(i) If fo >0 and By, ..., B, >0, then By < L. If, besides, fo = 1, then
Bx <1 for all k, and Y achieves the linear-programming bound for
(N* — L)-designs.

(iii) If B, B, ---» P >0, then the condition Bo =1 is equivalent to
d—1 >r and, in this case, d— 1 —r is equal to the largest integer j
such that B =8, =...=§,=1.

Proof. (i) Assuming d— 1 3> r, we use (5.28) with m = 0. For a point xe X
such that o(x,¥Y) =k <d—1—v, it is easily seen that the equation
B B7(x) = 1 becomes simply B, = 1. As e(x,Y) actually takes all values k
between 0 and d — 1 — r, this shows the first result.

(i) Let us assume B, . .., fr >0, with fo # 0. Then, for M =L U {0},
the (n + 1)-tuple B,~* B is a program of (P,M)' such that y = (Bo | ¥[)~* |X};
this readily follows from the definition (5.31) of f(z) and from (5.27). On the
other hand, Y is an (N — M)-design. Hence, by theorem 3.11, the (n + 1)-
tuple b = | ¥|~* 2 Q is a program of (P,M) with g = | Y|~ |X|. The general
inequality g < 7 becomes here f, < 1.

In case B, =1, the programs b and P are extremal This yields
g = y = g(P,M), so that Y achieves the linear-programming bound (3.29) for
T-designs with T-== N— M = N* — L. Moreover, by lemma 3.6, we have
Bi <1 for all k, and the second part is proved.

(iii) For 8, =1 and 8, ..., B, = 0 we just have seen that b and f form
a pair of extremal programs of (P,M) and (P,MY, respectively. Assuming
Bi, ..., B. # 0, and using theorem 3.4(ii), we obtain b P, = 0,ie a, =0, -
for k=1, ..., r. Therefore, the minimum distance d is at least r + 1.

Conversely, for fo >0 and f, ..., B, =0, the condition d >r + 1 im-
plies that (b, fo=! B) is a pair of extremal programs; this is a consequence of
theorem 3.4(ii). Hence we have g = y and, so, S, = 1. The last proposition
follows from lemma 3.6; the details are left to the reader.

Example. To illustrate this chapter we finally investigate a remarkable code
for which it will be possible to derive the complete distribution matrix, in a
purely mechanical way. We consider the largest code Y in the Johnson scheme
J(8, 24) with minimum distance d=4. It turns out that it is unique and
achieves the Singleton bound (cf. sec. 4.3.2). In fact, Y contains 759 code-
words and forms the celebrated Steiner system S(5, 8, 24) whose uniqueness
was shown by Witt 7¢).

The distance distribution a of Y is well known (cf. for instance Goethals
and Seidel 2%)); it is given by @ = 1, as = 280, ag = 448, gy = 30 and a; = 0
for i # 0, 4,6, 8. From the formulas for the eigenmatrix @ of a Johnson
scheme (sec. 4.2.1) we compute

a0 = 69 (11,0, 0,0, 0, 0, 3808, 0, 6840).
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Let us notice that the property a @, = ... = & Qs = 0 is in agreement with
the fact that Y forms a S-design (cf. theorem 4.7). By definition, the external
distance of Y is r = s(a Q) = 2. Hence from theorem 5.13 it follows that ¥
is completely regular: its distribution matrix B contains only three distinct rows
B(x) determined by the values (0, 1 and 2) taken by the Johnson distance
o(x,Y) = di(x,¥).

Table II gives these three rows, together with the number of their occurrences
in B. The computations have been performed by use of the polynomials (5.26)
with L = {6, 8} and z, = i (25 —i). In particular, the expansion of the mini-
mal polynomial (5.31) in the basis of "modified Eberlein polynomials” P.(z)
is the following:

B(2) = Po(2) + 1(2) + 1 9:2),

with @,(u (25 — 1)) = E,(4). We observe that this result agrees with theorem
5.15. From it we can compute the column B, of the matrix B by using (5.28) with
m = 0; we deduce B(x,2) = 4 for o(x,¥) = 2. The columns By, ..., Bg can
be calculated, successively, by the same method.

TABLE II
OQuter distribution of S(5, 8, 24)

ilo 1 2 3 4 5 6 7 8 | multiplicity
e(x,Y)

0 1 0 0 o0 28 0 448 0 30 759

1 0 1 O 35 140 231 252 8 15 128x 759

2 0 0 4 32 130 25 228 96 13 840%x 759

5.3. Q-polynomial schemes and designs

Let us recall the definition: A symmetric association scheme with 7 classes,
having Q as second eigenmatrix, is said to be Q-polynomial if there exist poly-
nomials Py(2), . . -, Pu2), With D(2) € R,[z], such that

Du(z) = Ou(D), VikeN={0,1,...,n}, (5.32)

for a fixed set {zo =0, z,, ..., zp} of distinct real numbers z, >> 0. In par-
ticular, we have seen in ch. 4 that the Hamming and Johnson schemes are
Q-polynomial with z, == i.
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The present section looks like the preceding one. Essentially, we shall intro-
duce and investigate the concept of t-designs of maximum strength ¢, which is
a generalization of the classical notion, These “designs” play a similar role as
the “codes” with given minimum distance d in the theory of metric schemes.

5.3.1. Preliminary results

We have seen in sec. 5.2.1 the intrinsic meaning of P-polynomial schemes,
namely their metric properties. Unfortunately it seems difficult, in general, to
attach such a precise combinatorial meaning to the dual concept of Q-poly-
nomial schemes. Nevertheless, we shall give two algebraic characterizations of
such schemes.

The first result is expressed in terms of the numbers g, ;@ defined by (2.26).
It is to be compared with theorem 5.6; the proof, being quite similar, will not
be repeated.

Theorem 5.16. A symmetric association scheme is Q-polynomial if and only if
the parameters g, ,® satisfy the following two conditions: g, ;* %0 for
k=i+jand (q,® #0)=(i—j| <k <i+))

The second criterion uses the Bose-Mesner algebra A, over the reals, of the
given symmetric scheme (X,R). Let zo = 0, z,, . . ., Zy be n + 1 distinct non-
negative real numbers. To any polynomial f(2) e R, [z] corresponds 2 unique
matrix DY’ € A such that

Do =‘_é°f (z) Dy, (533)

where D is the adjacency matrix of R, We define the operator = over R,[z]
corresponding to the matrix product in A:
f@rg@)=hz for DU D® = D®,

The system (R,[z], +, #) is an (2 + 1)-dimensional commutative algebra
over R; it is isomorphic to A and, therefore, to R**1.
Theorem 5.17. A symmetric association scheme is Q-polynomial with respect
to the z, if and only if its Bose-Mesner algebra satisfies the following inequality,
for all f(z), g(z) e Rafz]:

deg (f(2) » g(z)) < min (deg f (2), deg 2(2))- (5.34
Proof. Let us first assume the algebra R.[z] satisfies (5.34). This property can
also be expressed as follows: the subspace R.[z] is an ideal in R,[z), for
k=0,1,...,n Hence, denoting by A, the image of R.[z]in the BM algebra
A, we have the following chain of ideals in A:

I=AchAc...cA=A



—_T—

For a suitable numbering of the minimal idempotents Jo, Jiy ooy Juof Awe
can assume J, belongs to A, — A, _,, for all k, with A_, = {0}; then we shall
denote by ®,(z) the image of |X| Jy in R,[z], i.e. the polynomial satisfying

1X] 7, = ‘io ®u(z) Dy (535

Comparing this with the definition (2.16) of the eigenmatrix O, we deduce
Q.(i) = D(z,). Hence the given scheme is Q-polynomial with respect to the z,.

Conversely, we assume Q,(i) = Du(z), for all ik, with &.(2) € R,[z]. The
orthogonality relations on the idempotents Jy, given by (5.35), have the fol-
lowing image in the algebra R,[z]:

9,(2) v.0,(2) = [X] “8e.y Dul2). (5.36)

Let us now consider any two polynomials f (), g(2) € Ry[z] and their ex-
pansions f = X a, @y, g = X B P, in the basis {P}. Using (5.36) we ob-
tain

7@+ 5@ = |X| T, o b Bulo)

Since the degree of the right-hand member ‘cannot exceed deg (f(2)) or
deg (2(2)), this completes the proof of the theorem.

Example. Let us verify, using lemma 4.5, that the Johnson scheme J(n,v) is
Q-polynomial for z; = j, in agreement with the result obtained at the end of
sec. 4.2.1, The definition (4.22) of the matrix C, can be written in the form
(5.33) as follows:

n—z
C, =D,  with p.(z)=< , )
1

Since p,(z) has degree 1, we deduce from lemma 4.5 that the degree of p(z) * ps(2)
is equal to min (r,s). Hence, as po(2), - .., pa(2) form a basis of R,[z], the
inequality (5.34) is identically satisfied, so that, by theorem 5.17, the Johnson
scheme is Q-polynomial.

Definition. Let (X,R) be a Q-polynomial scheme with n classes and let 7 be
an integer, 0 < T < n. A nonempty subset ¥ of X will be called a t-design
(of strength 7) if its inner distribution a satisfies & 0, = ... & @, = 0. Equiv-
alently, for 7 >> 1, the subset Y is a T-design for T = {,2...,7}h

We have seen in theorem 4.7 that a z-design in the Johnson scheme J(n,v)
is a v-design S,(7,n,) in the usual sense; so the above definition is a generaliza-
tion of the classical concept. The reader will also remember that, in Hamming
schemes, the v-designs are the orthogonal arrays of strength 7.
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From the inner distribution a of ¥ we introduce two parameters ¢ and s
which play a similar role as the numbers t' = d—1 and s’ = r, respectively,
introduced in sec. 5.2.1 for P-polynomial schemes:

t = t(a Q) = maximum strength of Y,
5 = s(a) = degree of Y.

The integer s is equal to the number of relations R, whose restriction R, N Y2
is non-empty, for 1 < i < n. As for the parameter £, it is equal to the largest ©
such that ¥ is a z-design.

Like in sec. 5.2, we shall only consider nontrivial designs, i.e. subsets of X
with 1 < |¥] < |X]. Then it is casily seen that the parameters satisfy 1 <,
t+ 1 < n. Let us also apply the MacWilliams inequality (theorem 5.5); we
obtain

s 2 12}, (537

which is the “dual” of (5.16). We shall examine in sec. 5.3.2, under the name
of tight designs, the designs satisfying equality in (5.37). This is the dual of
the concept of perfect codes.

The characteristic matrices Hy € C(¥,X,") defined in sec. 3.5 will be most
useful in our thecty of designs in Q-polynomial schemes. We shall also use the
following matrices:

Gy = [Ho, Hy, - . ., Hi), 0<k<n (5.38)

Let us first show how the maximum strength ¢ of ¥ depends on the properties
of the characteristic matrices.

Theorem 5.18. Let e be the largest integer such that G, G, =|Y|/, with
0 < e <n—1. Then the maximum strength of the design Yis t=12e+1
or t = 2e according to whether the matrix G.H, ., is zero or not.
Proof. Let us assume G,H, ., = 0. Then, by definition of e, the characteristic
matrices satisfy
H.H,={o for i#j,i<ej<e+1,
1Yj{1  for i=j<e

On the other hand, by theorem 5.16, 'the numbers g;, ;™ are distinct from zero
for k = i +j. Thercfore, using the second part of theorem 3.15, we readily
obtain the following equations on the inner distribution a of the design:
aQ,=0for1 <k<<2+1, wich implies ¢ 2> 2e + 1.

Supposing ¢ 3> 2e + 2, onc would have, besides, 80342 = 0. Using now
the first part of theorem 3.15 and theorem 5.16, with i = j=e 4 1, we de-
duce f,,H,,, = |¥| I and, consequently, B.i1Gers = | Y] I As this con-
tradicts the definition of e, the only possibility is # = 2¢ + 1. The reasoning
is quite similar in the case G, H,,; # 0.
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5.3.2. The Rao—Wilson bound and the tight designs

We shall now derive an inequality for designs in Q-polynomial schemes
which is the “dual” of the Hamming bound for codes in metric schemes.

Theorem 5.19. Let Y be a t-design of maximum strength ¢. Then the following
inequality holds, with e = [#/2]:

Y] = po + 11+ - + e (5.39)

First proof. By theorem 5.18, the columns of G, are pairwise orthogonal. This
implies that the number of rows in G, is at least equal to the number of columns,
which was to be proved.

In particular, using formulas (4.32) for the multiplicities 4, of the Johnson
scheme J(n,v), we obtain | ¥] > (7), a result due to Wilson and Ray-Chaud-
huri 7*) for ¢-designs in the usual sense. When applied to the Hamming scheme
H(n,g), with g = (}) (¢—1)%, (5.39) becomes the Rao bound *°) for orthog-
onal arrays of strength . Let us give another proof of theorem 5.19, showing
that the linear-programming bound for ¢-designs is always at least as good as
the Rao-Wilson bound (5.39). )
Second proof. From the polynomials @,(z) corresponding to the eigenmatrix O
we define the sum polynomial of degree e, that is,

VY(2)= Do) + P,(2) + ... + PL2). (5.40)

Next, writing 4, = 4, + . . . + . for convenience, we consider the (# + 1)-
tuple § = (Bo, B1, - - ., fu) given by

B = (W¢(zk)/,u¢l)z'

Using the same argument as in theorem 5.7, we can show that (B PT), is equal
to zero for i >t + 1 and to |X|/u,’ for i =0, whence P is a program of
(P.MY, with M = {0, £+ 1, ..., n}, such that y = | X|/u,.

On the other hand, if a denotes the inner distribution of ¥, we know from
theorem 3.11 that the (n - I)-tuple b= |Y|~'a Q is a program of (P,M)
with g = | X}/] Y|. Then the desired result | ¥| > p,’ follows from the inequal-
ities g < g(P,M) < v, satisfied by any pair (b,8) of programs.

Definitions. (i) By extension of the concept introduced by Wilson 74), a t-de-
sign ¥ of maximum strength ¢ will be said to be a tight design of order e if it
satisfies equality in (5.39), ie. | Y| = po + ... + g, with e = [1/2].

(i) The polynomial ¥,(z) defined in (5.40) will be called the Wilson poly-
nomial of degree e.

In the case of Hamming sch the tight designs are equivalent to the

generalized Hadamard codes **) and the Wilson polynomials are the same as
the Lloyd polynomials (cf. theorem 4.2).
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Both arguments used in proving theorem 5.19 easily lead to a necessary con-
dition for tight designs very similar to the Lloyd condition for perfect codes.
However, to avoid useless repetition, we shall postpone this result after a study

of the concept of degree.

Let us denote by ip =0, i, . . ., i, the values of i for which the restriction
RN Y? of R, to Y is non-empty. By definition, s is the degree of Y. We shall
call the polynomial

w(z) = Y| A ~—2zz) (1 —z/z,) ... (1—1z/z,), (5.41)
of degree s, the annihilator polynomial of Y. One will have noticed the anal-
ogy with the minimal polynomial (5.31) defined for metric schemes.

Let us consider the expansion of a(z) € R,[z] in the basis of polynomials
Dy(2):

a(z) = oo Pol2) + o1 Po(2) + . .. + % Pu(2). (5.42)

From the real numbers &, we construct the following diagonal matrix I, of
order u," = pio + p1 + . . . -+ st

Fr=alo®o, ;®... a1, (5.43)

where Iy is the unit matrix of C(X,’,X,") and @ stands for the direct sum. The
following theorem is a straightforward extension of a result of the author '4)
about codes in Hamming schemes.

Theorem 5.20. Let a(z) = X «, Dy(z) be the annihilitor polynomial of a de-
sign Y of degree s. Then the matrices G, and I" defined by (5.38) and (5.43),
respectively, are related by

GIé.=|r|L (5.44)

Moreover, the rank of G, is equal to the number { Y| of its rows, which im-
plies | Y| <, = pro + s + ...+ e
Proof. Obviously, we have G,I' G, = X «, H, fl,. Therefore, we deduce
from theorem 3.13, with Q,(i) = D(z,):

GI6=% (ade) @D,

where D, | ¥ denotes the adjacency matrix of R, N Y*. By definition of the
annihilator polynomial, each term a(z;) (D, | Y) of the right-hand sum is zero,
except for i = 0 in which case it is equal to | ¥| I This yields the desired for-
mula (5.44).

In order to prove the second part of the theorem, it is sufficient to notice that,
as G, I" G, has rank | Y], the matrix G,, of type | Y| X u,’, must also have rank
1Yl
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Remark. Let us denote by o the smallest integer, with 0 < o < n, such that
rank (G,) = | ¥|. Theorem 5.20 shows that ¢ is less than or equal to 5. In fact
the degree s plays a similar role with respect to o as the external distance r
with respect to o(X,Y) in the theory of metric schemes (cf. sec. 5.2.3). In the
particular case of additive codes, this analogy is more than formal (cf. sec. 6.3).

We shall now obtain a “dual” of theorem 5.14; essentially, it is a generali-
zation of theorems due to Wilson 74) for t-designs and to the author '#) for
codes, in the usual sense of both terms.

Theorem 5.21. Let Y be a t-design of maximum strength ¢ and degree 5. Then
the following inequalities hold, with e = [#/2]:

S <Y < pe (5.45)
k=0 k=0

Moreover, if one of the bounds (5.45) is achieved, then so is the other one.
This occurs if and only if ¥ is a tight design of order e. A necessary condition
for the existence of such a design is that all zeros of the Wilson polynomial
of degree e belong to the set {z,, ..., z,}.

Proof. The two bounds were already given in theorems 5.19 and 5.20. We notice
that they imply the Mac Williams inequality (5.37). Defining p1" = pto + ... + firs
we first assume | Y| == »,’ with, necessarily, s << n — 1 for a nontrivial design.
Equation (5.44) clearly implies

GG, =|Y| I, (5.46)

the square matrices G, and I, of order u,’, being nonsingular. Consequently,
the diagonal entries «, of I" are positive and we deduce ap, = 1 since the
column H, of G, is the all-one vector.

This shows that the (n + 1)-tuple a = (2, ..., %, 0, ..., 0) is a pro-
gram of (Q,M)', with M = {0, i,, ..., i,}; indeed we have (a Q7), = «(z)),
by (5.32) and (5.42), so that the conditions for a program of (Q, M)’ are triv-
ially satisfied. For the program a, the function y is given by y = a(0) = | Y|.
Since, by definition, Y is an M-clique, a is in fact a minimal program (cf. the
linear-programming bound (3.22)). Then, using lemma 3.6, we deduce a, <1
for all k.

On the other hand, we may write

3}0 ay gy = | 7] =t§° . (5.47)

Indeed, the left-hand equation simply is a(0) = | ¥, by (5.42) with €,(0) = u,,
and the right-hand equation is our assumption | Y| = u,’. Obviously, (5.47)
together with o, <1 implies g = «; = ... = o, = 1. In other words, the
annihilator polynomial (5.42) is the Wilson polynomial ¥,(z), which, con-
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sequently, must vanish for z =z, ..., z,. Let us now go back to (5.46)
with "= I. Owing to theorem 5.18, this implies e > s, whence, by the
MacWilliams inequality, e = s. So we have | Y| = yx,’, which means, by def-
inition, that Y is a tight design of order e.

Conversely, we assume |Y| = u,'. From theorem 5.18 it follows that the
square matrix G, is orthogonal. By the same argument as in theorem 5.20,
we can write the equation G,G, = |Y] I in the form

PO D =YL

using the Wilson polynomial (5.40). This clearly means that ¥,(z) vanishes at
points z =z, ..., Z,, which is only possible for e > s. From (5.37) we
deduce e = s and, so, | Y| = p,’. This concludes the proof of the theorem.

Remark. The maximum strength of a tight design is always an even number
t = 2¢ = 25. Indeed, supposing ¢ = 2¢ + 1 we would deduce G H,,, =0
from theorem 5.18. This is impossible for a tight design since G, is a non-
singular square matrix and H,,, is not zero.

Using the fact that the Wilson polynomials form a family of orthogonal
polynomials (cf theorem 5.2), we shall now derive an explicit formula for the
inner distribution of a tight design, only depending on the parameters of the
scheme. This is to be compared with theorem 5.8 on perfect codes.

Theorem 5.22. Let p,, ..., p, be the zeros of the Wilson polynomial ¥,(z) of
degree e, with 1 < e < (r—1)/2, and let wy, ..., w, be the corresponding
Christoffel numbers. If there exists a tight design Y of order e, then p, = z;,
holds for some integers iy, ..., i, between 1 and n, and the nonzero compo-
nents of the inner distribution a of ¥ are, apart from g, =1,

a, = |X["*¥Op  wy, k=12,...,e (5.48)

Proof. Let Y be a tight design of order e (= s = t/2) and let i, . . ., i, be the
values of i, with 1 < # < n, such that g, is not zero. In the proof of theorem
5.21, we have seen that the zeros p, of ¥,(z) must be the numbers z,,.

Next, we shall derive the formula (5.48). By definition, Y is a T-design, with
T=1{1,2, ..., 2}, such that |Y] = u,’ = ¥,(0). We can write the condi-
tions (3.27) for a T-design in the form

‘% a4, Bfz) = | Y] Bo.p, 0<j<2e.

Equivalently, using the orthogonality properties (cf. theorem 5.1) of the poly-
nomials @(z), we have

'Eo(a,—|X|"|Y| 1) Dz) =0, 0<Kj<2e.
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As {Do(2), ..., Py(2)} is a basis of R,,[z], this equation remains satisfied
when @(z) is replaced by z f(z) for any polynomial f(z) € R, _,[z]). In this
way we obtain, with p, = z,,

.Elan,Pxf(Pk) = |X[~!]7] Ex v, 2, f (2))-

Consequently, theorem 5.4, when applied to the Wilson polynomials, yields
ay, px = | X|7* | Y| wy, which is the desired result.

Example. In a Hamming scheme H(n,q) the Lloyd and Wilson polynomials are
identical. For n = 11, g = 3, we have seen in sec. 5.2.2 that the zeros of ¥,(z)
are p, =6 and p, =9, the corresponding Christoffel numbers being
w, == 38 x 88 and w, = 3*x 110. So the inner distribution a of a tight design
Y of order 2 in H(ll, 3) follows immediately from (5.48), with |X| = 3!
and ¥,(0) = 3%; we obtain a5 = 132 and g, = 110, whereas for { % 0, 6, 9
all components g, are zero. In specific terminology, ¥ forms an orthogonal
array of length 11, strength 4 and index 3 over a ternary alphabet; it is also a
generalized Hadamard code of order 2. In fact, there is a unique linear code ¥
of this type, namely the dual of the ternary Golay code (cf. theorem 6.6). As
far as the author knows, the existence of a nonlinear code is an open problem.

It must be mentioned here that, in the Hamming and Johnson schemes, there
are very few known tight designs of order e such that 1 < e < (n—1)/2:
there are exactly three. However, obtaining general nonexistence theorems
seems to be a very hard problem, even more difficult than the corresponding
problem for perfect codes.

Finally, let us examine more closely the properties of the annihilator poly-
nomial (z). The results are similar to those of theorem 5.15 about the minimal
polynomial. Like before, we shall consider the set M = {0, iy, ..., i} of
integers i such that R, N Y2 is non-empty.

Theorem 5.23. Let Y be a design of maximum strength 7 and degree s. Let «

be the (7 + 1)-tuple of components of the annihilator polynomial in the basis

{®:(2)}. The following propositions hold:

G Iftzs thenagg=a,=...=a_,=1L

@) If «o>0and «,, ..., 4, >0, then 2, <1. If, besides, ¢y = 1, then
a, < 1 for all k and Y achieves the linear-programming bound for M-
cliques.

(i) If ao, &, ..., @, >0, then the condition «; =1 is equivalent to t > s
and, in this case, ¢ — 5 is equal to the largest integer j such that o = a; =

=q;=1
Praof Lct us prove the first part. For ¢ > s, let k be an integer with
0 <k < t—s. (Since 7 < 2s, this implies k < s5.) By a similar reasoning as

in theorem 5.18 we readily obtain
G, =|Y]@,...,0,L0,...,0), (5.49)

where I = I, is the unit matrix of C(X,’,X,). On the other hand, multiplying
both members of (5.44) to the left by H, and to the right by H,, we deduce,
using A,H, = |Y] ],

(HG)(GH) =YL

Substituting the expression (5.49) of H,G, in this equation, we simply obtain
o = 1, by definition (5.43) of I".

The two other propositions can be proved in the same way as in theorem
5.15, by examination of the lincar-programming problems (Q,M) and (Q,M)'.
The argument will not be repeated.

Example. From the Nordstrom-Robinson code *3) there can be constructed
a binary code ¥, with 112 codewords, of length v = 16 and constant weight
n = 6, having the following property: the Johnson distance between distinct
codewords assumes exactly three values, namely i; =3, i, =4 and i, = 5.
So the degree of Y in the Johnson scheme J(6, 16) is 5 = 3 and its annihilator
polynomial is

ofz) == 112 (1 —z/3) (1 — z/4) (1 — 2/5).

Computing the components «, of «(z) in the basis of polynomials @,(z) = Qu(2)
corresponding to J(6, 16), we obtain «p =1, «; = 57/65, a; = 3/13 and
oy = 24/143. Therefore, it follows from theorem 5.23(iii) that the maximum
strength ¢ is equal to the degree s = 3. This shows that Y forms a 3-design
5403, 6, 16), a result which is due to Goethals *3). Moreover, theorem 5.23(ji)
implies that Y is a maximal {0, 3, 4, 5}-clique in J(6, 16).

5.3.3. Regular designs and subschemes

The question we shall now investigate is that of certain “symmetries” of
designs in a Q-polynomial scheme (X,R).-We shall derive sufficient conditions,
depending on the parameters f and s only, for a design ¥ to be regular in (X,R)
and, on the other hand, for Y to form a subscheme of (X,R).

Let us recall the definition of regularity (cf. sec. 3.1): a design Y is regular
if all restrictions R; N Y2 of the R, to Y are regular relations. On the other
hand, let ip =0, iy, ..., i, be the s 4+ 1 integers i for which R, N Y2 is not
empty; we shall consider the following partition of Y2 into s + 1 relations R,*:

={RT=R,NY?|y=0,1,...,5} (5.50)

Then (Y,RY) will be called the restriction of (X,R) to Y. If (Y,R") is an asso-
ciation scheme (with s classes), it will be said to be a subscheme of (X,R).
Obviously, this property implies that Y is regular.
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The following result is to be compared with theorem 5.12. In the proof we
shall make use of the distribution matrix B and of the characteristic matrices H,.

Theorem 5.24. A design Y is regular if its maximum strength ¢ is at least equal
to s -~ 1, where s denotes the degree.

Proof. The property of Y being a 7-design can be expressed as follows, by use
of theorem 3.12:

HAH, =|Y| 8, Ho, 0<k<t (5.51)
Let x be a fixed point of Y. By definition, the element B(x,i) of B is the num-

ber of points y € Y such that (x,y) € R,. Writing equality between the x-entries
of both members of (5.51), we obtain, using theorem 3.13,

Z B Q) =1¥] S, O<K <1

As each nonzero component B(x,i) of the row B(x) corresponds to some
ie{0, iy, ..., i}, we have, equivalently,

21 B(x,i.,) Qk(iv) == IYI 60,& — Bk 0< k <t (5.52)

This system determines uniquely the unknowns B(x,i,). Indeed it is easily veri-
fied that the first s equations (k =0, 1, ..., s — 1) are linearly independent.
Hence the row B(x) of B does not depend on the choice of x € ¥, which
means that Y is regular.

We shall now obtain a sufficient condition for having a subscheme (Y,RY),

with s classes. (It is the “dual” of the condition in theorem 5.13 for complete"

regularity in metric schemes.) In the particular case of strongly regular graphs
(s = 2), the result was first obtained by Goethals and Seidel %) for the
Johnson schemes and by the author %) for the Hamming schemes (under the
restrictive hypothesis of linearity). The result for an arbitrary degree s has also
been discovered, independently, by Cameron *) for the Johnson schemes.

Theorem 5.25. Let Y be a design of maximum strength 7 and degree s such that
t = 25~ 2, 25 — 1 or 2s. Then (Y,RY) is a subscheme of (X, R), with s classes.
Proof. For v =0, 1,..., s, let D,/ = D, | Y be the adjacency matrix of R,”.
According to theorem 2.1, we only need to show that D, =1, D/, ..., D,
generate a commutative (s + 1)-dimensional subalgebra of R(Y,Y).

Let us consider the matrix G,_,, defined as in (5.38). Since ¢ is at least equal
to 2s— 2, we have G,_,G,_; = |¥| I, by theorem 5.18. (The reader will also
check that G,_, is not a square matrix.) So we can construct an orthogonal
matrix G = [G,_,,K]), for a suitable choice of X. The row orthogonality
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GG =| Y| I can be written as follows:
KR = Y| I—(H,A, + H A, +...+H_H,_). (5.53)

By theorem 3.13, each matrix H,f, is a linear combination of the D, and,
consequently, so is XK too.

On the other hand, the column orthogonality GG = | Y} I implies that the
s + 1 following matrices:

J=IY|7' KR, LN =[Y|"'HH, 0<k<s—1, (554

form a set of mutually orthogonal idempotents in R(Y,Y). Therefore, they are
linearly independent and they generate a commutative (s + 1)-dimensional
subalgebra of R(Y,Y). Now the preceding argument shows that the D,’ generate
the same algebra as the J,’. Hence the theorem is proved.

Corollary 5.26. In the situation of theorem 5.25, the second eigenmatrix
Q" = [Qi'(»)] of the association scheme (Y,RY) is given by the following for-
mulas, for y=0, 1, ..., s:

Dy(z), 0<k<<s—1,

. X “(zt,) — ¥, —1(21,), k=s,

where a(2) is the annihilator polynomial of ¥ and ¥,.1(2) is the Wilson poly-
nomial of degree s — 1. In other words, (Y,R") is Q’-polynomial with respect
to the numbers z,, the corresponding polynomials being B,'(z) = B,(z) for
0<k<s—1and 6,(z) = a(z) — ¥7,_,(2).

Proof. We have seen that the minimal idempotents of the BM algebra of

(Y,R") are the matrices Jo/, J,’, ..., J,' given by (5.54). On the other hand,
from theorem 3.13 we deduce

00 = {

2
Jk'=IY'-lzo¢k(zlv)Dle k=0,1,...,5—1.

This yields the formula for k < s, by definition (2.16) of the eigenmatrix Q.
As for J,' ,we obtain, using the same argument,

K =1-|¥"1 2 ¥,_,@)D,.
=0

Consequently, this yields Q,'(v) = Y] 8,0 —¥,. 1(z,), which, by definition
(5.41) of the annihilator polynomial a(z), is the desired result.

Before describing some examples, let us briefly emphasize the particular case
of tight designs, i.e. # = 25s. As we have seen in theorem 5.21, the annihilator
polynomial is a(z) = ¥,(z). Hence corollary 5.26 shows that, for a tight de-
sign ¥, the eigenmatrix Q' of (Y,RY) simply is the submatrix of Q= [QuD)]
defined by the rows i =iy, iy, ..., i, and by the columns ¥ =0, 1, ..., s.
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(This result can be obtained in a more natural way by use of X = H, and
G = G, in the proof of theorem 5.25.)

Example 1. In the Hamming scheme (X,R) of length n > 2 over F= {0, 1},
let us consider the set Y of binary n-tuples having an even weight. It is easily
seen that Y is a design (= orthogonal array) of maximum strength ¢ ==n—1
and degree s = [n/2]. So the design is tight if and only if n is odd. From
theorem 5.25 it follows that (¥,RY) is a subscheme of (X,R). This association
scheme, which is metric and Q'-polynomial, provides a natural framework for
a study of binary codes all of whose words have an even weight.

Example 2. We now consider the Hamming scheme H(n,2) with n = m?—1,
m = 0 (mod 2), m > 4. We are interested in codes ¥, of degree s = 3, such
that the Hamming distance between distinct codewords only assumes one of
the following three values:

i, =m(m—1)2, i, = m?[2, iy =m(m+ 1)/2.

Then, by elementary computation, we obtain the following expansion of the
annihilator polynomial (5.41), with z, = i, in the basis of Krawtchouk poly-
nomials @y(z) = Ki(2): '

3 3
u(z) =2m*|¥| (d’o(z) + @:(2) + ; Di(2) + - 4‘3(2))-

Hence from theorem 5.23(i) we deduce | Y| < m*/2.

A code Y achieving this bound, i.e. [ Y] = m*/2, will be called a Kerdock
code, by reference to Kerdock 3¢) who constructed such (nonlinear) codes for
every m of the form m = 2° with ¢ > 2. In fact, from results of Goethals
and Snover 26) on the Preparata codes 58 it follows that a Kerdock code
cannot be linear.

A simple look at the annihilator polynomial «(z) reveals, according to
theorem 5.23(iii), that the maximum strength of the orthogonal array formed
by a Kerdock code is equal to # = s + 1 = 4. Since | Y| has to be divisible
by 2¢, this yields the necessary condition m = 0 (mod 4).

Theorem 5.24 indicates that a Kerdock code Y is regular in the Hamming
scheme. Solving the system (5.52) for the unknowns &, = B(x,i) we obtain
the following values for the nonzero components of the distance distribution a
of Y, apart from g, = 1:

a, =m{m+1) (m* —2)/4, a, =m*—1, a;, =m(m—1) (m*—2)/4.

On the other hand, theorem 5.25 implies that (Y,R) is a subscheme of H(n,2).
Let us give the eigenmatrices P’ and Q' of such a “Kerdock scheme™:
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1 m2—1 m? —1) (m*—2)/2 (m?> —2)2
0|1 m—1 —(m—1) -
1 —1 —m*—2)2 m =22 |
1 —m+1) m+1 —1
1 memED@E—24 m—1 m(m—1)m*—2)/4
|l m (m? - 2)/4 -1 —m(mt—2)/4
| —m/2 —1 mf2
1 —m(m+ 1)/2 m*—1 —m(m—1)/2

The matrix Q' is first calculated by use of corollary 5.26. Thereafter, P’ is de-
duced from it by the formulas (2.25), the valences being P,'(0) = a;,, for
y=20,1,2,3.

Examining the column P,’ of P’, we see that (Y,R,") is a ladder graph (cf.
Seidel $1)). In the terminology of coding theory, this means that any Kerdock
code can be partitioned into m?/2 subcodes which are Hadamard codes (cf.
Berlekamp ), p. 316), i.e. equidistant codes of distance i, = m?/2 containing
n + 1 = m? words.

Example 3. Finally, let us give an example taken in the Johnson scheme
J(11, 47). Assmus and Mattson *) have shown the existence of a binary code Y,
of length v = 47 and constant weight n = 11, forming a 4-design Sg(4, 11, 47)
of maximum strength ¢ = 4 and degree s = 3. More precisely, the Johnoson
distance between distinct codewords assumes one of the three values i, = 6,
i, =8, iy =10.

It follows from theorem 5.24 that Y is a regular design. Moreover, using
theorem 5.25 with ¢ = 25 — 2, we deduce that (¥,RY) is an association scheme
with three classes. From the above data we could compute its eigenmatrices
by means of corollary 5.26, in the same manner as we did for example 2.
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6. ADDITIVE CODES IN HAMMING SCHEMES

We have seen, throughout the preceding chapter, the strong analogy between
the theory of “codes” in P-polynomial schemes and of “designs” in Q-poly-
nomial schemes. The role of the two pairs of parameters (d,r) and (d',r"), with
d'=1t+ 1, r" =5, is central in that respect.

It turns out that the analogy is more than formal in the case of additive
codes (or designs) in a Hamming scheme: defining a duality among these
codes, we shall especially show that the parameters ' and 7’ of a code simply
are the parameters d and r of its dual.

Let us briefly recall the definition. For an “additive” Abelian group F of
order ¢ > 2 and for an integer # > 1, we shall consider the group X = F,
i.e. the direct product of n copies of F. An additive code Y of length n over F
then by definition is a subgroup of X provided with the Hamming distance dy.
In more standard terminology, it is an Abelian group code.

Before investigating these codes, we shall give some results about characters
of Abelian groups and, thereafter, introduce the concept of duality among sub-
groups. The theorems are classical and the proofs will be omitted. The terminol-
ogy and notations are the same as in a paper by the author 16), where elemen-
tary proofs can be found. -

6.1. Inner product and duality in Abelian groups

For an Abelian group X of finite order v, let {x,y) be a symmetric function
of the variables x,y € X, with complex values. Then, using an additive nota-
tion for the group operator, we shall call the function an inner product on X
if it identically satisfies the following two conditions, besides xyy = {px):

Xy + 2) = (xy) (x,2)
and
Gy =xD¥xeX) e (y=2).

Clearly, for a given x € X, the mapping ¢, of X into € defined by $:0) = {xp)
is a character of X, i.c. a homomorphic mapping of X into the multiplicative
group of C. More precisely, the correspondence x t—> ¢, is an isomorphism
between X and the group of its characters, with $.(y) = $,(x). In fact, it is
well known that such an isomorphism exists; then the definition xy) = ¢:0)
yields an inner product. '

The orthogonality relations on group characters imply that the symmetric
matrix § € C(X,X) defined by S(x,x) = (x,x’ ) is orthogonal; a more general
result is given in theorem 6.2.

Remark. If inner products have been defined on each of the n Abelian groups
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XD, X®, .., X™ then we can construct an inner product on the group

X = I X as follows: For x = (x¥, ..., x®)and y =0, ..., Y™ in
X, with x®, " e X9, we define

() = (xD, y0) (XD, yDry | Lt yimy, 6.1

using a unique notation (a,b) for the inner product on the group X and on
each of the groups XV,

We shall now examine the duality, with respect to a given inner product.
If Y is a subgroup of X, then it is clear that the subset ¥° of X defined by

Y= {xeX| (xx>=1, YxeY} 6.2)

is itself a subgroup of X; it will be called the dual of ¥ in X, We shall need
the following two results about duality:

Theorem 6.1. The dual of ¥° is Y itself and ¥° js isomorphic to the factor
group X7Y.

Theorem 6.2. Given a pair (¥,Y°) of dual subgroups of X, then

2 (o = {|Y| if x'eY°
xeY 0 otherwise.

Let us notice that, when applied to the trivial subgroups ¥ = X and
Y° = {0}, the latter result is equivalent to the orthogonality of the matrix S
of group characters.

For a pair (¥,Y°) of dual subgroups of X, with |Y| = mand, so, | Yo = v/m,
we shall consider the homomorphic image ¥’ of X whose clements are the
cosets ¥/ of Y°:

Y =X/¥Y°= {¥°,Y%,..., Ym1}. (6.3)

By theorem 6.1, the group Y is isomorphic to ¥, Let us choose an arbitrary

element x; in ¥/; 50 ¥/ = x; + Y% for j = 0, 1, ..., m—1. Then, if y, =0,

Yis +++s Ym-1 are the elements of ¥, we define the matrix QeC(Y,Y) as
follows:

QY = uxsd, 0<ij<m—1 649

It is easily seen that R is the matrix of group characters of Y, in the sense
that the mappings y; of ¥ into C defined by v, (») = {y,x;) are the m distinct
characters of ¥. This implies that 2 is an orthogonal matrix: 2Q =m 1.

6.2. The Mac Williams identities on dual codes

Let X be the direct product of » copies of the Abelian group F. We shall
always take as inner product {x,y) on X the one defined as in (6.1) from a
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given inner product (x?,y") on XV = F. In sec. 4.1.1, this was called the
natural product on X.

The Hamming weight wy(x) of an element x = (x, ..., x(™) of X is de-
fined to be the number of nonzero components x in F. The Hamming dis-
tance between two points x,y € X is then given by du(x,y) = wu(x — »). Like
in sec. 4.1.1, we shall use the notation X, for the subset of X containing all
elements of weight k (k =0, 1, ..., n).

Given an additive code Y, i.e. a subgroup of X, we define the weight distri-
bution of Y to be the (n 4 1)-tuple a = (ao, a5, . . . , a,) of integers a, given by

a =YXy, k=0,1,...,n 6.5)

In other terms, a, is the number of codewords of weight k. It is easily seen
that a also is the distance distribution of Y, that is, the inner distribution
with respect to R for the Hamming scheme (X,R).

The minimum distance d = #(8) + 1 of Y is often called the minimum
weight: it is the smallest nonzero value of wy(y) for codewords y. A code of
degree s(a) = s is said to be an s-weight code; in fact, the degree s is equal
to the number of distinct nonzero values i, &, . . ., i, (= the “weights” of Y)
assumed by wy(y) for codewords y € Y. :

The dual of an additive code Y is defined, as in (6.2), to be the dual sub-
group ¥° of ¥ with respect to the natural product (x,x’). Let us make a short
comment about duality. When g is a prime, additive codes are equivalent to
linear codes over GF(g). The dual of an additive code is then, in the terminol-
ogy of linear codes, its orthogonal complement (cf. MacWilliams 44)). When
g is a prime power, the linear codes over GF(g) form a subclass of the additive
codes over the elementary Abelian gioup of order ¢. In this case also, the
orthogonal complement of a linear code can be defined to be its dual.

The following result on weight distributions of dual codes is essentially due
to MacWilliams “¢). In fact, the original result only belongs to linear codes
but the generalization to arbitrary additive codes is not difficult (cf. Delsarte 16));
it has also been obtained recently by McEliece *'). We shall use the Kraw-
tchouk polynomials K,(u) and the characteristic matrices H, e C(7,X,) de-
fined from the matrix S of group characters, that is:

Hox)={x), yeY¥, xeX. (6.6)
Theorem 6.3. The weight distribution a’ = (@', a,, .. -, a,’) of the dual Y°
of an additive code ¥ can be expressed in terms of the weight distribution a
of Y itself as follows:
a’ =|¥|"! Zoal K@, k=01, ...,n 6.7
i=

Proof. First, using for instance lemma 3.14, we can write, like for any asso-
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ciation scheme,
[18.:Ho{l? = Y] (a Q0. (6.8)

On the other hand, owing to the fact that ¥ is a group, we readily deduce from
the definition (6.6) the following formula:

[1BHo||? = Y] B ().
x'eXy yeY

Now theorem 6.2 implies that the term under brackets is equal to | Y] or to
zero according to whether x” belongs to ¥° or not. Therefore, the above equa-
tion becomes, by (6.5),

(B> =1Y{*| Y nXa| = Y| a).

Comparing this with (6.8), we obtain the desired formula (6.7), remembering
the result Q,(i) = K, (i) of theorem 4.2.

By use of the generating function for Krawtchouk polynomials (cf. Szegd 79,
p. 36), we can derive another interesting form of the equations (6.7). Let us only
give the result: From a we define the polynomial a(¢,7) = X a, ¢' n*~* and,
analogously, a'(&n) from a’. Then (6.7) is equivalent to the following poly-
nomial identity, called the Mac Williams identity:

am=|¥]"tan—&n+@—Dd.

Corollary 6.4. Let Y and Y° be dual codes. Then the external distance of ¥
is the degree of Y° and the maximum strength of Y is one unit less than the
minimum distance of ¥°.
Proof. This is an immediate consequence of the preceding result, written in
the form a’ = [Y|~* a @, and of the definitions of the four parameters given
in secs 5.2.1 and 5.3.1.

Applying corollary 6.4 to perfect codes and tight designs (= generalized
Hadamard codes 14)), we deduce the following consequence of the definitions
(cf. theorems 5.14 and 5.21):

Theorem 6.5. An additive generalized Hadamard code of order e is the dual
of a perfect code of order e.

In fact, the question of perfect additive codes or, equivalently, of additive
generalized. Hadamard codes, has been entirely solved lately, whenever the

order is at least two:

Theorem 6.6. For orders e such that 1 < e < (n— 1)/2 there are exactly two
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perfect additive codes, namely the Golay codes with (1, ¢, ) = (11, 3, 2) and
23,2,3).

Proof. Let us assume there exists a perfect additive code of length 1 and order e
over an Abelian group F. From a theorem of Lenstra %) it follows that ¢ = | F|
must be a prime power. Hence the general result of Tietiivdien %) applies: the
only possible values of the triple (n,g,e) are those indicated above, for
1 < e < (n— 1)/2. On the other hand, the uniqueness of the perfect additive
codes discovered by Golay 27) has been proved by Pless %6).

Remark, Part of the results of this section and of the next one can be extended
to arbitrary association schemes (X, R) satisfying the conditions of theorem 2.9.
In order to illustrate this, let us now indicate, without proof, what would be
the general form of the identity (6.7).

Let (X,R’) be the dual scheme of (X,R) with respect to the zero of X and to
the matrix S of group characters. For a pair of dual subgroups ¥ and Y° of X,
let a = (a;) be the inner distribution of ¥ with respect to R and let a’ = (a,)
be the one of Y° with respect to R’. If P and Q are the eigenmatrices of (X,R),
then we have

[Y]aj=20, [r|a=aP. (69

These equations yield necessary conditions for an (n + 1)-tuple a of non-
negative integers g, to be the inner distribution of a subgroup Y with respect
to R: the numbers aQ, must be nonnegative integers divisible by | ¥].

For the spectral schemes or, more generally, for the extensions of cyclo-
tomic schemes (cf. sec. 2.5), it is possible to derive explicit forms of the eigen-
matrices (with P = Q; indeed these schemes are self-dual). Then (6.9) yields
the generalized MacWilliams identities on the spectral distributions of dual
codes (cf. Assmus and Mattson ) and Mac Williams, Sloane and Goethals *%)).

6.3. Weight distribution of cosets and subschemes

¥ In the present section we shall examine the connections between, on the one
hand, the restriction (Y,RY) of the Hamming scheme (X,R) to an additive
code Y and, on the other liand, the distribution matrix B’ of the dual code Y°
(cf. sec. 3.1).

Like in (6.3), let Y°, Y, ..., Y™~ be the cosets of Y° in the group X, with
m = |Y]|. Clearly, the row B'(x) of B’ only depends on the coset ¥/ to which
x belongs. Hence, choosing an element x, in each Y7, we only need to con-
sider the restriction V of B’ to its rows B'(x,), B'(x4), ..., B'(xm-1). The
(j,k)-entry v, ; of ¥V can be written as follows:

= Bk =YX, 0<j<m—1, 0<k<n
So the row (vy,0, - - - » v;,,) Of V is the weight distribution of the coset code Y.
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On the other hand, for an s-weight code ¥, let i, =0, iy, ..., i, be the dis-
tinct values assumed by wy(y) over codewords ye Y. We shall denote by
E, € R(Y,Y) the adjacency matrix of the relation R,Y, for » =10, 1, ..., s, de-

fined as in (5.50). Equivalently, E, is the restriction D, | ¥. We shall use the
notation E for the (s + 1)-dimensional subspace of R(Y,Y) generated by the
matrices E, =1, E,, ..., E,.

An arbitrary matrix in E can be represented by means of a suitable poly-
nomial a(z) € R,{z] in the form

E® = 3 o(i,) E,, (6.10)
vy=0
that is, equivalently, E“(y,y') = a(wy(y —»")). We shall consider the
(n + 1)-tuple & = (o, . . . , a,) of components a, of «(z) in the basis of Kraw-
tchouk polynomials:
o(z) = o Ko(2) + a3 Ki(2) + . . . + o, K\(2). (6.11)

Next, to «(z) we associate the m-tuple X == (4o, 4y, ..., dy-,) defined as fol-
lows from the matrix ¥ of weight distributions of the cosets ¥*:

A=maVT. (6.12)

Finally, we construct the diagonal matrix A e R(Y",Y’) whose elements are
given by A®(Y/, YY) = 2,

Theorem 6.7. For a given additive code ¥, all matrices of E are diagonalized
by the matrix £2 of group characters of Y as follows:

E® =m1QA4A® 3, Va@z)eR,[z] 6.13)

Progf. From theorem 3.13 and the definitions (6.10) and (6.11) we readily de-
duce the following identity:

E® = 2.: o, H, H,. 6.14)
k=0

Let us examine closely the matrix H, defined in (6.6). Assuming that the set
X, =Y/ NX, is not empty, we consider the restricion H,, of H, to
Y x X;,,. Then, comparing with (6.4), we see that all v, , columns of H, , are
identical to the column w; of £ cotresponding to the coset ¥/. Hence we can
write (6.14) in the form

n m—1

E® =3 a,(Z v 0,0)
k=0 im0

m-1 »

=T(2 ) 0,0, 6.15)

J=0 k=0
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Defining A as in (6.12), we see that the term under brackets in (6.15) is equal
to A,/m. Hence the matrix form of (6.15) is the desired formula (6.13). As 2
is an orthogonal matrix, the 4, are the eigenvalues of £ and the theorem is
proved.

Corollary 6.8. Let Y and Y° be additive codes, dual of each other. Then, for
a given polynomial «(z) e R,[z], the number

3(x) = :2; a(wa()) (3> (6.16)

only depends on the weight distribution B'(x) of the coset ¥/ of Y*° to which
the element x belongs.

Proof. From the numbers 8(x) we construct a diagonal matrix 4 € C(Y",Y")
as follows: 4(Y,Y’) = é(x)), for x, € Y/ It is easily verified that (6.16) is
equivalent to E® 2 = Q 4; the details are left to the reader. Comparing this
result with (6.13), we obtain 4 = A and from theorem 6.7 it follows that
8(x) is equal to m X a, v, ,, for all x e Y, where (v, ..., v,,) = B(x) is
the weight distribution of ¥/. Hence the theorem is proved.

Remark. Essentially, we have proved the following identity, for all xe X and
all a(z) e R,[2]: i

2 a(wu(y) (63> = Y| T oy B(xk).
rey k=0

When applied to x e Y°, this reduces to the MacWilliams identity on the
weight distributions of the dual codes Y and Y°.

After these preliminary results let us now examine the question of deciding
whether the restriction (Y,RY) of the Hamming scheme to an additive code ¥
is a subscheme or not. We shall denote by A the commutative subalgebra of
R(Y,Y) generated by the adjacency matrices E, of the R,Y. (The commutativity
of A follows from theorem 6.7.) By definition, if (¥,RY) is an association scheme,
then A is its Bose-Mesner algebra.

Lemma 6.9. For an additive s-weight code Y the following two propositions
hold: (i) The dimension (= s + 1) of E is equal to the rank of the distribution
matrix B’ of the dual code Y°. (ii) The dimension of A is equal to the number
of distinct rows in B'.
Proof. The first part is already contained in corollary 3.2 (cf. also corollary 6.4).
However, let us give a more specific proof. From theorem 6.7 it is clear that
E is isomorphic to the subspace of R(Y’,Y’) generated by the matrices A®
and, therefore, to the column space of V. Hence the dimension of E is equal
to the rank of V, i.c. to the rank of B'.

‘We shall use a similar argument for the second part. Let b, b, . . ., b®
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be the distinct rows of B’. From theorem 6.7 we deduce that A is isomorphic
to the subalgebra A’ of R* generated by the columns of B’ restricted to the
rows b'®, So it only remains to be shown that A’ is R’ itself.

For arbitrary real numbers c,, ¢,, ..., ¢, there exists a polynomial f(z),
in the (n + 1)-tuple z = (2, ..., z,) of variables z,, satisfying f () = ¢,
for all i. Owing also to the obvious fact that A’ contains the all-one vector, this
exactly means that the vector (c,, .. ., ¢,)T of R* belongs to A’, which is the
desired result.

Theorem 6.10. The restriction (Y,RY) of the Hamming scheme to an additive
s-weight code is a subscheme if and only if the distribution matrix of the dual ¥°
(which has rank s 4 1) contains s + 1 distinct rows.

Proof. From theorem 2.1 it follows that (Y,R") is an association scheme if and
only if the vector space E itself constitutes a commutative algebra, i.e. if and
only if E = A. Hence the desired result is an immediate consequence of lemma
6.9.

Example. Let us consider the binary code Y of length n = 48, containing
m = 2** words, known under the name of extended quadratic residue code
(cf. Berlekamp ), p. 353). This code is a self-dual 8-weight code, the weights
being 12, 16, 20, 24, 28, 32, 36 and 48. So the four parameters are d = 12,
r=28, t =11 and s = 8 (cf. corollary 6.4).

From results of Assmus and Mattson %) the author 14) showed, using theo-
rem 5.9, that the 224 cosets of Y° (= Y) have exactly 14 distinct weight dis-
tributions. Therefore, by lemma 6.9, the algebra A generated by the adjacency
matrices E, has dimension 14 and theorem 6.10 implies that (¥,R?Y) is not an
association scheme.

Before giving more “positive” examples we shall now examine the question
of duality in association schemes derived from the Hamming scheme (X,R), in
the sense of sec. 2.6 (cf. theorem 2.9). -

For a given s-weight additive code Y, with | ¥| = m, let us assume (¥.RY)
is a subscheme of (X,R). Then, by theorem 6.10, we know that the number
of distinct (n + 1)-tuples among the weight distributions B'(x;) of the cosets Y/
is equal to s 4 1. Let us use the notations a®®, a®, . . ., a® for these (n 4 1)-
tuples, specializing a‘® to be the weight distribution of ¥°.

Next, we define the (s + 1)-set R’ = {R,’, R,’, ..., R/} of symmetric
relations R, on the group Y’ = X/Y° as follows:

R/ = {(¥'\Y)| B—x)=a®}, 0<i<s,

where B’ is the distribution matrix of ¥°. Clearly, R’ is a partition of the
Cartesian square (¥Y)* and R,' is the diagonal relation.
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Theorem 6.11. Let (¥,R") be an association scheme for a given additive code Y.
Then (Y',R’) itself is an association scheme; it is the dual scheme of (Y,R")
with respect to the zero of Y and to the matrix 2 of group characters of Y.
Proof. By theorem 6.7, the orthogonal matrix £ diagonalizes the BM algebra
of (¥,RY). Let us consider the partition =(¥,0) of ¥, that is, the partition into
the classes ¥, = ¥ N X, of codewords having a given weight i,, for v =0, 1,
..., s; we shall denote by £ e C(Y,,Y") the restriction of 2 to ¥,xY".
The s + 1 matrices

I =mr3MQm,  y=0,1,...,5 617

are idempotent and pairwise orthogonal in the algebra C(¥",Y"). Like in the
general theory of duality (cf. theorem 2.8), we define from these idempotents
the following mapping of (¥’)? into C**!:

Y =mJy (FYY, ..., N X,T)

In order to prove that (Y*,R’) is the dual scheme of (¥,R") with respect to 0
and £2, all we need to show is that f’(¥7,Y*) only depends on the relation R, to
which (¥,Y*) belongs, i.e. on the weight distribution B'(x, — x,) of the coset
Y*— Y/, Using (6.4) and (6.17) we obtain '

LY =m T (3, % — X5
»r,

From corollary 6.8 it readily follows that, for a given », the right-hand member
only depends on the weight distribution of the coset containing Xy — ;.
Hence the theorem is proved.

We shall now indicate two interesting illustrations of the above theorem on
duality, based on the two Golay codes. Let us recall (cf. theorem 2.8) that, if
PW QM apd P, 0@ are the eigenmatrices of dual schemes (¥,RY) and
(Y',R’), respectively, then we have P = Q@M and g® = PO,

Example 1. Let Z be the binary Golay code, i.e. the perfect linear code of
order 3 and length 23 over GF(2). The dual code Y = Z° is a generalized
Hadamard code of maximum strength £ = 6 and degree s = 3, the weights
being i, = 8, i = 12, iy = 16. By theorem 5.25, the restriction (¥,R") of the
Hamming scheme H(23, 2) to Y is a subscheme with 3 classes. Using the for-
mulas of corollary 5.26, we obtain the eigenmatrices P and Q™ of (¥,RY):

1 506 1288 253 1 23 253 171
par | 1 154 —56 99 go— |1 7 1B -2
1 26 —56 29 1 =1 —11 11
1 -6 8 -3 1 -9 29 21

The fact that the adjacency matrix of R,Y has only three distinct eigenvalues
(= 1288, —56, 8) means that (Y,R,Y) is a strongly regular graph, which was
first proved by Goethals and Seidel 25).

From theorem 6.11 it follows that (¥",R) is an association scheme with
3 classes. In fact, for a suitable numbering of the relations R/, a pair (¥/,Y*)
of cosets of the Golay code Z (= Y°) belongs to R, if and only if the coset
Y* — Y’ contains an element of weight i, for i = 0, 1, 2, 3. The eigenmatrices
of the metric scheme (Y',R’) are P® = Q™ and Q@ = P, As the last
column of O™ has only 3 distinct elements, this implies that the graph (¥',R5’)
is strongly regular; it is in fact the dual graph of (Y,R,Y) in the sense of sec.
2.6.3.

Example 2. Applying the same reasoning to the ternary Golay code Z of order
e = 2 and length n = 11, we obtain two strongly regular graphs, on 243 points,
dual of each other. For Y = Z°, the eigenmatrices P> and Q' of (Y,RY) are
the following:

1 132 110 1 22 220
PO =11 24 25 oW =11 4 -5
1 -3 2 1 ~5 4

The strongly regular graph (Y,R,Y) is in fact dual, in the sense of sec. 2.6.3,
of the graph (Y',R,"); the latter has been discovered by Berlekamp, Van Lint
and Seidel 7).

Let us examine more sharply the code Y, dual of the Golay code. It can be
shown that the restriction to Y of the spectral scheme of length 11 over
F = GF(3) is a subscheme with 5 classes. We shall denote by (¥,R) the sym-
metric closure of the spectral scheme on Y; it has 3 classes and the eigen-
matrices are the following:

1 22 110 110
1 4 =25 20
P=g= 1 -5 2 2
1 4 2 -7

The graph (Y,K,) is identical to (¥,R,Y). Moreover, it can be shown that the
graph (¥,R,), which is also strongly regular, is isomorphic to (¥*,R,".

Finally, we shall elucidate, for additive codes in Hamming schemes, the con-
nection between the true external distance introduced in (5.29) and the param-
eter o considered in the remark after theorem 5.20.
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Theorem 6.12. Let Hy, Hy, ..., H, be the characteristic matrices (6.6) of an
additive code Y. Then the true external distance du(X, Y°) of the dual code Y°
is equal to the smallest integer k, with 0 < k < n, such that the rows of the
matrix G, = [Ho, ..., H,] are linearly independent.
Proof. As we already observed, the columns of G, are certain columns of the
matrix £ of group characters of Y. Since 2 has rank m = | Y], it is clear that
G, will itself be of rank m if and only if it contains Q as a submatrix, that is,
if and only if

FKUX,UX)NY 0, (6.18)

for all cosets Y/ of Y? in X. The condition (6.18) means, in other words, that
the distance dyu(x,Y?) is less than or equal to k whenever x belongs to Y7.
Hence the smallest value of k having this property for all j is equal to the
maximum value of dy(x,Y?), i.e. to the true external distance dy(X,Y°).

Note added in proof

Since this work has been finished the author became aware of the following
facts: The formulae of theorem 4.6 for the eigenmatrices of the Johnson
schemes were first discovered by Ogasawara 78y and by Yamamoto et al. 80y,
On the other hand, it seems that the orthogonality relations of theorem 2.3, at
least in the symmetric case, should be attributed to Ogawa 7°). Finally, the
generalization of the Lloyd theorem on perfect codes in metric schemes (cf.
theorem 5.7) has also been recently discovered by Biggs 77), who used different
methods.

— 95

REFERENCES

H 3\91&!3(; 15), W. Q. (1972), An infinite class of 5-designs, J. combinatorial Theory Ser. A, 12,
2) Asxmu.s, E.F., Jr. and Mattson, H. F., Jr. (1963), Error-correcting codes: i i
N prronch, Information and Control 6, 315-330. ¢ a0 Bxiomatic
ssmus, B. F., Jr. and Mattson, H. F., Jr, (1967), Research to develop the al, i
o 2eory of codes, Air Force Res. Lab. Final Rept. P the algebraic
ssmus, E. F., Jr. and Mattson, H. R, Jr. (1969), New S-desi J. i i
5 '};heory S Bt gns, J. combinatorial
) ssmus, E. F., Jr. and Mattson, H. F., Jr. (1970), Algebraic th. f i
Force Res. Lab. Final Rept. ) Alee ooy of codes I, Air
:) Berlekamp, E. R. (1968), Algebraic coding theory, Mc Graw-Hill, New York.
) Beflekamp, E. R., Lint, J. H. van and Seidel, J. J. (1973), A strongly regular graph
derived ﬁ:om the perfect terpary Golay code, In: “A survey of combinatorial theory”
. (J. N. Srivastrava et al., eds.), pp. 25-30, North Holland Publ. Co., Amsterdam.
) Bo'se. R. C. (1963), Strongly regular graphs, partial geometries and partially balanced
designs, Pacific J. Math. 13, 389-419.
9] Bose_, R C. and Mesner, D. M. (1959), On linear associative algebras corresponding to
10 association schemes of partially balanced designs, Ann. Math. Statist. 30, 21-38.

) B ose, l‘l C.and Shilpnmq to, T. (1952), Classification and analysis of partially balanced
" block d: with two ci classes, J. Amer. statist. Assoc. 47, 151-184.
12) Cameron, P. J., Near-regularity conditions for designs (to be published).

) Cameron, P. J. and Seidel, J. J. (1973), Quadratic forms over GF(2), Indag. Math. 35,

1-8.
13) Delsarte, P. (1971), Two-weight linear codes and strongly regular
MBLE Res. Lab., Brussels. ad graphs, Report RICO,
34) Delsart €, P., Four fundamental parameters of a code and their combinatorial significance,
15 glf?rmtuon;na 9007;)1!1'(‘:’1‘; :zh nppe?rim g
elsarte, P. , Weights of lincar codes and stron
6y Discrete Math. 3, 47-64. #ly vegular normed spaces,
Delsarte, P. (1972), Bounds for unrestricted codes, by linear -ammi; ili
Repts 27, 272-289. Y progracuming, Philips Res.
17 Dels.ane, P. and Goethals, J. M. (1971), On quadratic residue like sequences in
" Abelian groups, Report R168, MBLE Res. Lab., Brussels.
19) Dembqwskl, P. (1968), Finite geometries, Springer-Verlag, Berlin.
zo) Eperlem, P. J. (1964), A two parameter test matrix, Math. Comp. 18, 296-298.
) Fisher, R. A. (1940), An examination of the different possible solutions of a problem in
incomplete blocks, Ann. Eugenics 10, 52-75.
1) Freiman, C. V. (1964), Upper bounds for fixed-weight codes of specifiecd minimum
22 distance, IRE Trans. Information Theory IT-10, 246-248.
) Gallager, R. G. (1968), Information theory and reliable communication, Wiley, New

York.
23y go lelth1.718s,l.; % M. (1971), On the Golay perfect binary code, J. combinatorial Theory Ser.
24) Goethals, J. M. (1970), On t-designs and threshold decoding, Univ. North Carolina

Ipst. Statistics, Mimeo Series n® 600.29.
23y QOeth:ls, J. M. and Seidel, J. J. (1970), Strongly regular graphs derived from com-

6 binatorial designs, Canad. J. Math. 22, 597-614.
5 ?Z;tshsals, J. M. and Snover, S. L. (1972), Nearly perfect binary codes, Discrete Math.
::) Golay, M. J. E. (1949), Notes on digital coding, Proc. IRE 37, 657.
”) Hall, M., Jr. (1959), The theory of groups, Macmillan, New York.
) ;l;ﬂl;“]:g' R. W. (1950), Error detecting and error correcting codes, Bell Syst. tech. J.
, 147-160.

3%) Hanani, H. (1961), The existence and construction of bal; d i lete block d
” A.nn Math. Statist. 32, 361-386.
) Higman, D. G.(1972), Combi ial iderati about per groups, Lecture

2 notes, Mathematical Institute, Oxford.
) Johnsm.x, S. M. (1962), A new upper bound for error-correcting codes, IRE Trans.
33 Information Theory IT-8, 203-207.
) Johnson, S. M. (1971), On upper bounds for unrestricted binary error-correcting codes,
IRE Trans. Information Theory IT-17, 466-478.



— 96 —

34) Johnson, S. M. (1972), Upper bounds for constant weight error correcting codes,
Discrete Math. 3, 109-124.

3%) Kantor, W. M. (1972), On incidence matrices of finite projective and affine spaces, Math.
Z. 124, 315-318.

36) Kerdock, A. M. (1972), A class of low-rate nonlinear binary codes, Information and
Control 20, 182-187.

37) Krawtchouk, M. (1929), Sur une généralisation des polyndmes d’Hermite, C.R. Acad.
Sci. Paris 189, 620-622.

3%) Lee, C. Y. (1958), Some properties of nonbinary error-correcting codes, IEEE Trans.
Information Theory IT-4, 77-82.

39) Lenstra, H. W., Jr. (1972), Two theorems on perfect codes, Discrete Math. 3, 125-132.

4% Lint, J. H. van (1970), On the nonexistence of perfect 2- and 3-Hamming-error-correcting
codes over GF(q), Information and Control 16, 396-401.

41) Lint, J. H. van (1971), Coding theory, Lecture notes in mathematics, Springer-Verlag,
Berlin.

42y Lint, J. H. van, A survey of perfect codes, Rocky Mountain J. Math., to appear.

43) Lloyd, S. P. (1957), Binary block coding, Bell Syst. tech. J. 36, 517-535.

44y Mac Wiiliams, F. J. (1961), Doctoral Dissertation, Harvard University (unpublished).

45) Mac Williams, F. J. (1961), Error-correcting codes for muitiple-levei tr issi
Bell Syst. tech. J. 40, 281-308.

46) Mac Williams, F. J. (1963), A theorem on the distribution of weights in a systematic
code, Bell Syst. tech. J. 42, 79-94.

47) Mac Williams, F. J., Mallows, C. L. and Sloane, N. J. A. (1972), Generalizations of
Gleason's th on weight ators of self-dual codes, IEEE Trans. Information
Theory IT-18, 794-805.

4%) Mac Williams, F.J,,Sloane, N.J. A. and Goethals, J. M. (1972), The Mac Williams
identities for nonlinear codes, Bell Syst. tech. J. 51, 803-819. ,

49) Marcus, M. and Minc, H. (1964), A survey of matrix theory and matrix inequalities,
Allyn and Bacon, Boston. -

50y Marguinaud, A. (1970), Codes i distance maximale, Revue du CETHEDEC 22, 33-46.

51) Mc Eliece, R. J,, A nonlinear, nonfield version of the Mac Williams identities (un-
published paper).

52) Mesner, D. M. (1967), A new family of partially bal: di lete block designs with
some Latin square design properties, Ann. Math. Statist. 38, 571-581.

53) Nordstrom, A. W. and Robinson, J. P. (1967), An optimum nonlinear code, Infor-
mation and Control 11, 613-616.

54) Petrenjuk, A. Ja. (1968), Math. Zametski 4, 417-425.

25) Pless, V. (1963), Power moment identities on weight distributions in error-correcting
codes, Information and Control 6, 147-152.

56) Pless, V. (1968), On the uniqueness of the Golay codes, J. combinatorial Theory 5,
215-228.

57) Plotkin, M. (1960), Binary codes with specified minimum distances, IRE Trans. Infor-
mation Theory IT-6, 445-450.

58) Preparata, F. P. (1968), A class of op
Information and Control 13, 378-400.

59) Rao, C. R. (1947), Factorial experiments derivable from
arrays, J. Roy. statist. Soc. 9, 128-139.

6% Riordan, J. (1968), Combinatorial identities, Wiley, New York.

61) Seidel, J. J. (1967), Strongly regular graphs of L,-type and of triangular type, Indag.
Math. 29, 188-196.

€2) Semakov,N.V,, Zinov’ev, V. A. and Zaitzev, G. V. (1971), Uniformly packed codes,
Problemy Peredaci Informacii 7, 38-50.

€3) Shannon, C. E. (1948), A h i Bell Syst. tech. J. 27,
379-423, 623-656.

64y Simonnard, M. (1962), Programmation linéaire, Dunod, Paris.

€%5) Singleton, R. C. (1964), Maximum distance Q-nary codes, IEEE Trans. Information
Theory IT-10, 116-118,

€6) Slepian, D. (1956), A class of binary signaling alphabets, Bell Syst. tech. J. 35, 203-234.

€7) Sloane, N. J. A. (1972), A survey of constructive coding theory, and a table of binary
codes of highest known rate, Discrete Math. 3, 265-294.

€%) Snover, S. L., Doctoral dissertation, Michigan State Univ. (to be published).

69) Storer, T. (1967), Cyclotomy and difference sets, Markham, Chicago.

1i double-error-correcting codes,

bi ial ar of

1 theory of

— 97 —

70) 3 zlc g)(g{ gl (1959), Orthogonal polynomials, Amer. Math. Soc. Colloquium Publications,
oL - ’
71y Tamaschke, O. (1963), Zur Theorie der Permutations it
) gruppe, Math. Z. 80, 328-352. Eruppen mit regularer Unter-
Tietdvdinen, A, (1973), On the non-existence of perfect codes over finii
J. appl. Math. 24, 88-96. vor finite flelds, SIAM
73) Wallis, W. D,, Street, A. P. and Wallis, J. §. (1972), Combinatorics: Room squares
sumrfree sets, Hadamard matrices, e notes in mathematics, Springer-Verlag:

Berlin.
74 ;VIi)lmn, R. M., Lectures on t-designs at Ohio State University, communicated by
. Doyen.
7%) Wilson, R. M.and Ray-Chaudhuri, D. K. (1971), Generali
76, i‘:vy.!o tl::dg;g;?), 31;1::. math. Soc. Notices 18, 805.
/itt, E. ., r Steinersche Systeme, Abh. Math. Sem. Univ. Hambur, 12, 265-27
:’,Z) Biggs, N., Perfect codes in graphs (to be published). £ 275
) Ogn§nwnra. M. §1965), A Yy dition for the exist of regular and sym-
:etr;clgsl PBIB designs of Ty, type, Univ. North Carolina Inst. Statistics, Mimeo Series
0. 418.
%) Ogawa, J. (1959), The theory of the association algebra and the relationshi
i ,, p algebra of
par_tmlly balanced incomplete block design, Univ. North Carolina Inst. Slatisticg: Mime;l
o Series No. 224,
L) Yam.un'loto, S., Fujii, Y. and Hamada, N. (1965), Composition of some series of
association algebras, J. Sci. Hiroshima Univ. Ser. A-I 29, 181-215,

of Fisher’s inequal






