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Abstract. Resilient functions can be viewed as string condensation meth-
ods which “remove” an opponent’s partial knowledge of the string. These are
closely related to coding theory and the theory of orthogonal arrays. The
formal definition of a resilient function assumes a strict upper bound on an
adversary’s knowledge of the input. Our investigation here is motivated by
real-world applications in which the inputs to our resilient function cannot
be guaranteed to be so well-behaved. Using ideas from coding theory, we
give a detailed performance analysis for both the general case and for resilient
functions arising from specific families of binary linear codes. As it turns
out, resilient functions constructed from linear codes perform almost perfectly
halfway beyond their resiliency degree. Furthermore, we conduct our study in
the concrete setting, i.e. we study the exact (non-asymptotic) performance for
a given parameter size. Hence, our results are readily accessible to the prac-
titioner who needs to pick specific parameter sizes in any given cryptographic
application.

The analysis utilizes detailed knowledge of specific families of linear error-
correcting codes. When a family of codes is known to have a concentrated
weight distribution or near-binomial weight distribution, asymptotic techniques
work well to obtain the information we seek. But it is when a full enumeration
of linear subcodes of the given code is available that our analysis takes its most
precise form. This gives new motivation for the study of higher weights and
higher spectra of linear codes.

1. Introduction

We study the performance of resilient functions beyond their resiliency de-
gree. Among other applications, we are motivated by the introduction of numerous
physical attacks that target the implementation of cryptographic schemes. Resilient
functions provide a useful tool in the hands of cryptographers, who employ these
functions to handle the risk that secrets are (or may be) partially exposed to an
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adversary. Such exposure or leakage may result from a variety of effects: hard-
ware/software failures, improper disposal of old equipment, insufficient isolation
of memory space from potentially malicious processes (e.g. viruses and worms),
failures and bugs in security protocols, etc. Given that we are computing and com-
municating with imperfect protocols running on imperfect equipment that often
leaks information, it becomes essential to

• soften the restrictions we place on an attacker’s capabilities, and
• analyze the performance of cryptographic schemes when the security as-

sumptions no longer hold.

In this paper, we focus on the role played by resilient functions in this effort.
First introduced by Chor, et al. [10] and, independently, by Bennett, Brassard

and Robert [3] resilient functions (along with secret sharing schemes, introduced
by Shamir [27]) were among the first primitives to be used in the construction of
cryptographic schemes that survive in the presence of leaked key bits. For example,
in these original references, resilient functions were proposed to enable fault-tolerant
distributed computing and privacy amplification. In order to motivate the detailed
study of resilient functions that follows, we first survey a few recent developments
in cryptography involving information leakage.

One striking instance of such an attack was presented by van Someren [26]
and developed more thoroughly by Shamir and van Someren [24]. The technique is
quite simple, yet effective; it works by scanning for high entropy strings in computer
memory. As it turns out, cryptographic keys have high likelihood of being uncovered
in such a search. Within weeks of the publication of this attack, computer viruses
exploiting these ideas emerged in public (cf. [7]). Such attacks then fueled the
development of numerous practical and theoretical techniques for countermeasures.

To tackle the leakage problem in a formal cryptographic setting, Dodis, et al. [7]
introduced exposure resilient functions which generalize classical resilient functions
as defined by Chor, et al. by allowing for an imperfect output distribution. Dodis,
et al. observe that, as long as the output distribution is exponentially close to uni-
form, the construction may still be used in many cryptographic applications. Their
construction achieves its goal by introducing an extractor function that guarantees
a near-uniform output distribution as long as the input distribution has sufficient
min-entropy. The randomness required by the extractor is also derived from the
input (specifically, from input bits not exposed to the adversary). In [16] Ishai,
et al. go one step further and devise a secret-sharing-based technique to protect
against information leakage during computation. They note that exposure resilient
functions provide protection for storage but not computation.

To provide a more comprehensive solution, the physically observable cryptogra-
phy framework was introduced by Micali et al. with the hope of formally capturing
information leakage through probing attacks on storage devices. Similarly, the Al-
gorithmic Tamperproof Model was developed by Gennaro at al. [9] to determine
if existing provably secure schemes can be strenghtened to survive against phys-
ical attacks while making minimal assumptions on read-proof and tamper-proof
memory.

In the meantime, physical attacks are being improved at an alarming pace.
Skorobogatov [25] showed that key bits can be recovered from memory even if the
memory was erased, provided an adversary has direct physical access to the mem-
ory device. Despite the strength of this attack, it requires advanced equipment and
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technical skills. In contrast, the more recent so-called cold-boot attacks introduced
by Halderman et al. [15] require no equipment and only common programming
skills. Cold-boot attacks allow an adversary to defeat even the strongest disk en-
cryption products (e.g. Microsoft’s BitLocker) by simply reading the encryption
keys from the physical memory quickly (within a few minutes) after the power is
turned off.

Cold-boot attacks have motivated the introduction of a number of theoretical
constructions that provide protection when an adversary learns a fraction of a
stored secret [1, 22]. In [1], Akavia, et al. introduced a more realistic model that
considers security against a wide class of side-channel attacks when some function
of the secret key bits is leaked. In the same work, it is shown that Regev’s lattice-
based scheme [23] is resilient to key leakage. More recently, Naor, et al. [22]
proposed a generic construction for a public-key encryption scheme that is resilient
to key leakage.

In this paper we are motivated by the fact that resilient functions will have to
be used in many such real-world applications with non-ideal settings. In our appli-
cations, we expect no guarantees — only probability estimates — on the behavior
of an adversary or an imperfect environment. We show that one can still make re-
markably accurate statements about the expected behavior of the resilient function
when the number of leaked bits exceeds the resiliency degree. Our contribution
is complementary to the work in [7] on exposure resilient functions: whereas they
relax the definition of a resilient function to allow for an imperfect output distribu-
tion, thereby achieving a more flexible primitive through the use of an extractor,
we instead study the performance of resilient functions as originally defined when
the function is subject to conditions worse than expected. Our estimates are best
when one has sufficient structural information about the binary linear code em-
ployed to define the function. More specifically, we effectively bound the entropy
of the output for any number of leaked input bits. Our treatment is fundamentally
different from the one in [7] since we study concrete security. Thus our approach
allows one to precisely determine parameter sizes for resilient functions to be used
in any given application.

2. Preliminaries

Throughout, let Z2 = {0, 1} with modular arithmetic and consider functions

F : Z
n
2 → Z

m
2 .

We say F has input size n and output size m. If X is a discrete random variable
taking on values in X = Z

n
2 according to some probability distribution D with

probability mass function p (where we write px = Prob[X = x]), then X has
(Shannon) entropy

H(X) =
∑

x∈X

−px log2 px.

For any function F as above, such a probability distribution D on X induces a
probability distribution E on the codomain Y = Z

m
2 with probability mass function

q given by qy = Prob[F (X) = y] where X is chosen according to distribution D. So
we obtain a random variable Y = F (X) taking values in Y and the entropy of Y is
defined in a similar manner to that of X .
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Definition 2.1 (Resilient Function). An (n, m, t)-resilient function is a func-
tion

(y1, y2, . . . , ym) = F (x1, x2, . . . , xn)

from Z
n
2 to Z

m
2 enjoying the property that, for any t coordinates i1, . . . , it, for any

constants z1, . . . , zt from Z2, and for any element y of the codomain

Prob[F (x) = y|xi1 = z1, . . . , xit
= zt] =

1

2m
.

In the computation of this probability all xi are viewed as independent random
variables each of which takes on the value 0 or 1 with probability 0.5. We refer to
the integer t as the resiliency degree of F .

In more informal terms, if up to t of the input bits are deterministic and the
remaining bits are uniformly random and independent, the output of the resilient
function will be perfectly random (or unpredictable). From a cryptographic view-
point, knowledge of any t values of the input to the function does not allow one to
make any better than a random guess at the output, even if one knows the function
F in advance.

A good introduction to resilient functions is given by Bierbrauer in [4, Sec. 15.5].
A simple technique for constructing resilient functions uses binary linear error-
correcting codes. By an [n, m, d]-code, we mean an m-dimensional subspace C of
Z

n
2 in which any two distinct codewords (i.e., vectors in C) differ in at least d

coordinates. Clearly C = rowspG for some m × n matrix G over the binary field;
if C is equal to the row space of such a matrix, we say G is a generator matrix for
C. The weight enumerator of C is the generating function

WC(x) =

n
∑

i=0

Aix
i

where Ai is the number of codewords of Hamming weight i. For example, A0 = 1,
A1, . . ., Ad−1 = 0.

Theorem 2.2. (e.g., [10]) Let G be a generator matrix for a binary linear
[n, m, d]-code. Define a function F : Z

n
2 → Z

m
2 by the rule F (x) = Gx. Then F is

an (n, m, d − 1)-resilient function.

The proof hinges on the simple fact that, since every non-zero codeword has
Hamming weight at least d, the submatrix of G obtained by deleting any collec-
tion of up to d − 1 columns still has full row rank, so the corresponding linear
transformation is still surjective.

In this paper, all codes will be binary and all resilient functions will be linear.
In [28], an infinite family of non-linear resilient functions is given and it is now
known that, in the general case, a t-resilient function F : Z

n
2 → Z

m
2 is equivalent to

a partition of Z
n
2 into 2m orthogonal arrays of strength t. But, while our treatment

applies to linear resilient functions only, all efficiently computable resilient functions
known to us are essentially linear functions, if one includes coefficients from Z4. For
more information on resilient functions, and their connections to codes and designs
see [8] and [29].

In [30], Stinson and the authors applied resilient functions to random number
generators, an interesting situation where the choice of deterministic bits is not
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adversarial, but the probability that more than d− 1 bits are deterministic is non-
negligible (d− 1 being the resiliency degree of a resilient function constructed from
an [n, m, d]-code). Immediately, we began to ask questions about the behavior of
the function when the input conditions degrade beyond the resiliency degree. We
wondered if all is lost or, as one intuitively expects, if the performance degrades
smoothly as the number of deterministic bits exceeds the resiliency degree.

Specific questions we consider in this paper are the following:

• In an (n, m, t)-resilient function, what is the probability that the output
entropy is still m if k > t input bits are deterministic?

• When the number of deterministic input bits to an (n, m, t)-resilient func-
tion exceeds t, what is the expected value of the output entropy?

• How does the model handle independent but biased bits? I.e., suppose
the n input bits are independent random variables each with its own bias
towards one or zero; what can one say about the output entropy?

• How do familiar families of binary linear codes behave when the number
of deterministic bits is equal to or larger than the minimum distance of
the code?

We also hoped to gain some knowledge of the behavior of a resilient function
when certain dependencies exist among various subsets of input bits. Our analysis
is quite limited in this case. Since specific dependencies can lead to significant
failure of the output, our results on this topic are quite crude. It may be that one
may establish encouraging lower bounds on the output entropy if one stipulates
only very restricted sorts of dependencies, but since we saw no practical use of such
artificial assumptions, we did not pursue this further.

3. Preserving full entropy

Let C be an [n, m, d]-code with generator matrix G and let F : Z
n
2 → Z

m
2 be the

corresponding (n, m, d−1)-resilient function. We have already pointed out that the
deletion of any d − 1 or fewer columns of G results in a matrix of rank m. Clearly
there are some sets of d or more columns whose deletion results in a matrix of rank
less than m (i.e., if we delete a set of coordinates containing the support of any
non-zero codeword). Let us call such a set of coordinates degenerate and let N(t)
denote the number of t-element sets of coordinates which are degenerate.

More generally, if S is any linear subspace of the binary space Z
n
2 , then F (S)

is also a subspace. We say S is degenerate if F (S) has dimension less than m. We
are most interested in the special case when S = ST consists of all binary n-tuples
x satisfying xi = 0 for i ∈ T where T is a specified set of coordinates. Now the two
notions of degeneracy coincide.

We will consider probability distributions on Z
n
2 which are uniform on some

subspace ST as described above and zero outside ST . For any such distribution
D with associated random variable X , we obtain a transformed distribution E on
Z

m
2 with associated random variable Y = F (X); clearly E is uniform on F (ST ).

It is also obvious that the distribution D has Shannon entropy H(X) = n − |T |
and the output distribution E has Shannon entropy less than m if and only if T is
degenerate. The output entropy, or entropy of distribution E is our primary interest
in this paper.

It will be useful to immediately generalize these notions to affine subspaces
ST + z where z is not the zero tuple; that is, for any set T of t coordinates and any
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fixed values {zi : i ∈ T}, the same reasoning about entropy holds when our input
distribution has mass px = 2t−n on {x ∈ Z

n
2 : ∀i ∈ T (xi = zi)} and has px = 0 for

all other x. (Let us temporarily denote this distribution by DT,Z where Z = (zi :
i ∈ T ).)

Definition 3.1. Let F : Z
n
2 → Z

m
2 be given via generator matrix G and let

degeneracy of subsets of [n] be defined as above with respect to this matrix G. For
a given integer t (0 ≤ t ≤ n), let a t-element subset T ⊆ [n] be chosen uniformly
at random (i.e., with probability 1/

(

n
t

)

). Define I(t) to be the event that T is a
degenerate set of coordinates.

Observe that, in light of the previous discussion, we have

Prob[I(t)] = Prob[ H(E) < m |D = DT,Z for some T, Z, |T | = t].

Theorem 3.2. Let G be a generator matrix for a binary [n, m, d]-code. A set T
of coordinates is degenerate with respect to G if and only if it contains the support
of some non-zero codeword in C = rowspG. For t < 3

2d,

Prob[I(t)] =
1

(

n
t

)

t
∑

i=d

Ai

(

n − i

t − i

)

.

where
∑

i Aix
i is the weight enumerator of C. Finally, if T is any t-element subset

with t < 3
2d and Z is any set of t binary values, then the probability distribution

D = DT,Z satisfies H(E) ≥ m− 1 where E = F (D) is the output distribution of the
resilient function F (x) = Gx applied to distribution D.

Proof. If G′ is obtained from matrix G by deleting t columns, then y>G′ =
0 forces y>G = 0 unless those t columns contain the support of some non-zero
codeword. For t < 3d/2, any set T of t coordinate positions can contain the support
of at most one non-zero codeword by the triangle inequality. So each codeword of
Hamming weight i is contained in

(

n−i
t−i

)

degenerate sets of coordinates. Summing
over i gives the desired probability expression. For the last part, simply observe
that the submatrix G′ of G obtained by deleting less than 3

2d columns always has
rank at least m − 1. �

Later, we will generalize this result using the higher spectra of code C; but the
above expression for Prob[I(t)] is easy to compute for t up to 1.5d. In the following
section, we explicitly compute this probability for some well-known codes. We
go further by providing bounds on the failure probability for resilient functions
constructed from several major classes of codes.

4. Analysis: specific classes of codes

In this section we refine our performance analysis by focusing on specific families
of resilient functions.

4.1. Codes with Near Binomial Weight Distribution. Assume a k-di-
mensional binary linear code whose weight distribution is well-approximated by the
binomial distribution. Note that this approximation works well for several impor-
tant families of codes [19, page 283]. For example, Kasami et al. [17] prove that the
weights of a binary primitive BCH code have approximate binomial distribution.
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So, for the following discussion, assume

Ai ≤ κ

(

n

i

)

2k−n , for ∀i ≥ d .

The failure probability for t = 1.5d deterministic input bits satisfies

Prob[I(t)] =

t
∑

i=d

Ai

(

n−i
t−i

)

(

n
t

)

≤ κ2k−n
t

∑

i=d

(

n

i

)

(

n−i
t−i

)

(

n
t

)

≤ κ2k−n
t

∑

i=d

(

t

i

)

.

Note that
∑t

i=d

(

t
i

)

=
∑t−d

i=0

(

t
i

)

. Furthermore, assuming t − d < t/2 it holds [18,
Thm. 1.4.5] that

(4.1)

t−d
∑

i=0

(

t

i

)

≤ 2tH2(
t−d

t
)

where H2(·) denotes the binary (Shannon) entropy function. Using this bound
together with the asymptotic Hamming bound [18, Thm. 5.2.8], k/n+H2(

d
2n ) ≤ 1,

we obtain the following upper bound on the failure probability

(4.2) Prob[I(t)] ≤ κ2−nH2(
d
2n

)+tH2(
t−d

t
) .

Setting δ = d/n and substituting t = 1.5d, the probability becomes bounded as
follows:

Prob[I(1.5d)] ≤ κ2−n(H2(
δ
2
)−1.377δ) .

where 1.377 is short for 3
2H2(

1
3 ). Note that, in the exponent, we have H2(

δ
2 ) −

3
2H2(

1
3 )δ > 0 for δ < 2/3; any binary code of dimension at least two has this

property. Hence, the probability of failure is decreasing exponentially with n for
families of codes that have a weight distribution which is approximately binomial.

We summarize the result in the following theorem.

Theorem 4.1. Let C be an [n, k, d]-code with weight distribution Ai ≤ κ2k−n
(

n
i

)

for i > 0. Then for t < 2d,

Prob[I(t)] ≤ κ2−nH2(
d
2n

)+tH2(
t−d

t
) .

and, in particular, with δ = d/n,

Prob[I(1.5d)] ≤ κ2−n(H2(
δ
2
)− 3

2
H2( 1

3
)δ) .

Goppa Codes: The reference [14] provides empirical evidence that the weight
enumerator of Goppa codes is very close to that expected of random linear codes,
i.e.

Ai ≈
(

n

i

)

2k−n , for ∀i ≥ d .

The same reference provides evidence that the error in this approximation decreases
exponentially with increasing code length. The existence of good Goppa codes that
meet the Gilbert-Varshamov bound is well known [18]. Furthermore with the
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approximation technique given above in Equation (4.1) we can bound the failure
probability of good Goppa codes as follows

Prob[I(t)] ≤ 2−nH2(
d
n

)+tH2(
t−d

t
) .

For t = 1.5d we obtain

lim
n→∞

Prob[I(1.5d)] ≤ 2−n(H2(δ)−1.377δ) .

Hence, we want H2(δ) > 1.377δ to obtain asymptotic exponential decrease in the
failure probability. Solving the inequality we obtain the condition δ < 2

3 . However,

a binary linear code of dimension larger than one cannot have d > 2n
3 . Hence the

failure probability is exponentially decreasing with increasing n for all well behaving
Goppa codes1. Also note that, the maximum (negative) constant of the exponent
is obtained for δ = 0.278 for which we obtain an information rate of R = 0.147.

The significance of this analysis is that it provides us evidence that resilient
functions constructed with asymptotically well-behaving codes give close to perfect
performance up to halfway beyond their resiliency degree.

5. Codes with concentrated weight distribution

In this section, we focus on the opposite end of the spectrum and survey the
resilience performance of codes that have a rather concentrated weight distribution.
Note that, despite the result of [17] alluded to above, such an approximation is far
from accurate for certain families of codes, i.e. for codes in which the majority of
the codewords have weight close to the minimum distance d.

Reed-Muller Codes: The weight distribution of the first order Reed Muller codes
is well known, i.e. for RM(1, u) = [2u, u + 1, 2u−1] we have A0 = A2u = 1,
A2u−1 = 2u+1−2, and Ai = 0 otherwise. This simplifies the derivation substantially:
for any t < 2u,

I(t) = (2u+1 − 2)

(

2u−1

t − 2u−1

)(

2u

t

)−1

.

Example 5.1. Consider the resilient function constructed from the binary first
order Reed-Muller code RM(1, 4) = [16, 5, 8]. We tabulate the probability of entopy
loss as a function of t, the number of deterministic input bits, as follows.

t 8 9 10 11
N(t) 30 240 840 1680

Prob[I(t)] 0.00233 0.0209 0.104 0.384

(This code is considered further in Example 6.6.)

Going further, we bound the single bit loss probability of first order Reed-Muller
codes at t = 1.5d with the following theorem:

Theorem 5.2. The probability of a deterministic bit being produced at the out-
put of a resilient function constructed from a first order Reed-Muller code for an
input block with t = 1.5d = 1.5 · 2u−1 behaves asymptotically as follows

Prob[I(1.5d)] ∼ 2−0.311277n+log
2

n+1.29

1Due to the Gilbert Varshamov bound, H2(δ) = 1 − R, this is equivalent to requiring R ≥

1 − H2(2/3) = 0.081.
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Proof. The bound follows directly from the simplification of the bit-loss prob-
ability

Prob[I(t)] =
(2u+1 − 2)

(

2u−1

t−2u−1

)

(

2u

t

)

calculated at t = 1.5d = 1.5 · 2u−1. The expression is simplified using Stirling’s
factorial approximation [18, Thm. 1.4.2], i.e. n! ∼ nne−n

√
2πn for large n.

Prob[I(1.5d)] = (2u+1 − 2)

(

2u−1

2u−2

)

(

2u

1.5·2u−1

)

= (2u+1 − 2)
2u−1!(3 · 2u−2)!

2u!2u−2!

∼ (2u+1)
(2u−1)

2u−1

e−(2u−1)
√

2π(2u−1)(3 · 2u−2)
3·2u−2

e−(3·2u−2)
√

2π(3 · 2u−2)

(2u)
2u

e−(2u)
√

2π(2u)(2u−2)
2u−2

e−(2u−2)
√

2π(2u−2)

∼
√

6 · 2u+(u−1)2u−1+3(u−2)2u−2
−(u−2)2u−2

−u2u

33·2u−2

∼
√

6 · 2(3 log
2
3−6)2u−2+u

∼ 2−0.311277n+log
2

n+1.29 . �

Since Stirling’s approximation becomes asymptotically precise, we may now write
Prob[I(1.5d)] = Θ(2−0.311277n).

Simplex Codes: The weight distribution of the simplex code [2u − 1, u, 2u−1] is
simply given as A2u−1 = 2u − 1 and Ai = 0 for remaining values of i > 0. Hence,

Prob[I(1.5d)] =

∑1.5d
i=d Ai

(

n−i
1.5d−i

)

(

n
1.5d

) .

For t = 1.5d = 2u−1 + 2u−2, we have

Prob[I(1.5d)] =

∑1.5d
i=d Ai

(

n−i
1.5d−i

)

(

n
1.5d

)

= (2u − 1)

(

2u
−1−2u−1

2u−2

)

(

2u−1
2u−1+2u−2

)

= (2u − 1)
(2u−1 − 1)!(2u−1 + 2u−2)!(2u−1 − 2u−2 − 1)!

(2u−1 − 1 − 2u−2)!(2u−2)!(2u − 1)!
.

The expression is again simplified using Stirling’s factorial approximation and by
taking the first two terms in the Taylor Series approximation as follows

Prob[I(1.5d)] ∼ (2u − 1)
(2u−1 − 1)

2u−1
−1

e−(2u−1
−1)

√

2π(2u−1 − 1)

(2u−2)
2u−2

e−(2u−2)
√

2π(2u−2)
·

(3 · 2u−2)
3·2u−2

e−(3·2u−2)
√

2π(3 · 2u−2)

(2u − 1)
2u−1

e−(2u−1)
√

2π(2u − 1)

∼
√

3(2u − 1)√
2u−1 + 1

(2(u−1)(2u−1
−1) − (2u−1 − 1)2(u−1)(2u−1

−2))(3 · 2u−2)3·2
u−2

2(u−2)2u−2(2u(2u−1) − (2u − 1)2u(2u−2))
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∼
√

3(2u − 1)√
2u−1 + 1

2(u−1)(2u−1
−2)(2u−1 − (2u−1 − 1))33·2u−2

22u−1

2u(2u−2)(2u − (2u − 1))

∼
√

3(2u − 1)√
2u−1 + 1

2(u−1)(2u−1
−2)33·2u−2

22u−1

2u(2u−2)

∼
√

3(2u − 1)√
2u−1 + 1

2−u2u−1+2+log
2
3·3·2u−2

∼ n

√
3

√

n/2 + 1.5
2−(n+1)[log

2
(n+1)/2−1.188]+2

= Θ(
√

n2−n log
2

n)

Golay Codes:

Example 5.3. Consider the resilient function constructed from the perfect
binary Golay code G23 = [23, 12, 7]. We tabulate the performance of the resilient
function w.r.t. t, the number of deterministic input bits, as follows.

t 7 8 9 10
N(t) 253 4554 37950 194810

Prob[I(t)] 0.00103 0.00928 0.0464 0.170

Special Dual-BCH Codes:

Example 5.4. Consider the resilient function constructed from the dual of the
double-error-correcting BCH code [2m−1, 2m, 2m−1−2(m−1)/2] [19, page 451]. For
m = 5 we obtain a [31, 19, 12]-code with performance as follows:

t 12 13 14 15 16 17
N(t) 310 5890 53010 300390 1201560 3604680

Prob[I(t)] 0.0000021 0.000028 0.00019 0.00099 0.0039 0.013

For m = 9, we have a [511, 18, 224]-code and the performance of the resilient func-
tion is given by the following probabilities:

t 224 260 300 360

Prob[I(t)] 7.5 × 10−147 1.3× 10−102 2.1× 10−74 1.4× 10−44

6. Entropy loss and higher spectra of codes

Let C be a binary [n, m, d]-code. For a linear subcode C ′ of C define the support
of C ′ to be

supp(C ′) = {i|1 ≤ i ≤ n, ∃c ∈ C ′(ci 6= 0)} .

Then, for 0 ≤ r ≤ m and 0 ≤ i ≤ n, define

(6.1) A
(r)
i = A

(r)
i (C) = |{C ′ ≤ C : | supp(C ′)| = i, dim C ′ = r}| ,

that is, A
(r)
i is the number of r-dimensional linear subcodes of C having support of

size i. The statistics A
(r)
i record very detailed information about the structure of C.

These generalize the usual coefficients of the weight enumerator Ai which count the
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number of codewords of weight i for each i. Some trivial values and relationships
are the following

A
(0)
i = δi,0, A

(r)
0 = δr,0, A

(1)
i = Ai (for i = 1, . . . n),

∑

i

A
(r)
i =

[

m
r

]

2

where

[

m
r

]

2

is the Gaussian coefficient denoting the number of r-dimensional

subspaces of an m-dimensional vector space over the binary field GF (2).
When authors speak of higher weights (or generalized Hamming weights, or

Wei weights), they refer only to the integers

dr = min{ i | A
(r)
i 6= 0}

for r = 1, 2, . . . , m. In [32], Wei introduced these ideas — higher weights and,
implicitly, higher spectra — in an effort to better understand attacks on a wire-tap
channel. Wei’s work already had indirect implications for the theory of resilient
functions.

We now establish the connection between the higher spectra and the entropy
distribution of the resilient function.

Let C be a fixed binary [n, m, d]-code. If c is a codeword, let supp(c) denote
the support of c. For 0 ≤ i ≤ n and 0 ≤ r ≤ m, define

Bi,r = |{S ⊆ [n] : |S| = i, supp(c) ⊆ S for exactly 2r codewords c ∈ C}| .
First note that, since C is binary linear, for any set S, the number of codewords
having support contained in S is always a power of two. Now what is the relevance of
these Bi,r values? Indeed, if code C is employed as a resilient function as above and
we know that exactly i input bits are deterministic (all others being independent
and balanced), the probability that the corresponding output has entropy exactly
m − r is Bi,r/

(

n
i

)

. Thus we have completed the proof of

Lemma 6.1. Let X be a random variable taking values in {0, 1}n according to
a probability distribution DT,Z as defined in Section 3. Then

Prob[Hout = m − r | |T | = i] = Bi,r

(

n

i

)−1

. �

Now the fundamental connection between these statistics and the higher spectra
is given by the following

Proposition 6.2. Let C be a binary [n, m, d]-code with higher spectra A
(r)
i

and let Bi,r be defined for C as above. Then, for each i (0 ≤ i ≤ n) and each r
(0 ≤ r ≤ m), we have

m
∑

k=0

[

k
r

]

2

Bi,k =
n

∑

h=0

(

n − h

i − h

)

A
(r)
h .

Proof. This follows by double counting. Let

X = {(C ′, S) : C ′ ≤ C, dim C ′ = r, |S| = i, supp(C ′) ⊆ S}
and let us count in two ways the ordered pairs of linear subcodes of C of dimension
r and sets of coordinates S of size i which contain their support. Choosing S first
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and then choosing a subcode of the largest subcode with this property, we obtain
the quantity on the left. Choosing the subcode C ′ first and then locating sets S
containing its support, we obtain the quantity on the right. �

So we obtain n + 1 independent triangular systems, one for each = 0, 1, . . . , n.
The ith set of equations involves only the unknowns Bi,0, Bi,1, . . . , Bi,m.

Now we employ a useful identity from the theory of special functions2.

Proposition 6.3. [See, e.g., [13]] Let q be a prime power, n ≥ 1 and 0 ≤
i, j ≤ n. Then

n
∑

k=0

(−1)k−jq(
k−j
2 )

[

i
k

]

q

[

k
j

]

q

= δi,j .

We will need only the case q = 2 here, so let us agree to suppress q from now
on.

Now fix i and abbreviate

Xi,r :=

n
∑

h=0

(

n − h

i − h

)

A
(r)
h .

If we take these values as known, then for fixed i our linear system for the unknowns
Bi,r is

[

0
0

]

Bi,0 +

[

1
0

]

Bi,1 + · · · +
[

m
0

]

Bi,m = Xi,0

[

1
1

]

Bi,1 + · · · +
[

m
1

]

Bi,m = Xi,1

... =
...

[

m
m

]

Bi,m = Xi,m

Applying Proposition 6.3, we solve to find

(6.2) Bi,r =

m
∑

k=0

(−1)k−r2(k−r

2 )
[

k
r

]

Xi,k.

In this way, knowledge of the full range of higher spectra gives us the statistics
Bi,r and, in turn, the full probability distribution on the output entropy given any
specified number of deterministic input bits.

Proposition 6.4. Let F be the resilient function constructed using binary lin-

ear [n, m, d]-code C with higher spectra A
(r)
i (0 ≤ i ≤ n, 0 ≤ r ≤ m) as defined in

Equation (6.1). Then the number Bi,r of i-element subsets of the coordinates [n]
containing exactly 2r codewords is given by

Bi,r =

m
∑

k=0

n
∑

h=0

(−1)k−r2(k−r
2 )

(

n − h

i − h

) [

k
r

]

A
(k)
h

2After proving this identity for ourselves, we came across it in [2], which addresses a closely
related problem in coding theory and refers to [13].
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Figure 1. Expectation for output entropy H for resilient function
F from a [16, 5, 8]-code as a function of the number i of determin-
istic input bits. The vertical lines are at d − 1 = 7, up to which
point previous results guarantee perfect entropy, and 1.5d = 12,
the limit addressed in Theorem 3.2.

Proof. Indeed the matrix M = [mk,j ]
m
k,j=0 with entries mk,j =

[

j
k

]

has

inverse C = [ci,k]mi,k=0 given by

ci,k = (−1)k−i2(k−i

2 )
[

k
i

]

.

So the expression for Bi,r in terms of the higher spectra follows from Proposition
6.3 and the definition of the values Xi,r. �

Finally, we wish to show how the values Bi,r enable us to find a good lower
bound on the output entropy. Some further analysis could perhaps lead to an exact
expression, but the estimate we obtain is sufficient for our purposes.

One easily checks that the function h(x) = −x log2 x is concave: ph(x) + (1 −
p)h(y) ≤ h (px + (1 − p)y) for 0 ≤ p, x, y ≤ 1. More generally, if D is a probability
distribution on a set S with probability density function D(a) = xa for a ∈ S and
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if E is another distribution on S with probability density function E(a) = ya, then

H(D) =
∑

a∈S

−xa log2 xa, H(E) =
∑

a∈S

−ya log2 ya.

Now a convex combination F of these two distributions has probability density
function pxa + (1 − p)ya for a ∈ S and its entropy

H(F) =
∑

a∈S

h (pxa + (1 − p)ya) ≥
∑

a∈S

ph(xa) + (1 − p)h(ya)

is bounded below by pH(D) + (1 − p)H(E) since h defined above is concave.
For our application, let us assume a fixed number i of deterministic coordinates.

We assume that all
(

n
i

)

combinations of coordinate positions are equally likely in our
non-adversarial model. Each of these combinations yields an output distribution
which is uniform on some linear subspace of Z

m
2 and the output entropy for such

a distribution is exactly the dimension of this subspace. We have already used the
higher spectra of the code to determine the values Bi,r which give the number of
i-element combinations of coordinates for which the output entropy is m − r. So,
again with i fixed, and positions of deterministic coordinates chosen uniformly at
random, the entropy of the output distribution is bounded below by

m
∑

r=0

Bi,r
(

n
i

) (m − r),

which is the expected value of the entropy for a fixed but random selection of i
deterministic coordinates. This completes the proof of the following

Theorem 6.5. Given F : Z
n
2 → Z

m
2 of the form x 7→ Gx where G is a genera-

tor matrix for the linear code C with higher spectra A
(r)
i , the expected value of the

entropy of the output distribution E of F conditioned on having exactly i determin-
istic input bits and the remaining n − i bits independent and balanced is bounded
below by

(6.3) H(i) =

m
∑

r=0

m
∑

k=0

n
∑

h=0

(−1)k−r(m − r)2(k−r
2 ) i(i − 1) · · · (i − h + 1)

n(n − 1) · · · (n − h + 1)

[

k
r

]

A
(k)
h

where the expected value is taken over all possible choices of i deterministic coordi-
nates, each with equal probability.

Proof. We have just seen that concavity of h implies that H(i) is a valid
lower bound on the output entropy, and it is simply computed as an expected value
∑

r(m − r)Bi,r

(

n
i

)−1
, which simplifies to the expression given using Proposition

6.4. �

Example 6.6. The first order Reed-Muller code R1,4 is a [16, 5, 8]-code with
higher weight spectra given in Table 16 in [12]. Using Theorem 6.5, we obtain in
Figure 1 the profile for H(i), giving a lower bound on the output entropy.

Example 6.7. The second order Reed-Muller code R2,4 is a [16, 11, 4]-code
with higher weight spectra given in Table 17 in [12]. We obtain the profile for our
lower bound H(i) in Figure 2.

Example 6.8. The extended binary Golay code is a [24, 12, 8]-code with well-
known weight enumerator. The higher spectra were first computed by Dougherty
et al. in [11]. ¿From this, we obtain in Figure 3 the graph of H(i) for this code.
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Figure 2. Expectation for output entropy H for resilient function
F from a [16, 11, 4]-code as a function of the number i of determin-
istic input bits. The vertical lines are at d − 1 = 3 and 1.5d = 6.

7. Conclusion

We have considered, at the theoretical level, the behavior of a linear resilient
function when its inputs degrade beyond acceptable levels. We find not only that
the function still performs well with high probability, but that one can completely
characterize this behavior when the inputs are assumed to be independent.

The first part of the analysis which determines the output distribution of the
resilient function up to halfway beyond the resiliency degree already accomplishes
quite a bit with very little information about the underlying linear code. Given more
detailed code statistics, we get better entropy estimates. A crucial tool in the latter
part of the analysis is the theory of higher weights and higher spectra of linear codes,
introduced by Wei in his study of the closely related wire-tap channel of Type II.
At the end of his seminal paper, Wei wrote “The generalized Hamming weights also
characterize a linear code’s performance as a t-resilient function, in every detail.”
What is remarkable here is that we find an applied setting which demands even
more detail than the higher weights can provide, thereby demonstrating an applied
need for more information about the exact higher spectra of important linear codes.
We hope that this paper will serve as motivation to investigate this rich area further.
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Figure 3. Expected value of output entropy H for resilient func-
tion F from the extended binary Golay code as a function of the
number i of deterministic input bits.
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