
Completely regular codes – a viewpoint and some

problems

W. J. Martin

Department of Mathematical Sciences and Department of Computer Science
Worcester Polytechnic Institute, Worcester, Massachusetts

martin@wpi.edu

Abstract. Since their introduction in 1973, completely regular codes have been of interest to coding
theorists and graph theorists alike. These highly regular substructures were defined as a generalization
of perfect and uniformly packed error-correcting codes but also include many codes having very small
minimum distance which are fundamental to the study of distance-regular graphs. While interest in
these codes among coding theorists seems to be on the decline, there is reason to believe that the
importance of completely regular codes to the theory of distance-regular graphs has yet to be fully
realized. This paper is an attempt to tell this story and explain these trends. Some open problems are
discussed and a bibliography of recent literature is included.

Keywords: completely regular code, Hamming graph, distance-regular graph, association
scheme. 1991 MSC: 05E30.

1 Introduction: Completely regular codes in coding theory

In 1973, in the context of the search for extremal error-correcting codes, culminating in the
classification by van Lint and Tietäväinen of perfect codes over finite fields, together with
the discovery of the last few sporadic finite simple groups, Philippe Delsarte introduced
a class of codes which enjoy combinatorial (and often algebraic) symmetry akin to that
observed in perfect codes. At the outset, completely regular codes lived a sort of dual life.
By “day”, this was to be a class of codes which would be useful for practical error correction
applications. Delsarte observed that all perfect codes are completely regular and, after a bit of
terminological adjustment, it was agreed that nearly perfect and uniformly packed codes are
succinctly described as those completely regular codes whose covering radius exceeds their
packing radius by one. (This family includes the Preparata codes, for example.) Perhaps
some coding theorists of the day felt that there were more extremal error-correcting codes
to be found in the guise of completely regular codes. It seemed natural to expect that a very
large code with very large minimum distance would have a great deal of symmetry. Recent
work on completely transitive codes can be found in [22, 1].

Yet, from the very beginning, completely regular codes lived a more esoteric “night”
life. Delsarte gave the definition not only for codes in Hamming graphs, but for “codes” in
arbitrary distance-regular graphs. (And, as we shall see, he initiated the study of a wider
class of codes — those which we will call “simple codes” — in association schemes which
are not necessarily P -polynomial.) It was Delsarte who posed the question of existence of
non-trivial perfect codes in the Johnson graphs.
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Independently, Biggs and co-workers Smith and Hammond were exploring perfect codes in
distance-regular graphs, extending the definitions and machinery (such as Lloyd’s theorem)
beyond the Hamming graphs, which is essentially the only case of practical interest to coding
theorists. For example, their work led to a classification of all perfect codes in cubic distance-
regular graphs. See [3] for a full bibliography up to 1989.

First, the story from the coding theory viewpoint. After the classification of perfect
codes was complete, van Tilborg and others went to work on the next most interesting
case: uniformly packed codes. In his 1976 thesis, van Tilborg proved that every non-trivial
uniformly packed code has packing radius e ≤ 3. He also determined all uniformly packed
codes with e = 3 and a subclass of those with e = 1, 2. The case of binary linear uniformly
packed codes with e = 2 was settled by Calderbank and Goethals in 1985 with one final
case resolved by Calderbank in 1986. The classification is described in detail in [3, Sec. 11.1].
Examples include the Preparata codes, a family of 2-error-correcting binary BCH codes,
many single-error-correcting codes, binary repetition codes in 2m-cubes, and four codes from
the Golay family.

Other completely regular codes in the Hamming graphs include the Kasami codes, the
extended Preparata codes, a few more codes from the Golay family, a few Hadamard codes
of length 12 or less, and many more if one allows minimum distance three or less. Extending
work of Rifà and Huguet, Brouwer, et al. [3] prove that any translation distance-regular graph
of diameter at least three defined on an elementary abelian group is the coset graph of some
completely regular code in some Hamming graph. See [35, 36, 38, 39] for papers containing
results of this sort.

But from a coding theorist’s viewpoint, this harvest was disappointing. Apart from the
perfect codes and the codes listed above, there have been no completely regular codes found
with promising error-correcting capabilities. In [2], we read that “it has been conjectured for
a long time that if C is a completely regular code and |C| > 2, then e ≤ 3.” In [34], Neumaier
conjectured that the only completely regular codes with minimum distance d(C) ≥ 8 are
the binary repetition codes and the extended binary Golay code. While these conjectures
are of interest in the theory of distance-regular graphs, they signal the end of the story for
algebraic coding theorists.

Before we change direction entirely, and before we stop to give the relevant definitions, we
mention a few more problems related to completely regular codes in the Hamming graphs.
The general idea is to restate fundamental problems regarding distance-regular graphs in the
narrower context of coset graphs:

• (Brouwer, et al. [3, p357]) Is it true that a distance-regular coset graph (which is neces-
sarily the coset graph of some completely regular code) with classical parameters is one
of the known graphs?

• Is it true that a distance-regular coset graph of sufficiently large diameter isQ-polynomial?

• Does Neumaier’s conjecture hold for additive completely regular codes? (I.e., for distance-
regular coset graphs, is there is an upper bound on i such that cj = j and aj = a1j for
all j ≤ i with the exception of Hamming (and Doob) graphs themselves?
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2 Definitions

Let Γ denote a distance-regular graph of diameter d on vertex set X with adjacency matrix
A, distance matrices A0, . . . , Ad and Bose-Mesner algebra A acting on V = R

X . For x ∈ X
and 0 ≤ i ≤ d, write

Γi(x) = {y ∈ X : ∂(x, y) = i}

where ∂(x, y) is the length of a shortest path from x to y in the undirected graph Γ . For
C ⊆ X, we consider the minimum distance of C (when |C| > 2)

δ = d(C) = min {∂(x, y) : x, y ∈ C, x 6= y}

and the covering radius of C

ρ = ρ(C) = max {∂(x,C) : x ∈ X}

where the distance from vertex x to the set C is ∂(x,C) = min{∂(x, c) : c ∈ C}. The degree
of C is the number of non-zero distances that occur between pairs c, c′ in C.

The space V naturally decomposes into pairwise orthogonal maximal eigenspaces V0,
. . ., Vd for the matrix A: for v ∈ Vj, Av = θjv where, by convention, we will assume that
θ0 > θ1 > · · · > θd are the distinct eigenvalues of A in decreasing order. Let Ej denote the
matrix representing orthogonal projection from V onto Vj. We will be interested in a certain
A-module associated to the code C. Let x ∈ V denote the characteristic vector of C: the
entry in position c is one if c ∈ C and zero otherwise. The outer distribution module of C is
the subspace

Ax = {Mx : M ∈ A}

of V . This is seen to be the column space of the outer distribution matrix D whose rows are
indexed by X and whose columns are labelled 0, 1, . . . , d. The entry in row u, column i is
the number of codewords at distance i from u: Du,i = |Γi(u) ∩ C|. Hence the ith column of
D is Aix and since the Ai span A, we have Ax = colspD. The integer s∗ = rank(D) − 1 is
called the dual degree of C. It is an easy exercise to show that ρ ≤ s∗ for any code C. The
case of equality is sometimes interesting.

A code C ⊆ X is completely regular if there exist constants rij (0 ≤ i ≤ ρ, 0 ≤ j ≤ d)
such that, whenever ∂(x,C) = i, the entries in row x of D are ri0, ri1, . . . , rin; that is, the
(u, j)-entry of D depends only on j and the distance from u to C and not on u itself. Delsarte
introduced this concept in 1973, showing that the class of completely regular codes contains
all perfect codes and all uniformly packed codes (in any distance-regular graph).

Any code C determines a natural partition of the vertex set X according to distance from
C. Define, for 0 ≤ i ≤ ρ,

Ci = {u ∈ X : ∂(u,C) = i} .

Then π = {C0, C1, . . . , Cρ} is the distance partition of X with respect to C. Such a partition
is called equitable [18, p75] if the number of vertices in Cj adjacent to a vertex in Ci depends
only on i and j and not on the choice of vertex. By the triangle inequality,a vertex in Ci has
all its neighbors in Ci−1 ∪ Ci ∪ Ci+1; so for this particular type of partition, most of these
values are zero. (It will be convenient to define C−1 = Cρ+1 = ∅.)
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Theorem 1 (Cf. Neumaier [34]). Let Γ be a distance-regular graph with vertex set X
and let C be a non-empty subset of Γ . With notation as above, the following are equivalent:

(i) C is a completely regular code;
(ii) the distance partition π of X with respect to C is equitable;
(iii) the outer distribution module Ax is closed under entrywise multiplication and satisfies

ρ = s∗.

Proof ((i)⇒ (iii)). Let xi denote the characteristic vector of the cell Ci of the distance
partition. If C is completely regular, then each column of D is a linear combination of
x0, . . . ,xρ. So the span of these ρ+ 1 vectors contains Ax. But ρ+ 1 ≤ s∗ + 1 = dimAx. So
the module admits a basis of ρ+ 1 pairwise orthogonal 01-vectors. Now (iii) follows.

[(iii) ⇒ (i)] If (iii) holds, then the outer distribution module admits a basis of ρ + 1
pairwise orthogonal 01-vectors. By induction, starting with the basis {x, Ax, . . . , Aρx}, one
quickly sees that these must be x0, . . . ,xρ. Thus every column of D is a linear combination
of x0, . . . ,xρ and (i) holds.

[(iii) ⇒ (ii)] Since (iii) holds, we know that x0, . . . ,xρ is a basis for Ax. So, for each i,
Axi can be expressed as a linear combination of x0, . . . ,xρ. Interpreting this combinatorially,
we find that partition π is equitable.

[(ii) ⇒ (iii)] If π is equitable, then Axi is a linear combination of xi−1, xi and xi+1 (with
x−1 = xρ+1 = 0). So the space W spanned by the xi is A-invariant. Since A is generated by
A and x ∈ Ax, W is equal to Ax. ut

In light of this theorem, we use the three characterizations interchangeably. Each view-
point aids in the proof of some basic result, as we now show.

Proposition 1 (Neumaier [34]). Let Γ be a distance-regular graph with valency k and
let C be a completely regular code in Γ with covering radius ρ. Then Cρ is also completely
regular.

Proof. Immediate from (ii). ut
Theorem 2 (Delsarte [12]). For any code C having dual degree s∗ and covering radius ρ
in a distance-regular graph Γ , we have ρ ≤ s∗ and d(C) ≤ 2s∗ + 1. If d(C) ≥ 2s∗ − 1, then
C is completely regular.

Proof. Let u0, u1, . . . , uρ be vertices of Γ with ui ∈ Ci. Then the submatrix M of D deter-
mined by restricting to these ρ + 1 rows (in this order) has Mii > 0 and Mij = 0 for j < i
(0 ≤ i ≤ ρ). So s∗+ 1 = rankD ≥ rankM = ρ+ 1. Clearly, d(C) ≤ 2ρ+ 1, so d(C) ≤ 2s∗+ 1.
Now if d(C) = 2s∗ + 1, then columns 0, 1, . . . , ρ of D form a basis for Ax. So the entry
in row u, column i of D depends only on the entries in row u, columns 0, . . . , ρ, which in
turn depend only on d(u,C). Thus C is completely regular. If d(C) = 2s∗ − 1 or 2s∗, then
columns 0, . . . , s∗−1 are linearly independent and appending the all-ones vector (the sum of
all columns of D) to this set again yields a basis consisting of vectors whose u-entries depend
only on d(u,C). ut
Question: Is there any additional hypothesis which implies complete regularity when d(C) =
2s∗ − 2?

Following [5], we define the width of a subset C in a distance-regular graph Γ to be the
maximum distance between any two vertices of C: w = max{∂(c, c′)|c, c′ ∈ C}.
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Theorem 3 ([5]). For any code C having width w and dual degree s∗ in a distance-regular
graph Γ of diameter d, we have w + s∗ ≥ d. If w + s∗ = d, then C is a completely regular
code. ut

The case where w + s∗ = d includes many fundamental substructures in the classical
distance-regular graphs [13]. Further information about such substructures helps us to un-
derstand the classical familes. If Γ is also Q-polynomial, one may also define the dual width of
C as w∗ = max{j|Ejx 6= 0} where x is the characteristic vector of C and the primitive idem-
potents are in a Q-polynomial ordering. It is known that, for any code C in a Q-polynomial
distance-regular graph of diameter d, we have w + w∗ ≥ d. We expect a nice classification
of those codes satisfying w + w∗ = d in the classical families: Hamming, Johnson and their
q-analogues.

3 Feasibility conditions

Let C be a completely regular code with equitable distance partition

π = {C0, C1, . . . , Cρ} .

Then, with C−1 = Cρ+1 = ∅, there exist integers αi, βi, γi (0 ≤ i ≤ ρ) such that each vertex
in Ci has αi neighbors in Ci, βi neighbors in Ci+1, and γi neighbors in Ci−1. The intersection
array of C is the ordered pair of sequences

ι(C) = {β0, β1, . . . , βρ−1; γ1, γ2, . . . , γρ}.

Typically the graph Γ (or, as in the case of codes in the Hamming graphs, a family of graphs
Γ ) is understood from the context.

Little progress has been made toward establishing feasibility conditions for an intersection
array {β0, . . . , βρ−1; γ1, . . . , γρ}. There are obvious conditions based on the fact that the |Ci|
must be integers summing to |X|. In some cases, the local structure of the graph Γ imposes
restrictions on adjacent βi and γj. The strongest feasibility condition, by far, is Lloyd’s
Theorem, which is presented in the next section.

A natural condition to expect is monotonicity:

γ1 ≤ γ2 ≤ · · · ≤ γρ, β0 ≥ β1 ≥ · · · ≥ βρ−1. (1)

The following simple example shows that this property does not necessarily hold for com-
pletely regular codes in arbitrary distance-regular graphs:
Example: Let Γ be the dodecahedron and let C be the vertex set of any pentagon in Γ .
Then C is a completely regular code with intersection array {1, 2, 1; 1, 2, 1}.

This example – along with an infinite family of others violating the monotonicity con-
dition – was given in [26] along with the perhaps surprising result that the monotonicity
conditions do hold for completely regular codes in many families of classical distance-regular
graphs. Koolen proves that, if the graph Γ admits a non-identity automorphism α with
∂(y, αy) ≤ 1 for all vertices y, then (1) holds for any completely regular code in Γ . For
instance, it follows that the monotonicity condition holds for all completely regular codes in
a Hamming or Johnson graph. In [27], a stronger monotonicity condition is given in the case
of the Hamming graphs.
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4 The spectrum of a code

The next result is the natural generalization of Lloyd’s theorem to completely regular codes.

Theorem 4 (Neumaier [34]). For any completely regular code C with covering radius ρ
in a distance-regular graph Γ , the tridiagonal matrix

B =


α0 β0

γ1 α1 β1

. . . . . . . . .

γρ−1 αρ−1 βρ−1

γρ αρ


has ρ+ 1 distinct eigenvalues and each of these is an eigenvalue of Γ .

Proof. Using Theorem 1(iii), matrix B represents the action of the adjacency matrix A on
the outer distribution module Ax with respect to the basis x0,x1, . . . ,xρ. ut

The eigenvalues of B, usually written in decreasing order, form what we call the spec-
trum of the code: spec(C) = {θ0, θj1 , . . . , θjρ}. The dual degree set of C is the set S∗(C) =
{j1, . . . , jρ} of non-zero subscripts of those eigenvalues of Γ appearing in spec(C).

We note that the intersection array ι(C) and the graph Γ determine B which, in turn
determines the entries rij of the (reduced) outer distribution matrix. First, use the recurrence

BBi = bi−1Bi−1 + aiBi + ci+1Bi+1

where B−1 = 0, B0 = I, B1 = B and the ai, bi and ci are the intersection numbers of graph
Γ to determine B2, . . . , Bd. (The entry in row h, column j of Bi is the number of vertices in
Cj at distance i from any vertex in Ch.) Then [r0,i, . . . , rρ,i]

⊥ is the zero-th column of Bi. We
can go in the reverse direction as well: the parameters rij determine the matrix B.
Example: The Odd graph Ok has valency k, diameter k−1 and no 4-cycles. If C is a perfect
2-code in Ok, then the above theorem implies that the matrix

B =

 0 k 0
1 0 k − 1
0 1 k − 1


has integer eigenvalues. It follows that k = s2 + s+ 1 for some odd integer s and the (k− 1)-
sets comprising C form a block design with strength t = s2 − 1 on v = 2s2 + 2s + 1 points
consisting of |C| =

(
2s2+2s+1
s2+s

)
/(s2 +1)(s2 +2s+2) blocks. No examples are known with s > 1

yet no proof of non-existence has yet been produced. This situation is explored further in
[23]. We complete our discussion of this example with the following

Theorem 5 (Martin [28]). If C is a perfect code in the Odd graph Ok, then C is also a
completely regular code in the Johnson graph J(2k − 1, k − 1) defined on the same vertex
set. ut
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As in the above example, one tool that comes to our aid in the study of completely
regular codes is combinatorial design theory. In a Q-polynomial scheme with Q-polynomial
ordering 0, 1, . . . , d, a subset C of X is a Delsarte t-design if its characteristic vector x satisfies
Ejx = 0 for j = 1, . . . , t. Celebrated results of Delsarte give combinatorial characterizations
of Delsarte t-designs in the Hamming scheme (here, they are orthogonal arrays of strength
t), the Johnson scheme (t-(v, k, λ) block designs), and their q-analogues. Ironically, it seems
that the lower strength case is easier for us to handle.

Lemma 1. Let C be a completely regular code in distance-regular graph Γ with dual degree
set S∗(C). Then, for j > 0, we have Ejx 6= 0 if and only if j ∈ S∗(C).

Proof. Let P be the |X| × (ρ + 1) matrix whose ith column is xi, the characteristic vector
of Ci. Then AP = PB and if u is any right eigenvector for B belonging to eigenvalue θ,
then v := Pu is a right eigenvector for A with the same eigenvalue. Since we can always
take u to have first entry 1, x is not orthogonal to any of these ρ + 1 eigenspaces. Since
{Ejx : 0 ≤ j ≤ d} spans Ax, a space of dimension ρ+ 1, we are done. ut

In [27], it is shown that if Γ is Q-polynomial with ordering 0, 1, . . . , d and the elements
of the dual degree set of C are j1 < j2 < . . . < jρ, then jh − jh−1 < j1 for each h = 2, . . . , ρ.
This rules out many parameter sets for completely regular codes in the Hamming graphs.

I should mention that Fiol and Garriga have some interesting results which characterize
completely regular codes as extremal subsets with respect to spectral phenomena in [16, 15].
Their work makes use of orthogonal polynomials.

5 Codes with small strength

Meyerowitz [32, 33] classified the completely regular codes of strength zero in the Hamming
graphs and the Johnson graphs. (He also found all completely regular codes in the complete
multipartite graphs.)

Theorem 6 (Meyerowitz). Let C be a completely regular code in the Hamming graph
H(n, q) with E1x 6= 0. Then C is isomorphic to a code of the form

C ′ = {y = (y1, . . . , yn) | y1, y2, . . . , yρ < γ1} .

Proof. Let wi,a denote the characteristic vector of the completely regular code consisting of
all q-ary n-tuples whose ith coordinate is equal to a. Then

{wi,a | 1 ≤ i ≤ n, a = 0, 1, . . . , q − 1}

is a set of 01-vectors which spans V0 ⊕ V1. (One easily checks that each of these codes has
dual degree set {1} and that each character in V1 can be expressed as a linear combination
of the wi,a.

Next, Meyerowitz shows that a vector u in V1 can be uniquely expressed as

u =
n∑
i=1

q−1∑
a=0

τi,awi,a
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subject to the restriction that
∑

a τi,a = 0 for each i. Let u = E1x and consider this expansion
for u. The entry indexed by a q-ary n-tuple y is

uy =
n∑
i=1

τi,yi .

Now we also have u = ω0x0 + ω1x1 + · · · since E1x ∈ Ax. The coefficients ω0, ω1, . . . are
the entries of some right eigenvector of B belonging to eigenvalue θ1. Let us scale u so that
ω0 = 1. Then

α0ω0 + β0ω1 = θ1ω0

giving ω1 = (θ1 − α0)/(k − α0) < 1. Next we see that an n-tuple y of Hamming weight one
— with yj = a 6= 0, say — satisfies

uy =
∑
i6=j

τi,0 + τj,a = 1 + (τj,a − τj,0).

So if y ∈ C, we have τj,a = τj,0 and, otherwise, y ∈ C1 and τj,a = τj,0 − (1− ω1) < τj,0.
Since y ∈ C requires uy = 1, we find that y ∈ C only if τi,yi = τi,0 for all i. It is easy to

check that this condition is also sufficient: let 0 = z0, z1, . . . , z` = y be a geodetic path from
0 to y; each τi,zji

= τi,0 so no zj lies in C1; thus all lie in C0.

Next, let y be a vertex of Hamming weight one lying in C1. Then y has γ1 neighbors in
C and these must all differ from y in the same coordinate. It follows that, for each i, either
all τi,a = τi,0 or exactly γ1 values of a satisfy this condition. ut

For the Johnson graph J(v, k), Meyerowitz proved that each completely regular codes
having strength zero can be described as the collection of all k-sets incident with some fixed
subset T of the ground set. The analogous results for the Grassman and bilinear forms graphs
have yet to be found. I should give a word of warning: in the Grassman graph Gq(4, 2), there
is at least one extra example. Consider a projective point P and a hyperplane H skew to
it. Then the code C consisting of all lines incident to either one is completely regular of
strength zero. So at least some adjustment is required to move from the result for J(v, k) to
the corresponding classification for Gq(v, k).

Following this idea of Meyerowitz — that of describing eigenspaces via 01-spanning sets —
Martin [29] found all completely regular codes in J(v, k) having strength one and minimum
distance greater than one. The minimum distance one case remains unresolved. For the
Hamming graphs, Martin [31] proved that any completely regular code with strength t has
minimum distance at most 2t+ 1, with the exception of binary repetition codes. Something
similar should hold for the Johnson graphs and perhaps other classical families. It seems
that the locally sparse graphs are the only ones that admit completely regular codes having
large minimum distance.

6 Completely regular partitions

Algebraically, the concept of a completely regular code is dual to that of a (cometric) induced
association scheme. This duality is simplest in the case of the Hamming graphs: a linear code
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C is completely regular if and only if the Hamming relations, restricted to the dual code
C⊥, form a cometric association scheme on C⊥. Moreover, the distance-regular coset graph
obtained from C and this induced scheme form a dual pair of association schemes.

In an antipodal distance-regular graph Γ , any non-empty subset of an antipodal class
is completely regular. Moreover, the partition of Γ into antipodal classes is a “completely
regular” partition [3, p351] with the property that the folded graph Γ̄ can be viewed as having
these completely regular codes as its vertices, two being joined by an edge precisely when
there exists an edge of Γ from a vertex in one to a vertex in the other. (See Sec. 11.1 of [3] for
full details.) This seems to be just the tip of an iceberg. As stated in the introduction, there
are other ways to form a distance-regular quotient graph than simply collapsing antipodal
classes. Yet, aside from coset graphs — quotients of the Hamming graphs — I know of few
examples.

As stated above, completely regular partitions of the Hamming graphs are intrinsic to
the study of translation distance-regular graphs. Aside from the folded Johnson graphs and
some yielding trivial quotients, I know of no completely regular partitions of the Johnson
graphs and have some partial results in [28]. When such a quotient exists, its completely
regular codes all lift back to the original graph.

Theorem 7 ([28]). Let Γ be a distance-regular graph with vertex set X and let σ =
{C1, . . . , Cm} be a completely regular partition of X giving rise to the distance-regular quo-
tient graph Γ̄ with vertex set σ. Let ψ : X → σ be the natural map sending each vertex of Γ
to the fibre containing it.

• If S is any completely regular code in Γ̄ , then ψ−1(S) is a completely regular code in Γ ;
• if S is a completely regular code in Γ which is expressed as a union of fibres, then ψ(S)

is a completely regular code in Γ̄ .

Proof. Straightforward. ut
Consider the three Moore graphs of diameter two and a hypothetical fourth such graph

of valency fifty-seven. Each known graph appears in each larger known graph as a completely
regular code and in fact we have completely regular partitions: the quotient of the Petersen
graph over two disjoint pentagons yields K2; collapsing the Hoffman-Singleton graph over a
completely regular partition into five Petersen graphs yields K5 as a quotient; the quotient
of the Hoffman-Singleton graph over a completely regular partition into ten pentagons is the
complete bipartite graph K5,5.

If a Moore graph of valency 57 exists, the quotient over a completely regular partition
into pentagons would yield an SRG(650, 55; 0, 5) — this parameter set is currently open.
Likewise, if the putative graph of valency 57 admits a completely regular partition into
Petersen subgraphs, the quotient would be an SRG(325, 54; 3, 10) — again an open case.
It is easy to see that a Moore graph of valency 57 could not admit a completely regular
partition into Hoffman-Singleton graphs as the quotient would be a strongly regular graph
on 65 vertices with valency k = 50 and a2 = 0.

Having made these lofty statements, I must admit that, while our hypothetical Moore
graph is guaranteed to contain plenty of pentagons, I cannot even prove that it must contain
a single Petersen graph. This was posed as an open problem by Godsil in [19].
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7 Small covering radius

Canogar [8] and Fon-Der-Flaass [17] independently provided constructions for completely
regular codes having covering radius one in the n-cube. They each prove that the obvious
necessary conditions for the feasibility of the array {β0; γ1} are asymptotically sufficient, in

the sense that, for sufficiently large a, the array

[
a β0

γ1 a+ β0 − γ1

]
is the intersection matrix

of some completely regular code. Fon-Der-Flaass further points out that, for n large enough,
such a code must be the product of a trivial code and a code with the same intersection
array in the (n − 1)-cube. It seems feasible to extend this analysis to the Hamming graphs
H(n, q) for q > 2. Note that no attempt is made in these papers to classify codes up to
isomorphism; even the case of perfect 1-codes is unwieldy.

Classifying completely regular codes with ρ = 1 in the Johnson graphs includes a classi-
fication of all Steiner triple systems and all Steiner quadruple systems [30]. The spectrum of
parameters for such designs is however known. The following problem further suggests that
the case of the Johnson graphs will be much harder to handle than the Hamming graphs.
What has become to be known as “Delsarte’s conjecture” is the claim that there are no
perfect e-codes in the Johnson graphs with e ≥ 1 and |C| > 2. Roos proved the necessary
condition k − 1 ≥ ev/(2e+ 1). (We may assume, without loss, that k ≤ v/2.)

For e = 1, we find that there exist integers r and s for which k = rs+1, v = 2rs+r−s+1
and the perfect 1-code is a block design of strength t = (r−1)s. The derived design, consisting
of all blocks of C which contain any specified symbol is also a completely regular code. This
code has intersection array {(k − 1)(v − k), v − k − 1; 1, (k − 1)(v − k − 1)} and Lloyd’s
Theorem holds vacuously since the eigenvalues of the 3 × 3 tridiagonal matrix B for this
code are the valency, (k − 1)(v − k), and s and −r. More generally, we have

Theorem 8 (Martin [28]). If C is a non-trivial perfect code in J(v, k), then the derived
design

C ′ = {x \ {1} : 1 ∈ x ∈ C}
forms a completely regular code in the Johnson graph J(v − 1, k − 1). ut

Thus Lloyd’s Theorem for the derived design provides an additional number-theoretic
condition on the existence of the perfect code. For a more interesting example, suppose C is
a perfect 2-code in J(v, k). Then Lloyd’s Theorem for C implies that W given by

W 2 = (v − 2)(v − 10) + 4k(v − k)

is an integer. (Note that trivial perfect 2-codes exist in J(v, 2) and J(10, 5).) The intersection
numbers for the derived design in this case are

γi =

{
i2, i = 0, 1, 2

(k + i− 4)(v − k + i− 5), i = 3, 4

and

βi =


(k − i)(v − k − i), i = 0, 1

2(v − k − 2), i = 2
(5− i)(4− i), i = 3, 4

.
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So the eigenvalues of the corresponding tridiagonal matrix B are τ0 = (k − 1)(v − k),

τ1 =
2k +W − 5 +X

2

τ2 =
2k +W − 5−X

2

τ3 =
2k −W − 5 + Y

2

τ4 =
2k −W − 5− Y

2

where X and Y , given by

X2 = v2 + 4v − 11− 4k(v − k) + 2W

and

Y 2 = v2 + 4v − 11− 4k(v − k)− 2W

are required to be integers. This rules out many, but not all, feasible parameter sets for
perfect 2-codes in J(v, k).

The best results to date on this problem are those of Etzion [14], who found designs
in the local structure and obtained strong number-theoretic restrictions on the existence of
such codes. The case e = 1 seems simplest and this is worth revisiting.

8 Simple subsets

Let (X,A) be a symmetric association scheme and C ⊆ X. The outer distribution matrix
of C is the |X| × (d + 1) matrix D with rows indexed by the vertices, columns indexed by
the relations and (y, i) entry equal to the number of elements of C which are i-related to
y. The rank of D is s∗ + 1 where s∗ is the dual degree of C. Clearly D has at least s∗ + 1
distinct rows. If equality holds then, following [21], we say that C is a simple subset. In [12]
and in [21], simple subsets play an important role in the study of quotient schemes. One
may think of completely regular codes as the “P -polynomial” simple subsets. Examples are
known of such P -polynomial simple subsets in non-P -polynomial association schemes. More
specifically, as one would naturally expect, a non-P -polynomial association scheme may have
a P -polynomial quotient. (For example, one may obtain cycles from dihedral groups.) There
should be more interesting examples of this sort.

On the other hand, we know very little about “Q-polynomial” simple subsets. If C is such
a subset and the eigenspaces are ordered so that Ejx 6= 0 for j = 0, . . . , s∗, then the span of
the vectors {E0x, . . . , Es∗x} is closed under entrywise multiplication (equitable partition!).
So there exist coefficients qki,j satisfying

(Eix) ◦ (Ejx) =
s∗∑
k=0

qki,jEkx.
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We know of completely regular codes for which these analogues of Krein parameters can
be negative. So one asks for sufficient conditions to ensure qki,j ≥ 0 for all i, j and k. It is
fairly clear what the Q-polynomial property should be (except that the reader may object
to the possibility that the Q-polynomial ordering for C may be inconsistent with the Q-
polynomial ordering for (X,A)). We have the analogue of a completely regular partition for
general association schemes and these Q-polynomial simple codes might provide a way to
obtain some Q-polynomial quotients. We do currently have quite a shortage of Q-polynomial
schemes that are not P -polynomial.

It is sometimes possible to assign a meaningful partial order on the eigenspaces of an
association scheme which is not Q-polynomial. For example, the eigenspaces of the symmetric
group Sn are indexed by all partitions of n and these are naturally ordered by reverse
dominance order. We can thus define the dual width of a set of permutations as the largest
height of a partition appearing in its dual degree set. It seems fruitful to study the extremal
codes and the simple subsets in this association scheme.

9 Summary

I have given the opinion that completely regular codes are unlikely to be of further use to
coding theorists. Recent record-breaking codes have been found by augmenting known codes
with nice structure by messy collections of additional codewords found using clique-finding
software. Furthermore, many coding theorists have lost interest in what was once called the
“Main Problem of Coding Theory”: that of finding the largest binary code for a given length
and minimum distance. Current interest is rather directed toward turbo codes, LDPC codes,
and convolutional codes. Even without a proof of Neumaier’s conjecture, the search for large
completely regular codes with strong error-correcting capabilities seems less than promising.

On the other hand, completely regular codes seem to play a fundamental role in the
study of distance-regular graphs and there are many structural questions begging to be
answered. Codes of width d−s∗ appear in regular semilattices, completely regular partitions
are intrinsic to the study of distance-regular quotient graphs, such codes may play a role in
uniqueness proofs, and such codes sometimes give a useful spanning set for a direct sum of
eigenspaces of a Q-polynomial graph.

Finally, let me observe that the bound d(C) ≤ 7 conjectured by Neumaier for the Ham-
ming graphs (with the exception of the binary repetition codes and the extended binary
Golay code) may in fact hold for completely regular codes in arbitrary distance-regular
graphs. Aside from codes contained in antipodal classes, I know of no completely regular
code in any distance-regular graph with d(C) > 8.
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347–356.



14 MARTIN
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