CIMPA Philippines Semidefinite Prog. in Alg. Combin. July 30, 2009

Student Problem Set 6

Instructions: Please solve these problems in today's problem session at 4:30 (and continue later, as needed) in groups and present the solutions on the black/whiteboards in the front of the room. You are encouraged to ask questions and to ask for help.

- 1. Prove that the irreducible representations of a finite abelian group have dimension 1.
- 2. Use the previous exercise and the magic formula $|G| = \sum d_R^2$ to prove that an abelian group G has |G| irreducible representations.
- 3. We want to compute the irreducible representations of A_4 .
 - (a) Find a normal subgroup H of A_4 such that the quotient A_4/H is cyclic of order 3.
 - (b) Construct 3 representations of degree 1 of A_4 from the ones of A_4/H .
 - (c) Use the magic formula to have a guess for the degree of a missing irreducible representation of A_4 .
 - (d) Construct an irreducible representation of degree 3 of A_4 from the isometries of a regular polytope.
 - (e) Conclude
- 4. Prove that $\langle \chi_V, \chi_V \rangle = 1$ if and only if V is irreducible.
- 5. For $V = P_k$, which denotes the subspace of $C(H_n)$ generated by the χ_y with |y| = k compute $\langle \chi_V, \chi_V \rangle$ and use previous exercise to derive that P_k is irreducible. Here we are considering the action of $T \rtimes S_n$. Is P_k irreducible for the action of S_n ?
- 6. Prove Parseval formula in Frank talk:

$$\langle f,g \rangle = \sum_{u \in \{0,1\}^n} \hat{f}(u)\hat{g}(u)$$

7. Prove the formula in Frank talk:

$$\widehat{1_{A-y}}(u) = \widehat{1_A}(u)\chi_u(y)$$

8. Prove that, for the Krawtchouk polynomials K_k associated to the Hamming cube $\{0,1\}^n$,

$$\binom{n}{u}K_k(u) = \binom{n}{k}K_u(k)$$