CIMPA Philippines Semidefinite Prog. in Alg. Combin. July 28, 2009

Student Problem Set 4

Instructions: Please solve these problems in today's problem session at 4:30 (and continue later, as needed) in groups and present the solutions on the black/whiteboards in the front of the room. You are encouraged to ask questions and to ask for help.

- 1. A subset A of a Euclidean space E is convex if, for all $x, y \in A$ and all $t \in [0, 1]$, tx + (1 t)y belongs to A as well. Prove that every cone in a Eulcidean space is convex.
- 2. Prove that the Hadamard (or Schur) product $X \circ Y$ of two psd matrices X and Y (of the same size) is also psd. [HINT: Use the spectral decomposition.]
- 3. A subset A of a Euclidean space E is an *affine subspace* if, for all $x, y \in A$ and all $t \in \mathbb{R}, tx + (1 t)y$ belongs to A. Prove that the solution set to any linear system $\{a_i \cdot x = b_i : 1 \le i \le m\}$ is an affine subspace.
- 4. Finish Frank's proof from Friday that every non-negative polynomial over the reals is expressible as a sum of squares of polynomials. That is, if

$$f(x) = \prod_{i=1}^{r} (x - \beta_i)(x - \bar{\beta}_i)$$

for some complex nubmers β_i , then $f = \sum_{\ell} g_{\ell}^2$ for some real polynomials g_{ℓ} . [HINT: Just show that

$$(x - \beta)(x - \overline{\beta}) = (x - \mathcal{R}e\beta)^2 + (\mathcal{I}m\beta)^2.$$
]

(Extra credit: For a, b, c, d, verify

$$(a^{2} + b^{2})(c^{2} + d^{2}) = (ad - bc)^{2} + (bd + ac)^{2}$$

to show that p is expressible as a sum of only two squares.)

5. For a given polynomial p(x), express the following optimization problem in standard SDP form:

$$\max \alpha$$

subject to

$$p(x) - \alpha = \begin{pmatrix} 1 \\ x \\ \vdots \\ x^d \end{pmatrix}^t Q \begin{pmatrix} 1 \\ x \\ \vdots \\ x^d \end{pmatrix}$$

where Q is a psd matrix of order d + 1.

- 6. Solve the above SDP by hand for $p(x) = ax^2 + bx + c$, a > 0.
- 7. If p(x) is a SOS of degree 2d, find a psd matrix Q of order d + 1 such that

$$p(x) = \begin{pmatrix} 1 \\ x \\ \vdots \\ x^d \end{pmatrix}^t Q \begin{pmatrix} 1 \\ x \\ \vdots \\ x^d \end{pmatrix}.$$

- 8. Let $\mathcal{K} = S_{\geq 0}^n$ be the cone of positive semidefinite matrices in the Euclidean space $E = S^n$ of all symmetric $n \times n$ matrices with inner product $M \cdot N = \text{trace}(MN)$. Frank proved that \mathcal{K} contains its dual cone \mathcal{K}^* . Now prove that $\mathcal{K} \subseteq \mathcal{K}^*$.
- 9. Find a simple example of a cone which is not equal to its dual. [HINT: Take the complete space E or any linear subspace of \mathbb{R}^n .]
- 10. Finish Frank's proof of the Duality Theorem.
- 11. Let W' be a symmetric $n \times n$ matrix with non-negative entries and zero diagonal. Define the $n \times n$ matrix W by

$$W_{ij} = \begin{cases} \sum_{k=1}^{n} W'_{ik}, & \text{if } i = j; \\ -W'_{ij}, & \text{if } i \neq j. \end{cases}$$

Prove that $W \succeq 0$.