CIMPA Philippines Semidefinite Prog. in Alg. Combin. July 21, 2009

Student Problem Set 2

Instructions: Please solve these problems in today's problem session at 4:30 (and continue later, as needed) in groups and present the solutions on the black/whiteboards in the front of the room. You are encouraged to ask questions and to ask for help.

1. If a and b are vertices of the n-cube and dist(a, b) = i, compute

$$\sum_{\operatorname{vt}(c)=j} (-1)^{c \cdot a} (-1)^{c \cdot b}.$$

[HINT: The answer is $\sum_{\ell=0}^{j} (-1)^{\ell} {i \choose \ell} {n-i \choose j-\ell}$.]

2.

- 3. We find generators for the *automorphism group* of the *n*-cube Q_n :
 - (a) Prove that, for any $c \in \mathbb{Z}_2^n$, the permutation $\phi_c : X \to X$ which sends a to a + c preserves adjacency (i.e., for any $a, b \in X$, a is adjacent to b if and only a + c is adjacent to b + c;
 - (b) Prove that, for any $\tau \in S_n$ (the symmetric group on *n* letters), the permutation $\hat{\tau}: X \to X$ which sends $a = (a_1, \ldots, a_n)$ to $(a_{\tau(1)}, \ldots, a_{\tau(n)})$ preserves adjacency.
- 4. Prove $A_i A_j = \sum_{k=0}^n p_{ij}^k A_k$ where $p_{ij}^k = \binom{k}{\ell} \binom{n-k}{i-\ell}$ where $\ell := (i+k-j)/2$.
- 5. Prove that, for $i \neq j$, $\sum_{\ell=0}^{n} {n \choose \ell} K_i(\ell) K_j(\ell) = 0$. What is this sum when i = j? [HINT: Use the orthogonality of characters and the expression where we first saw $K_i(t)$.]
- 6. Show that A_0 is the identity matrix.
- 7. Show that $A_0 + A_1 + \cdots + A_n = J$, the all-ones matrix.
- 8. Show that A_i has constant row sum $\binom{n}{i}$.
- 9. Prove that $A_1A_i = (n i + 1)A_{i-1} + (i + 1)A_{i+1}$ and use this, together with a simple induction argument, to prove that A_i is expressible as a polynomial of degree i in A_1 .
- 10. Prove that the vector space A is closed under entrywise multiplication of matrices: if $M = [m_{ij}]$ and $N = [n_{ij}]$, then $M \circ N$ is the matrix with (i, j)-entry $m_{ij}n_{ij}$.
- 11. Prove that each A_i and the sum of any subset of $\{A_0, \ldots, A_n\}$ is idempotent under \circ .

- 12. Give a full description of the positive semidefinite cone in the space of symmetric 2×2 matrices.
- 13. Prove that every linear programming problem can be expressed in any one of the following three forms:

$$\max c^{\top} x \qquad \max c^{\top} x \qquad \max c^{\top} x$$
$$Ax \le b \qquad Ax = b \qquad Ax \le b$$
$$x \ge 0 \qquad x \ge 0$$

by changing the number of variables and/or constraints.

- 14. Write down the linear programming problem for a binary code of length 7 and minimum distance $\delta \geq 3$. With the added assumption that $a_7 = 1$ (and a bit of thinking), solve this LP to find the optimal weight distribution of such a code.
- 15. For n = 3, consider the space of real-valued polynomials in x, y, z. Find a harmonic polynomial that is equal to the (not harmonic) polynomial x^2 on the entire sphere.
- 16. (a) Determine the dimension of \mathcal{P}_k , the vector space of polynomials on \mathbb{R}^n of degree at most k.

(b) How show that the space \mathcal{H}_k of harmonic polynomials of degree at most k on \mathbb{R}^n , has dimension

$$\binom{n+k-1}{k} + \binom{n+k-2}{k-1}.$$

17. For n = 2, the Laplacian

$$\Delta = \frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2}$$

is expressed in polar coordinates (r, θ) as

$$\Delta = \frac{\partial^2}{\partial r^2} + \frac{1}{r}\frac{\partial}{\partial r} + \frac{1}{r^2}\frac{\partial^2}{\partial \theta^2}.$$

18. if f and g are functions on \mathbb{R}^n and all the following integrals make sense, then

$$\int_{\mathbb{R}^n} f(\Delta g) = \int_{\mathbb{R}^n} (\Delta f) g.$$