Hey! You Can't Do That With My Code!

William J. Martin

Department of Mathematical Sciences and Department of Computer Science Worcester Polytechnic Institute

CIMPA-UNESCO-PHILIPPINES Research Summer School UP Diliman, July 27, 2009

K ロ ⊁ K 倒 ≯ K ミ ⊁ K ミ ⊁

 $2Q$

重

Outline

(T, M, S) -Nets

[Resilient Functions](#page-48-0)

[Fuzzy Extractors](#page-78-0)

メロメメ 御き メミメメ ミト

È

 299

First: The Omissions

 \blacktriangleright Perhaps the most exciting developments in algebraic coding theory since 1990 are

イロト イ押 トイモト イモト

重

First: The Omissions

- \triangleright Perhaps the most exciting developments in algebraic coding theory since 1990 are
- \blacktriangleright the theory of quantum error-correcting codes

K ロ ⊁ K 倒 ≯ K ミ ⊁ K ミ ⊁

重

First: The Omissions

- \triangleright Perhaps the most exciting developments in algebraic coding theory since 1990 are
- \blacktriangleright the theory of quantum error-correcting codes
- \triangleright The PCP Theorem in computational complexity theory: e.g. $\mathsf{NP} = \mathsf{PCP}_{1-\epsilon,\frac{1}{2}}[\mathit{O}(\log n),3]$ (Håstad, 2001)

K ロ ⊁ K 倒 ≯ K ミ ⊁ K ミ ⊁

Part I: (T, M, S) -Nets

メロメ メタメ メミメ メミメ

 \equiv

 299

 (T, M, S) [-Nets](#page-5-0) Resilient [Fuzzy Extractors](#page-78-0)

Using Codes to Estimate Integrals

If orthogonal arrays can be used to approximate Hamming space, can they also be used to approximate other spaces?

a mills.

 \mathcal{A} and \mathcal{A} in \mathcal{A} . If \mathcal{A}

 $\left\{ \begin{array}{c} 1 \end{array} \right.$

Key Results

 \blacktriangleright 1967: Sobol' sequences (I. Sobol') [also Halton/Faure/ Hammersley sequences]

K ロ ⊁ K 倒 ≯ K ミ ⊁ K ミ ⊁

重

Key Results

- \blacktriangleright 1967: Sobol' sequences (I. Sobol') [also Halton/Faure/ Hammersley sequences]
- ▶ 1987: (T, M, S) -nets (Niederreiter)

K ロ ⊁ K 倒 ≯ K ミ ⊁ K ミ ⊁

重

Key Results

- \blacktriangleright 1967: Sobol' sequences (I. Sobol') [also Halton/Faure/ Hammersley sequences]
- ▶ 1987: (T, M, S) -nets (Niederreiter)
- ▶ 1996: generalized orthogonal arrays (Lawrence)

K ロ ⊁ K 倒 ≯ K ミ ⊁ K ミ ⊁

 $2Q$

目

 (T, M, S) [-Nets](#page-5-0) Resilie [Fuzzy Extractors](#page-78-0)

Key Results

- \blacktriangleright 1967: Sobol' sequences (I. Sobol') [also Halton/Faure/ Hammersley sequences]
- ▶ 1987: (τ, M, S) -nets (Niederreiter)
- \blacktriangleright 1996: generalized orthogonal arrays (Lawrence)
- \triangleright 1996: ordered orthogonal arrays (Mullen/Schmid)

 $2Q$

メロメ メ御 メメミメメミメ

Key Results

- \blacktriangleright 1967: Sobol' sequences (I. Sobol') [also Halton/Faure/ Hammersley sequences]
- ▶ 1987: (τ, M, S) -nets (Niederreiter)
- \blacktriangleright 1996: generalized orthogonal arrays (Lawrence)
- \triangleright 1996: ordered orthogonal arrays (Mullen/Schmid)
- 1996: Constructions from algebraic curves (Niederreiter/Xing)

 $2Q$

メロメ メ御 メメミメメミメ

Key Results

- \blacktriangleright 1967: Sobol' sequences (I. Sobol') [also Halton/Faure/ Hammersley sequences]
- ▶ 1987: (T, M, S) -nets (Niederreiter)
- \blacktriangleright 1996: generalized orthogonal arrays (Lawrence)
- \triangleright 1996: ordered orthogonal arrays (Mullen/Schmid)
- **1996:** Constructions from algebraic curves (Niederreiter/Xing)
- ▶ 1999: MacWilliams identities, LP bounds, association scheme (WJM/Stinson)

K ロ ⊁ K 倒 ≯ K ミ ⊁ K ミ ⊁

つくい

Key Results

- \blacktriangleright 1967: Sobol' sequences (I. Sobol') [also Halton/Faure/ Hammersley sequences]
- ▶ 1987: (T, M, S) -nets (Niederreiter)
- \blacktriangleright 1996: generalized orthogonal arrays (Lawrence)
- \triangleright 1996: ordered orthogonal arrays (Mullen/Schmid)
- ▶ 1996: Constructions from algebraic curves (Niederreiter/Xing)
- ▶ 1999: MacWilliams identities, LP bounds, association scheme (WJM/Stinson)
- \blacktriangleright late 90s+: Many new constructions (Adams/Edel/Bierbrauer/et al.)

メロメ メ御 メメミメメミメ

つくい

Key Results

- \blacktriangleright 1967: Sobol' sequences (I. Sobol') [also Halton/Faure/ Hammersley sequences]
- ▶ 1987: (T, M, S) -nets (Niederreiter)
- \blacktriangleright 1996: generalized orthogonal arrays (Lawrence)
- \triangleright 1996: ordered orthogonal arrays (Mullen/Schmid)
- ▶ 1996: Constructions from algebraic curves (Niederreiter/Xing)
- ▶ 1999: MacWilliams identities, LP bounds, association scheme (WJM/Stinson)
- \blacktriangleright late 90s+: Many new constructions (Adams/Edel/Bierbrauer/et al.)
- (Schmid/Schürer/Bierbrauer/Barg/Purkayastha/Trinker/Visentin) \triangleright 2004+: Improved bounds

つへへ

What is a (T, M, S) -Net?

Harald Niederrieter

K ロ ⊁ K 倒 ≯ K ミ ⊁ K ミ ⊁

重

 $2Q$

A (T, M, S) -net in base q

William J. Martin **[Abusing Codes](#page-0-0)**

 (T, M, S) [-Nets](#page-5-0) Resilie [Fuzzy Extractors](#page-78-0)

What is a (T, M, S) -Net?

Harald Niederrieter

 $4.17 \times$

 \leftarrow \overline{m} \rightarrow

 $2Q$

重

A $(\mathcal{T}, \mathcal{M}, \mathcal{S})$ -net in base q is a set $\mathcal N$ of $q^\mathcal{M}$ points in the half-open S-dimensional Euclidean cube $[0,1)^S$

What is a (T, M, S) -Net?

Harald Niederrieter

 Ω

A $(\mathcal{T}, \mathcal{M}, \mathcal{S})$ -net in base q is a set $\mathcal N$ of $q^\mathcal{M}$ points in the half-open S-dimensional Euclidean cube $[0, 1)^S$ with the property that every elementary interval

$$
\left[\frac{a_1}{q^{d_1}}, \frac{a_1+1}{q^{d_1}}\right) \times \left[\frac{a_2}{q^{d_2}}, \frac{a_2+1}{q^{d_2}}\right) \times \cdots \times \left[\frac{a_5}{q^{d_5}}, \frac{a_5+1}{q^{d_5}}\right)
$$

of volume $\mathsf{q}^{ \mathcal{T} - M}$

What is a (T, M, S) -Net?

Harald Niederrieter

へのへ

A $(\mathcal{T}, \mathcal{M}, \mathcal{S})$ -net in base q is a set $\mathcal N$ of $q^\mathcal{M}$ points in the half-open S-dimensional Euclidean cube $[0, 1)^S$ with the property that every elementary interval

$$
\left[\frac{a_1}{q^{d_1}}, \frac{a_1+1}{q^{d_1}}\right) \times \left[\frac{a_2}{q^{d_2}}, \frac{a_2+1}{q^{d_2}}\right) \times \cdots \times \left[\frac{a_5}{q^{d_5}}, \frac{a_5+1}{q^{d_5}}\right)
$$

of volume $\mathsf{q}^{ \mathsf{T} - \mathsf{M} }$ (i.e., with $d_1 + d_2 + \cdots + d_{\mathsf{S}} = \mathsf{M} - \mathsf{T})$

What is a (T, M, S) -Net?

Harald Niederrieter

A $(\mathcal{T}, \mathcal{M}, \mathcal{S})$ -net in base q is a set $\mathcal N$ of $q^\mathcal{M}$ points in the half-open S-dimensional Euclidean cube $[0, 1)^S$ with the property that every elementary interval

$$
\left[\frac{a_1}{q^{d_1}}, \frac{a_1+1}{q^{d_1}}\right) \times \left[\frac{a_2}{q^{d_2}}, \frac{a_2+1}{q^{d_2}}\right) \times \cdots \times \left[\frac{a_5}{q^{d_5}}, \frac{a_5+1}{q^{d_5}}\right)
$$

of volume $\mathsf{q}^{\mathsf{T}-\mathsf{M}}$ (i.e., with $d_1+d_2+\cdots+d_{\mathsf{S}} = \mathsf{M}-\mathsf{T})$ contains wpimgram exactly $q^{\mathcal{T}}$ points from $\mathcal{N}.$ Ω

Simple Example of a (T, M, S) -Net

 \blacktriangleright binary code with minimum distance three

ightharpoonts in $[0, 1)^2$

K ロ ⊁ K 倒 ≯ K ミ ⊁ K ミ ⊁

重

Simple Example of a (T, M, S) -Net

- \blacktriangleright binary code with minimum distance three
- $C = \{000000, 111001,$ 001110, 110111}
- ightharpoonts in $[0, 1)^2$
- $\blacktriangleright N = \{(0,0), (7/8, 1/8),\}$ $(1/8, 3/4), (3/4, 7/8)$

K ロ ⊁ K 倒 ≯ K ミ ⊁ K ミ ⊁

 $2Q$

目

 (T, M, S) [-Nets](#page-5-0) Resilie [Fuzzy Extractors](#page-78-0)

Simple Example of a (T, M, S) -Net

- \blacktriangleright binary code with minimum distance three
- $C = \{000000, 111001,$ 001110, 110111}
- \triangleright partition into two groups of three coords, insert decimal points
- ightharpoonts in $[0, 1)^2$
- $\blacktriangleright N = \{(0,0), (7/8, 1/8),\}$ $(1/8, 3/4), (3/4, 7/8)$

K ロ ト K 倒 ト K 走 ト

 \rightarrow \equiv \rightarrow

 $2Q$

D

Simple Example of a (T, M, S) -Net

- \blacktriangleright binary code with minimum distance three
- $C = \{000000, 111001,$ 001110, 110111}
- \triangleright partition into two groups of three coords, insert decimal points

- ightharpoonts in $[0, 1)^2$
- $\blacktriangleright N = \{(0,0), (7/8, 1/8),\}$ $(1/8, 3/4), (3/4, 7/8)$

K ロ ト K 倒 ト K 走 ト

 $\left\{ \begin{array}{c} 1 \end{array} \right.$

 $2Q$

D

Simple Example of a (T, M, S) -Net

- \blacktriangleright binary code with minimum distance three
- $C = \{000000, 111001,$ 001110, 110111}
- \triangleright partition into two groups of three coords, insert decimal points

- ightharpoonts in $[0, 1)^2$
- $\blacktriangleright N = \{(0,0), (7/8, 1/8),\}$ $(1/8, 3/4), (3/4, 7/8)$

K ロ ト K 倒 ト K 走 ト

 \rightarrow \equiv \rightarrow

 $2Q$

D

Orthogonal Array Property

 \blacktriangleright We consider an $m \times n$ array A over \mathbb{F}_q

メロト メタト メミト メミト

重

Orthogonal Array Property

- \blacktriangleright We consider an $m \times n$ array A over \mathbb{F}_q
- \triangleright "OA property": for a subset T of the columns, does the projection of A onto these columns contain every $|T|$ -tuple over \mathbb{F}_q equally often?

 $2Q$

∢ロ ▶ ∢ 倒 ▶ ∢ ヨ ▶

一人 ヨート

Orthogonal Array Property

- \blacktriangleright We consider an $m \times n$ array A over \mathbb{F}_q
- \triangleright "OA property": for a subset T of the columns, does the projection of A onto these columns contain every $|T|$ -tuple over \mathbb{F}_q equally often?
- **orthogonal array of strength** t: A has the OA property with respect to any set T of t or fewer columns

イロト イ団 トラ ミッション

 Ω

Orthogonal Array Property

- \blacktriangleright We consider an $m \times n$ array A over \mathbb{F}_q
- \triangleright "OA property": for a subset T of the columns, does the projection of A onto these columns contain every $|T|$ -tuple over \mathbb{F}_q equally often?
- **orthogonal array of strength** t: A has the OA property with respect to any set T of t or fewer columns
- **Depect or thogonal array:** Now assume $n = s\ell$ and columns are labelled $\{(i, j) : 1 \le i \le s, 1 \le j \le \ell\}.$

イロト イ母 トイラト イラト

 Ω

Ordered Orthogonal Arrays

 \triangleright "OA property" with respect to column set T: projection of A onto these columns contains every $|T|$ -tuple over \mathbb{F}_q equally often

 $2Q$

目

 $\left\{ \begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \end{array} \right\}$, $\left\{ \begin{array}{ccc} 0 & 0 & 0 \\ 0 & 0 & 0 \end{array} \right\}$

→ 走下

- \triangleright "OA property" with respect to column set T: projection of A onto these columns contains every $|T|$ -tuple over \mathbb{F}_q equally often
- **ordered orthogonal array:** Now assume $n = s\ell$ and columns are labelled $\{(i, j) : 1 \le i \le s, 1 \le j \le \ell\}$

 $2Q$

- 3 桐 ト 3 手 ト

- \triangleright "OA property" with respect to column set T: projection of A onto these columns contains every $|T|$ -tuple over \mathbb{F}_q equally often
- **ordered orthogonal array:** Now assume $n = s\ell$ and columns are labelled $\{(i, j) : 1 \le i \le s, 1 \le j \le \ell\}$
- \triangleright a set T of columns is "left-justified" if it contains $(i, j 1)$ whenever it contains (i, j) with $j > 1$

イロト イ母 トイラト イラト

 Ω

- \triangleright "OA property" with respect to column set T: projection of A onto these columns contains every $|T|$ -tuple over \mathbb{F}_q equally often
- **ordered orthogonal array:** Now assume $n = s\ell$ and columns are labelled $\{(i, j) : 1 \le i \le s, 1 \le j \le \ell\}$
- \triangleright a set T of columns is "left-justified" if it contains $(i, j 1)$ whenever it contains (i, j) with $j > 1$
- \triangleright ordered orthogonal array of strength t: A enjoys the OA property for every left-justified set of t or fewer columns

イロメ マ桐 メラミンマチャ

つくい

- \triangleright "OA property" with respect to column set T: projection of A onto these columns contains every $|T|$ -tuple over \mathbb{F}_q equally often
- **ordered orthogonal array:** Now assume $n = s\ell$ and columns are labelled $\{(i, j) : 1 \le i \le s, 1 \le j \le \ell\}$
- \triangleright a set T of columns is "left-justified" if it contains $(i, j 1)$ whenever it contains (i, j) with $j > 1$
- \triangleright ordered orthogonal array of strength t: A enjoys the OA property for every left-justified set of t or fewer columns
- **► Lawrence/Mullen/Schmid:** \exists (T, M, S)-net in base $q \Leftrightarrow$ $\exists OOA$ over \mathbb{F}_q with q^m rows, $s = S$, $\ell = t = M - T$.

K ロ ▶ K 御 ▶ K 君 ▶ K 君 ▶ ...

つくい

The Theorem of Mullen & Schmid and (indep.) Lawrence

Theorem (1996): \exists (*T*, *M*, *S*)-net in base $q \Leftrightarrow \exists OOA$ over \mathbb{F}_q with q^m rows, $s = S$, $\ell = t = M - T$

 $4.17 \times$

 \overline{AB} \overline{B} \overline{C}

Idea of Proof

$$
\mathcal{N} = \{ \left(\frac{0}{4}, \frac{0}{4} \right), \left(\frac{1}{4}, \frac{3}{4} \right), \left(\frac{2}{4}, \frac{2}{4} \right), \left(\frac{3}{4}, \frac{1}{4} \right) \}
$$

 $\mathcal{T} = \{(1, 1), (1, 2)\}\$

メロメ メ団 メメ ミメ メモメ

È

 299
Idea of Proof

$$
\mathcal{N} = \{(.00,.00), (.01,.11), (.10,.10), (.11,.01)\}
$$

$\mathcal{T} = \{(2, 1), (2, 2)\}\$

メロメ メ都 ドメ 君 ドメ 君 ドッ

 \equiv

 299

Idea of Proof

$$
\mathcal{N} = \{(.00,.00), (.01,.11), (.10,.10), (.11,.01)\}
$$

$\mathcal{T} = \{(1, 1), (2, 1)\}\$

メロメ メ都 メメ きょくきょ

È

 299

Nets from Many Sources

two mutually orthogonal latin squares of order five (color/height)

 \leftarrow \Box

- 4 FB +

Niederreiter/Xing Construction (Simplified)

► Let $N = \{P_1, \ldots, P_s\}$ be a subset of \mathbb{F}_q of size s, let $k \geq 0$

メロメ メ御 メメ きょくきょう

重

 (T, M, S) [-Nets](#page-5-0) Resilie [Fuzzy Extractors](#page-78-0)

Niederreiter/Xing Construction (Simplified)

- ► Let $N = \{P_1, \ldots, P_s\}$ be a subset of \mathbb{F}_q of size s, let $k \geq 0$
- Reed-Solomon code has a codeword for each polynomial $f(x)$ of degree $\leq k$:

$$
c_f = [f(P_1), f(P_2), \ldots, f(P_s)]
$$

 $2Q$

メロメ メ御 メメミメメミメ

Niederreiter/Xing Construction (Simplified)

- In Let $N = \{P_1, \ldots, P_s\}$ be a subset of \mathbb{F}_q of size s, let $k \geq 0$
- Reed-Solomon code has a codeword for each polynomial $f(x)$ of degree $\leq k$:

$$
c_f = [f(P_1), f(P_2), \ldots, f(P_s)]
$$

 \triangleright a non-zero polynomial of degree at most k has at most k roots

 $\left\{ \begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \end{array} \right\}$, $\left\{ \begin{array}{ccc} 0 & 0 & 0 \\ 0 & 0 & 0 \end{array} \right\}$

へのへ

Niederreiter/Xing Construction (Simplified)

- In Let $N = \{P_1, \ldots, P_s\}$ be a subset of \mathbb{F}_q of size s, let $k \geq 0$
- Reed-Solomon code has a codeword for each polynomial $f(x)$ of degree $\leq k$:

$$
c_f = [f(P_1), f(P_2), \ldots, f(P_s)]
$$

- \triangleright a non-zero polynomial of degree at most k has at most k roots
- \blacktriangleright . . counting multiplicities!

イロト イ母 トイラト イラト

Niederreiter/Xing Construction (Simplified)

- In Let $N = \{P_1, \ldots, P_s\}$ be a subset of \mathbb{F}_q of size s, let $k \geq 0$
- Reed-Solomon code has a codeword for each polynomial $f(x)$ of degree $\leq k$:

$$
c_f = [f(P_1), f(P_2), \ldots, f(P_s)]
$$

- \triangleright a non-zero polynomial of degree at most k has at most k roots
- \blacktriangleright . . counting multiplicities!

► So take *SM*-tuple
$$
(M = k + 1)
$$

$$
\[f(P_1), f'(P_1), \ldots, f^{(k)}(P_1) | \ldots, f(P_s), f'(P_s), \ldots, f^{(k)}(P_s)\]
$$

イロト イ母 トイラト イラト

 Ω

to get a powerful (T, M, S) -net

Niederreiter/Xing Construction (Simplified)

- In Let $N = \{P_1, \ldots, P_s\}$ be a subset of \mathbb{F}_q of size s, let $k \geq 0$
- Reed-Solomon code has a codeword for each polynomial $f(x)$ of degree $\leq k$:

$$
c_f = [f(P_1), f(P_2), \ldots, f(P_s)]
$$

- \triangleright a non-zero polynomial of degree at most k has at most k roots
- \blacktriangleright . . counting multiplicities!

► So take *SM*-tuple
$$
(M = k + 1)
$$

$$
\[f(P_1), f'(P_1), \ldots, f^{(k)}(P_1) | \ldots, f(P_s), f'(P_s), \ldots, f^{(k)}(P_s)\]
$$

K ロ ⊁ K 倒 ≯ K ミ ⊁ K ミ ≯

 $2Q$

to get a powerful (T, M, S) -net

 \triangleright They show that the same works over algebraic curves (global function fields)

Codes for the Rosenbloom-Tsfasman Metric

 \triangleright the dual of a linear OA is an error-correcting code

K ロ ⊁ K 倒 ≯ K ミ ⊁ K ミ ≯

重

 (T, M, S) [-Nets](#page-5-0) Resilie [Fuzzy Extractors](#page-78-0)

Codes for the Rosenbloom-Tsfasman Metric

- \triangleright the dual of a linear OA is an error-correcting code
- \triangleright the dual of a linear OOA is a code for the Rosenbloom-Tsfasman metric

 $\left\{ \begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \end{array} \right\}$

 $2Q$

重

 $\left\{ \begin{array}{c} 1 \end{array} \right.$

Codes for the Rosenbloom-Tsfasman Metric

- \triangleright the dual of a linear OA is an error-correcting code
- \triangleright the dual of a linear OOA is a code for the Rosenbloom-Tsfasman metric
- \triangleright Research Problem: Are there any non-trivial perfect codes in the Rosenbloom-Tsfasman metric?

 \leftarrow \Box - 4 m → Ω

Part II: Resilient Functions

メロメ メタメ メミメ メミメ

重

Resilient Functions

How can a code be used to bolster randomness?

メロメ メ都 ドメ 君 ドメ 君 ドッ

 \equiv

 299

Resilient Functions

K ロ ト K 倒 ト K 走 ト

ス 重っ

重

 299

Resilient Functions

We have a secret string x. An opponent learns t bits of x, but we don't know which ones.

After applying function f , we guarantee that our opponents knows nothing.

 $AB + AB$

重

 $4.17 \times$

 \blacktriangleright 1985: The bit extraction problem (Chor/Goldreich/Håstad/Friedman/Rudich/Smolensky)

イロト イ押 トイモト イモト

重

- \blacktriangleright 1985: The bit extraction problem (Chor/Goldreich/H˚astad/Friedman/Rudich/Smolensky)
- \triangleright 1988: Privacy amplification by public discussion (Bennett/Brassard/Robert)

K ロ ⊁ K 倒 ≯ K ミ ⊁ K ミ ≯

重

- \blacktriangleright 1985: The bit extraction problem (Chor/Goldreich/H˚astad/Friedman/Rudich/Smolensky)
- \triangleright 1988: Privacy amplification by public discussion (Bennett/Brassard/Robert)
- \triangleright 1993: Equivalent to large set of OA (Stinson)

K ロ ⊁ K 倒 ≯ K ミ ⊁ K ミ ≯

 $2Q$

目

- \blacktriangleright 1985: The bit extraction problem (Chor/Goldreich/H˚astad/Friedman/Rudich/Smolensky)
- \triangleright 1988: Privacy amplification by public discussion (Bennett/Brassard/Robert)
- \triangleright 1993: Equivalent to large set of OA (Stinson)
- \triangleright 1995: First non-linear examples (Stinson/Massey)

メロメ メ御 メメミメメミメ

- \blacktriangleright 1985: The bit extraction problem (Chor/Goldreich/H˚astad/Friedman/Rudich/Smolensky)
- \triangleright 1988: Privacy amplification by public discussion (Bennett/Brassard/Robert)
- \triangleright 1993: Equivalent to large set of OA (Stinson)
- \triangleright 1995: First non-linear examples (Stinson/Massey)
- \blacktriangleright 1997: All-or-nothing transforms (Rivest)

メロメ メ御 メメミメメミメ

- \blacktriangleright 1985: The bit extraction problem (Chor/Goldreich/H˚astad/Friedman/Rudich/Smolensky)
- \triangleright 1988: Privacy amplification by public discussion (Bennett/Brassard/Robert)
- \triangleright 1993: Equivalent to large set of OA (Stinson)
- \triangleright 1995: First non-linear examples (Stinson/Massey)
- \blacktriangleright 1997: All-or-nothing transforms (Rivest)
- \triangleright 1999+: Applications to fault-tolerant distributed computing, key distribution, quantum cryptography, etc.

メロメ メ御 メメ きょ メモメ

The Linear Case (Chor, et al.)

In Let G be a generator matrix for an $[n, k, d]_q$ -code

メロメ メタメ メミメ メミメ

重

- Exect G be a generator matrix for an $[n, k, d]_q$ -code
- \blacktriangleright Define $f: \mathbb{F}_q^n \to \mathbb{F}_q^k$ via

 $f(x) = Gx$

K ロ ⊁ K 倒 ≯ K ミ ⊁ K ミ ≯

 $2Q$

目

- In Let G be a generator matrix for an $[n, k, d]_q$ -code
- \blacktriangleright Define $f: \mathbb{F}_q^n \to \mathbb{F}_q^k$ via

$$
f(x)=Gx
$$

If $t \le d - 1$ entries of x are deterministic and the rest are random and fully independent (denote $\mathcal{D}_{\mathcal{T},A}$)

K ロ ⊁ K 倒 ≯ K ミ ⊁ K ミ ≯

- In Let G be a generator matrix for an $[n, k, d]_q$ -code
- \blacktriangleright Define $f: \mathbb{F}_q^n \to \mathbb{F}_q^k$ via

$$
f(x)=Gx
$$

- If $t \le d 1$ entries of x are deterministic and the rest are random and fully independent (denote $\mathcal{D}_{\mathcal{T},A}$)
- \blacktriangleright ... then $f(x)$ is uniformly distributed over \mathbb{F}_q^k

→ 伊 ▶ → ヨ ▶ → ヨ ▶

つへへ

- In Let G be a generator matrix for an $[n, k, d]_q$ -code
- \blacktriangleright Define $f: \mathbb{F}_q^n \to \mathbb{F}_q^k$ via

$$
f(x)=Gx
$$

- If $t \le d 1$ entries of x are deterministic and the rest are random and fully independent (denote $\mathcal{D}_{\mathcal{T},A}$)
- \blacktriangleright ... then $f(x)$ is uniformly distributed over \mathbb{F}_q^k
- **Why?** Any linear combination of entries of $f(x)$ is a dot product of x with some codeword

イロト イ母 トイラト イラト

へのへ

- In Let G be a generator matrix for an $[n, k, d]_q$ -code
- \blacktriangleright Define $f: \mathbb{F}_q^n \to \mathbb{F}_q^k$ via

$$
f(x)=Gx
$$

- If $t \le d 1$ entries of x are deterministic and the rest are random and fully independent (denote $\mathcal{D}_{\mathcal{T},A}$)
- \blacktriangleright ... then $f(x)$ is uniformly distributed over \mathbb{F}_q^k
- **IVhy?** Any linear combination of entries of $f(x)$ is a dot product of x with some codeword
- \triangleright So any non-trivial linear function of entries involves at least one random input position

K ロ ⊁ K 倒 ≯ K ミ ⊁ K ミ ≯

へのへ

True Random Bit Generators (Sunar/Stinson/WJM)

 \blacktriangleright Random bits are expensive

K ロ ⊁ K 倒 ≯ K ミ ⊁ K ミ ≯

重

- \blacktriangleright Random bits are expensive
- \triangleright Device must tap some physical source of known behavior

 $2Q$

扂

 $\left\{ \begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \end{array} \right\}$, $\left\{ \begin{array}{ccc} 0 & 0 & 0 \\ 0 & 0 & 0 \end{array} \right\}$

- 4 店)

- \blacktriangleright Random bits are expensive
- Device must tap some physical source of known behavior
- \triangleright Even the best sources of randomness have "quiet" periods

 $4.17 \times$

 \overline{AB} \overline{B} \overline{C}

 $\left\{ \begin{array}{c} 1 \end{array} \right.$

- \blacktriangleright Random bits are expensive
- Device must tap some physical source of known behavior
- Even the best sources of randomness have "quiet" periods
- \triangleright Assuming 80% of input bits are random samples and 20% are from quiet periods

 $4.17 \times$

4 A F

つへへ

\blacktriangleright Random bits are expensive

- Device must tap some physical source of known behavior
- \triangleright Even the best sources of randomness have "quiet" periods
- \triangleright Assuming 80% of input bits are random samples and 20% are from quiet periods
- \triangleright Resilient function collapses samples to strings one-tenth the size

100 k

へのへ

\blacktriangleright Random bits are expensive

- Device must tap some physical source of known behavior
- \triangleright Even the best sources of randomness have "quiet" periods
- \triangleright Assuming 80% of input bits are random samples and 20% are from quiet periods
- \triangleright Resilient function collapses samples to strings one-tenth the size
- \triangleright What if quiet period is longer than expected?

3 4 4 9 3 4 3

へのへ

Higher Weights (Generalized Hamming Weights)

Start with a binary linear $[n, k, d]$ -code

メロメ メ御 メメ きょ メモメ

重

Higher Weights (Generalized Hamming Weights)

- Start with a binary linear $[n, k, d]$ -code
- \blacktriangleright Define $A_h^{(\ell)}$ $\mathcal{L}_{h}^{(\ell)}$ as number of linear subcodes C' , dim $C' = \ell$, $|\operatorname{supp} C'|=h$

K ロ ⊁ K 倒 ≯ K ミ ⊁ K ミ ≯

 $2Q$

目
(T, M, S) [-Nets](#page-5-0) [Resilient Functions](#page-48-0) [Fuzzy Extractors](#page-78-0)

Higher Weights (Generalized Hamming Weights)

- Start with a binary linear $[n, k, d]$ -code
- \blacktriangleright Define $A_h^{(\ell)}$ $\mathcal{L}_{h}^{(\ell)}$ as number of linear subcodes C' , dim $C' = \ell$, $|\operatorname{supp} C'|=h$
- ► E.g. $A_h^{(1)} = A_h$ for $h > 0$, $A_h^{(\ell)} = 0$ for $h < d$ except $A_0^{(0)} = 1$

イロメ マ桐 メラミンマチャ

Higher Weights (Generalized Hamming Weights)

- Start with a binary linear $[n, k, d]$ -code
- \blacktriangleright Define $A_h^{(\ell)}$ $\mathcal{L}_{h}^{(\ell)}$ as number of linear subcodes C' , dim $C' = \ell$, $|\operatorname{supp} C'|=h$
- ► E.g. $A_h^{(1)} = A_h$ for $h > 0$, $A_h^{(\ell)} = 0$ for $h < d$ except $A_0^{(0)} = 1$
- \triangleright The number of *i*-subsets of coordinates that contain the support of exactly 2^r codewords is shown to be

$$
B_{i,r} = \sum_{\ell=0}^k \sum_{h=0}^n (-1)^{\ell-r} 2^{\binom{\ell-r}{2}} \binom{n-h}{i-h} \begin{bmatrix} \ell \\ r \end{bmatrix} A_h^{(\ell)}
$$

イロメ マ桐 メラミンマチャ

へのへ

Higher Weights (Generalized Hamming Weights)

- Start with a binary linear $[n, k, d]$ -code
- \blacktriangleright Define $A_h^{(\ell)}$ $\mathcal{L}_{h}^{(\ell)}$ as number of linear subcodes C' , dim $C' = \ell$, $|\operatorname{supp} C'|=h$
- ► E.g. $A_h^{(1)} = A_h$ for $h > 0$, $A_h^{(\ell)} = 0$ for $h < d$ except $A_0^{(0)} = 1$
- \blacktriangleright The number of *i*-subsets of coordinates that contain the support of exactly 2^r codewords is shown to be

$$
B_{i,r}=\sum_{\ell=0}^k\sum_{h=0}^n(-1)^{\ell-r}2^{\binom{\ell-r}{2}}\binom{n-h}{i-h}\begin{bmatrix} \ell \\ r \end{bmatrix}A_h^{(\ell)}
$$

Lemma (Sunar/WJM): Let X be a random variable taking values in $\{0,1\}^n$ according to a probability distribution ${\cal D}_{T,A}.$ Then $Prob[H_{out} = k - r \mid |T| = i] = B_{i,r} \binom{n}{i}$ i $\bigcap\nolimits^{-1}$.

 $(0,1)$ $(0,1)$ $(0,1)$ $(1,1)$ $(1,1)$ $(1,1)$

へのへ

Higher weight enumerators are known only for very few codes:

 \triangleright MDS codes: partial information only (Dougherty, et al.)

K ロ ト K 倒 ト K 走 ト

重

- 4 周 ド

Higher weight enumerators are known only for very few codes:

- \triangleright MDS codes: partial information only (Dougherty, et al.)
- \triangleright Golay codes (Sunar/WJM, probably earlier)

 \mathcal{A} and \mathcal{A} in \mathcal{A} . If \mathcal{A}

∢ 重 ≯

 \leftarrow \Box

 $2Q$

目

Higher weight enumerators are known only for very few codes:

- ▶ MDS codes: partial information only (Dougherty, et al.)
- \triangleright Golay codes (Sunar/WJM, probably earlier)
- \blacktriangleright Hamming codes

Can we work out these statistics for the other standard families of codes?

 $4.17 \times$

 \overline{AB} \overline{B} \overline{C}

 \equiv \rightarrow

Part III: Fuzzy Extractors

メロト メタト メミト メミト

重

 (T, M, S) [-Nets](#page-5-0) [Resilient Functions](#page-48-0) [Fuzzy Extractors](#page-78-0)

Codes for Biometrics

How can we eliminate noise if we are not permitted to choose our codewords?

William J. Martin **[Abusing Codes](#page-0-0)**

K ロ ⊁ K 倒 ≯ K ミ ⊁ K ミ ≯

重

 \blacktriangleright 1990s: Ad-hoc mix of protocols (e.g., quantum oblivious transfer, crypto over noisy channels)

K ロ ト K 倒 ト K ミ ト

重

- 4 店 ト

- \blacktriangleright 1990s: Ad-hoc mix of protocols (e.g., quantum oblivious transfer, crypto over noisy channels)
- \blacktriangleright 1987,1994: Patents for iris recognition systems

 $2Q$

∢ ロ ▶ . ∢ 母 ▶ . ∢ ヨ ▶

K 로)

- \triangleright 1990s: Ad-hoc mix of protocols (e.g., quantum oblivious transfer, crypto over noisy channels)
- \blacktriangleright 1987,1994: Patents for iris recognition systems
- ▶ 2008: definition of "fuzzy extractor" (Dodis/Ostrovsky/Reyzin/Smith)

 $2Q$

 $\left\{ \begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \end{array} \right\}$, $\left\{ \begin{array}{ccc} 0 & 0 & 0 \\ 0 & 0 & 0 \end{array} \right\}$

K 로)

- \triangleright 1990s: Ad-hoc mix of protocols (e.g., quantum oblivious transfer, crypto over noisy channels)
- \blacktriangleright 1987,1994: Patents for iris recognition systems
- ▶ 2008: definition of "fuzzy extractor" (Dodis/Ostrovsky/Reyzin/Smith)
- ▶ 2009: CD fingerprinting (Hammouri/Dana/Sunar)

 $\left\{ \begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \end{array} \right\}$, $\left\{ \begin{array}{ccc} 0 & 0 & 0 \\ 0 & 0 & 0 \end{array} \right\}$

ia ⊞is

つくい

- \triangleright 1990s: Ad-hoc mix of protocols (e.g., quantum oblivious transfer, crypto over noisy channels)
- ▶ 1987,1994: Patents for iris recognition systems
- ▶ 2008: definition of "fuzzy extractor" (Dodis/Ostrovsky/Reyzin/Smith)
- ▶ 2009: CD fingerprinting (Hammouri/Dana/Sunar)
- \triangleright 2009: physically unclonable functions (WPI team)

 $\left\{ \begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \end{array} \right\}$, $\left\{ \begin{array}{ccc} 0 & 0 & 0 \\ 0 & 0 & 0 \end{array} \right\}$

つくい

Fuzzy Extractors

メロメ メ団 メメ ミメ メモメ

È

 299

Fuzzy Extractors

Metric space M and function $f : \mathcal{M} \times \{0,1\}^* \to \{0,1\}^*$ such that $f(w', x) = f(w, x)$ provided x valid for w and $d(w', w) < \epsilon$.

K ロ ⊁ K 伊 ⊁ K 店

 \sim $\left\{ \begin{array}{c} 1 \end{array} \right.$

 (T, M, S) [-Nets](#page-5-0) [Resilient Functions](#page-48-0) [Fuzzy Extractors](#page-78-0)

Fuzzy Extractor: Toy Example

メロメメ 御き メミメメ ミト

È

 299

 (T, M, S) [-Nets](#page-5-0) [Resilient Functions](#page-48-0) [Fuzzy Extractors](#page-78-0)

Fuzzy Extractor: Toy Example

Baseline reading $w = 3$ is obtained from temporal reading $w' = 2$ and hint $x = D$. But w is not recoverable from either w' or x alone. K ロ ⊁ K 倒 ≯ K ミ ⊁ K ミ ≯ 重

Fuzzy extractor for Hamming metric:

Start with a binary $[n, k, d]$ -code with generator matrix G

 $2Q$

 $\left\{ \begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \end{array} \right\}$, $\left\{ \begin{array}{ccc} 0 & 0 & 0 \\ 0 & 0 & 0 \end{array} \right\}$

- 4 店)

Fuzzy extractor for Hamming metric:

- Start with a binary $[n, k, d]$ -code with generator matrix G
- \blacktriangleright For each user, generate a random k-bit string m

 \leftarrow \Box

Administration

 $\left\{ \begin{array}{c} 1 \end{array} \right.$

Fuzzy extractor for Hamming metric:

- Start with a binary $[n, k, d]$ -code with generator matrix G
- \blacktriangleright For each user, generate a random k-bit string m
- For baseline reading w, helper data is $x = w + mG$

→ 伊 ▶ → 舌

 $4.17 \times$

Fuzzy extractor for Hamming metric:

- Start with a binary $[n, k, d]$ -code with generator matrix G
- \blacktriangleright For each user, generate a random k-bit string m
- For baseline reading w, helper data is $x = w + mG$
- New reading w' is assumed to be within distance $d/2$ of w in large Hamming space

Administration

つくい

Fuzzy extractor for Hamming metric:

- Start with a binary $[n, k, d]$ -code with generator matrix G
- \blacktriangleright For each user, generate a random k-bit string m
- For baseline reading w, helper data is $x = w + mG$
- New reading w' is assumed to be within distance $d/2$ of w in large Hamming space
- ► To recover m from x and w', decode $w' + x = mG + (w w')$

 $\left\{ \begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \end{array} \right\}$, $\left\{ \begin{array}{ccc} 0 & 0 & 0 \\ 0 & 0 & 0 \end{array} \right\}$

へのへ

Fuzzy extractor for Hamming metric:

- Start with a binary $[n, k, d]$ -code with generator matrix G
- \blacktriangleright For each user, generate a random k-bit string m
- For baseline reading w, helper data is $x = w + mG$
- New reading w' is assumed to be within distance $d/2$ of w in large Hamming space
- ► To recover m from x and w', decode $w' + x = mG + (w w')$
- Provided k and d are both linear in n, recovery of m from just x or w' is hard

イロト イ団 トラ ミッション

へのへ

Fuzzy extractors are known for several metrics:

 \blacktriangleright Hamming

メロト メタト メミト メミト

重

Fuzzy extractors are known for several metrics:

- \blacktriangleright Hamming
- \triangleright Set difference (fuzzy vault scheme of Juels/Sudan)

K ロ ⊁ K 倒 ≯ K ミ ⊁ K ミ ≯

重

Fuzzy extractors are known for several metrics:

- \blacktriangleright Hamming
- \triangleright Set difference (fuzzy vault scheme of Juels/Sudan)
- \blacktriangleright Edit distance

K ロ ⊁ K 倒 ≯ K ミ ⊁ K ミ ≯

重

Fuzzy extractors are known for several metrics:

- \blacktriangleright Hamming
- \triangleright Set difference (fuzzy vault scheme of Juels/Sudan)
- \blacktriangleright Edit distance

Can we build efficient fuzzy extractors for the Euclidean metric?

 $2Q$

 $\left\{ \begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \end{array} \right\}$, $\left\{ \begin{array}{ccc} 0 & 0 & 0 \\ 0 & 0 & 0 \end{array} \right\}$

 $\left\{ \begin{array}{c} 1 \end{array} \right.$

 (T, M, S) [-Nets](#page-5-0) [Resilient Functions](#page-48-0) [Fuzzy Extractors](#page-78-0)

The End

Thank you all!

重

 299

メロメメ 御き メミメメ ミト