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First: The Omissions

I Perhaps the most exciting developments in algebraic coding
theory since 1990 are

I the theory of quantum error-correcting codes

I The PCP Theorem in computational complexity theory: e.g.
NP = PCP1−ε, 1

2
[O(log n), 3] (Håstad, 2001)
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Using Codes to Estimate Integrals

If orthogonal arrays can be used to approximate Hamming space,
can they also be used to approximate other spaces?
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Key Results

I 1967: Sobol’ sequences (I. Sobol’) [also Halton/Faure/
Hammersley sequences]

I 1987: (T ,M,S)-nets (Niederreiter)

I 1996: generalized orthogonal arrays (Lawrence)

I 1996: ordered orthogonal arrays (Mullen/Schmid)

I 1996: Constructions from algebraic curves
(Niederreiter/Xing)

I 1999: MacWilliams identities, LP bounds, association scheme
(WJM/Stinson)

I late 90s+: Many new constructions
(Adams/Edel/Bierbrauer/et al.)

I 2004+: Improved bounds
(Schmid/Schürer/Bierbrauer/Barg/Purkayastha/Trinker/Visentin)
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What is a (T , M , S)-Net?

Harald Niederrieter

A (T ,M,S)-net in base q

is a set N of qM points in the half-open
S-dimensional Euclidean cube [0, 1)S with the property that every
elementary interval[

a1

qd1
,

a1 + 1

qd1

)
×
[

a2

qd2
,

a2 + 1

qd2

)
× · · · ×

[
aS

qdS
,

aS + 1

qdS

)
of volume qT−M (i.e., with d1 + d2 + · · ·+ dS = M − T ) contains
exactly qT points from N .
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Simple Example of a (T , M , S)-Net

I binary code with minimum
distance three

I C = {000000, 111001,
001110, 110111}

I partition into two groups of
three coords, insert decimal
points

I

0 0 0 0 0 0

1 1 1 0 0 1

0 0 1 1 1 0

1 1 0 1 1 1

I four points in [0, 1)2

I N = {(0, 0), (7/8, 1/8),
(1/8, 3/4), (3/4, 7/8)}

I 0.00             0.25            0.50              0.75          1.00

1.00

0.75

0.50

0.25

0.00
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Orthogonal Array Property

I We consider an m × n array A over Fq

I “OA property”: for a subset T of the columns, does the
projection of A onto these columns contain every |T |-tuple
over Fq equally often?

I orthogonal array of strength t: A has the OA property with
respect to any set T of t or fewer columns

I ordered orthogonal array: Now assume n = s` and columns
are labelled {(i , j) : 1 ≤ i ≤ s, 1 ≤ j ≤ `}.

William J. Martin Abusing Codes
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Ordered Orthogonal Arrays

I “OA property” with respect to column set T : projection of
A onto these columns contains every |T |-tuple over Fq equally
often

I ordered orthogonal array: Now assume n = s` and columns
are labelled {(i , j) : 1 ≤ i ≤ s, 1 ≤ j ≤ `}

I a set T of columns is “left-justified” if it contains (i , j − 1)
whenever it contains (i , j) with j > 1

I ordered orthogonal array of strength t: A enjoys the OA
property for every left-justified set of t or fewer columns

I Lawrence/Mullen/Schmid: ∃(T ,M,S)-net in base q ⇔
∃OOA over Fq with qm rows, s = S , ` = t = M − T .
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The Theorem of Mullen & Schmid and (indep.) Lawrence

Theorem (1996): ∃(T ,M, S)-net in base q ⇔ ∃OOA over Fq

with qm rows, s = S , ` = t = M − T

William J. Martin Abusing Codes
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Idea of Proof

N = {
(

0
4 ,

0
4

)
,
(

1
4 ,

3
4

)
,
(

2
4 ,

2
4

)
,
(

3
4 ,

1
4

)
}

T = {(1, 1), (1, 2)}
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Idea of Proof

N = {(.00, .00), (.01, .11), (.10, .10), (.11, .01)}

T = {(2, 1), (2, 2)}
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N = {(.00, .00), (.01, .11), (.10, .10), (.11, .01)}

T = {(1, 1), (2, 1)}
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Nets from Many Sources

two mutually orthogonal latin squares of order five (color/height)
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Niederreiter/Xing Construction (Simplified)

I Let N = {P1, . . . ,Ps} be a subset of Fq of size s, let k ≥ 0

I Reed-Solomon code has a codeword for each polynomial f (x)
of degree ≤ k :

cf = [f (P1), f (P2), . . . , f (Ps)]

I a non-zero polynomial of degree at most k has at most k roots

I . . . counting multiplicities!

I So take SM-tuple (M = k + 1)[
f (P1), f ′(P1), . . . , f (k)(P1)| . . . . . . |f (Ps), f ′(Ps), . . . , f (k)(Ps)

]
to get a powerful (T ,M, S)-net

I They show that the same works over algebraic curves (global
function fields)

William J. Martin Abusing Codes
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Codes for the Rosenbloom-Tsfasman Metric

I the dual of a linear OA is an error-correcting code

I the dual of a linear OOA is a code for the
Rosenbloom-Tsfasman metric

I Research Problem: Are there any non-trivial perfect codes in
the Rosenbloom-Tsfasman metric?
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Resilient Functions

How can a code be used to bolster randomness?
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Resilient Functions

We have a secret string x . An opponent learns t bits of x , but we
don’t know which ones.

After applying function f , we guarantee that our opponents knows
nothing.
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Key Results

I 1985: The bit extraction problem
(Chor/Goldreich/Håstad/Friedman/Rudich/Smolensky)

I 1988: Privacy amplification by public discussion
(Bennett/Brassard/Robert)

I 1993: Equivalent to large set of OA (Stinson)

I 1995: First non-linear examples (Stinson/Massey)

I 1997: All-or-nothing transforms (Rivest)

I 1999+: Applications to fault-tolerant distributed computing,
key distribution, quantum cryptography, etc.
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The Linear Case (Chor, et al.)

I Let G be a generator matrix for an [n, k , d ]q-code

I Define f : Fn
q → Fk

q via

f (x) = Gx

I If t ≤ d − 1 entries of x are deterministic and the rest are
random and fully independent (denote DT ,A)

I . . . then f (x) is uniformly distributed over Fk
q

I Why? Any linear combination of entries of f (x) is a dot
product of x with some codeword

I So any non-trivial linear function of entries involves at least
one random input position
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True Random Bit Generators (Sunar/Stinson/WJM)

I Random bits are expensive

I Device must tap some physical source of known behavior

I Even the best sources of randomness have “quiet” periods

I Assuming 80% of input bits are random samples and 20% are
from quiet periods

I Resilient function collapses samples to strings one-tenth the
size

I What if quiet period is longer than expected?
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Higher Weights (Generalized Hamming Weights)
I Start with a binary linear [n, k , d ]-code

I Define A
(`)
h as number of linear subcodes C ′, dim C ′ = `,

| supp C ′| = h

I E.g. A
(1)
h = Ah for h > 0, A

(`)
h = 0 for h < d except A

(0)
0 = 1

I The number of i-subsets of coordinates that contain the
support of exactly 2r codewords is shown to be

Bi ,r =
k∑
`=0

n∑
h=0

(−1)`−r 2(`−r
2 )
(

n − h

i − h

)[
`
r

]
A

(`)
h

I Lemma (Sunar/WJM): Let X be a random variable taking
values in {0, 1}n according to a probability distributionDT ,A.
Then

Prob[Hout = k − r | |T | = i ] = Bi ,r

(
n

i

)−1

.
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A Research Problem

Higher weight enumerators are known only for very few codes:

I MDS codes: partial information only (Dougherty, et al.)

I Golay codes (Sunar/WJM, probably earlier)

I Hamming codes

Can we work out these statistics for the other standard families of
codes?
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Part III: Fuzzy Extractors
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Codes for Biometrics

How can we eliminate noise if we are not permitted to choose our
codewords?
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Selected References

I 1990s: Ad-hoc mix of protocols (e.g., quantum oblivious
transfer, crypto over noisy channels)

I 1987,1994: Patents for iris recognition systems

I 2008: definition of “fuzzy extractor”
(Dodis/Ostrovsky/Reyzin/Smith)

I 2009: CD fingerprinting (Hammouri/Dana/Sunar)

I 2009: physically unclonable functions (WPI team)
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Fuzzy Extractors

Metric space M and function f :M×{0, 1}∗ → {0, 1}∗ such that
f (w ′, x) = f (w , x) provided x valid for w and d(w ′,w) < ε.
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Fuzzy Extractor: Toy Example

Baseline reading w = 3 is obtained from temporal reading w ′ = 2
and hint x = D.

But w is not recoverable from either w ′ or x alone.
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Code-Offset Construction (Dodis, et al.)

Fuzzy extractor for Hamming metric:

I Start with a binary [n, k , d ]-code with generator matrix G

I For each user, generate a random k-bit string m

I For baseline reading w , helper data is x = w + mG

I New reading w ′ is assumed to be within distance d/2 of w in
large Hamming space

I To recover m from x and w ′, decode w ′+ x = mG + (w −w ′)

I Provided k and d are both linear in n, recovery of m from just
x or w ′ is hard
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A Research Problem

Fuzzy extractors are known for several metrics:

I Hamming

I Set difference (fuzzy vault scheme of Juels/Sudan)

I Edit distance

Can we build efficient fuzzy extractors for the Euclidean metric?
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The End

Thank you all!

William J. Martin Abusing Codes
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