Hey! You Can't Do That With My Code!

William J. Martin

Department of Mathematical Sciences and Department of Computer Science Worcester Polytechnic Institute

CIMPA-UNESCO-PHILIPPINES Research Summer School UP Diliman, July 27, 2009

イロト イヨト イヨト イヨト

Outline

(T, M, S)-Nets

Resilient Functions

Fuzzy Extractors

<ロ> <同> <同> < 同> < 同> < 同> :

First: The Omissions

 Perhaps the most exciting developments in algebraic coding theory since 1990 are

・ロン ・回と ・ヨン・

First: The Omissions

- Perhaps the most exciting developments in algebraic coding theory since 1990 are
- the theory of quantum error-correcting codes

イロト イヨト イヨト イヨト

First: The Omissions

- Perhaps the most exciting developments in algebraic coding theory since 1990 are
- the theory of quantum error-correcting codes
- ► The PCP Theorem in computational complexity theory: e.g. NP = PCP_{1-ε, ¹/₂}[O(log n), 3] (Håstad, 2001)

イロン イヨン イヨン イヨン

Part I: (T, M, S)-Nets

・ロン ・回 と ・ヨン ・ヨン

Э

Using Codes to Estimate Integrals

If orthogonal arrays can be used to approximate Hamming space, can they also be used to approximate other spaces?

・ 同 ト ・ ヨ ト ・ ヨ ト

Key Results

 1967: Sobol' sequences (I. Sobol') [also Halton/Faure/ Hammersley sequences]

<ロ> (日) (日) (日) (日) (日)

Key Results

- 1967: Sobol' sequences (I. Sobol') [also Halton/Faure/ Hammersley sequences]
- ▶ **1987:** (*T*, *M*, *S*)-nets (Niederreiter)

イロン イヨン イヨン イヨン

Key Results

- 1967: Sobol' sequences (I. Sobol') [also Halton/Faure/ Hammersley sequences]
- ▶ **1987:** (*T*, *M*, *S*)-nets (Niederreiter)
- ▶ 1996: generalized orthogonal arrays (Lawrence)

・ 母 と ・ ヨ と ・ ヨ と

Key Results

- 1967: Sobol' sequences (I. Sobol') [also Halton/Faure/ Hammersley sequences]
- ▶ **1987:** (*T*, *M*, *S*)-nets (Niederreiter)
- ▶ 1996: generalized orthogonal arrays (Lawrence)
- ▶ 1996: ordered orthogonal arrays (Mullen/Schmid)

(本間) (本語) (本語)

Key Results

- 1967: Sobol' sequences (I. Sobol') [also Halton/Faure/ Hammersley sequences]
- ▶ **1987:** (*T*, *M*, *S*)-nets (Niederreiter)
- ▶ 1996: generalized orthogonal arrays (Lawrence)
- ▶ 1996: ordered orthogonal arrays (Mullen/Schmid)
- 1996: Constructions from algebraic curves (Niederreiter/Xing)

Key Results

- 1967: Sobol' sequences (I. Sobol') [also Halton/Faure/ Hammersley sequences]
- ▶ **1987:** (*T*, *M*, *S*)-nets (Niederreiter)
- ▶ 1996: generalized orthogonal arrays (Lawrence)
- ▶ 1996: ordered orthogonal arrays (Mullen/Schmid)
- 1996: Constructions from algebraic curves (Niederreiter/Xing)
- 1999: MacWilliams identities, LP bounds, association scheme (WJM/Stinson)

- 4 同 ト 4 臣 ト 4 臣 ト

Key Results

- 1967: Sobol' sequences (I. Sobol') [also Halton/Faure/ Hammersley sequences]
- ▶ **1987:** (*T*, *M*, *S*)-nets (Niederreiter)
- ▶ 1996: generalized orthogonal arrays (Lawrence)
- ▶ 1996: ordered orthogonal arrays (Mullen/Schmid)
- 1996: Constructions from algebraic curves (Niederreiter/Xing)
- 1999: MacWilliams identities, LP bounds, association scheme (WJM/Stinson)
- late 90s+: Many new constructions (Adams/Edel/Bierbrauer/et al.)

イロト イヨト イヨト イヨト

Key Results

- 1967: Sobol' sequences (I. Sobol') [also Halton/Faure/ Hammersley sequences]
- ▶ **1987:** (*T*, *M*, *S*)-nets (Niederreiter)
- ▶ 1996: generalized orthogonal arrays (Lawrence)
- ▶ 1996: ordered orthogonal arrays (Mullen/Schmid)
- 1996: Constructions from algebraic curves (Niederreiter/Xing)
- 1999: MacWilliams identities, LP bounds, association scheme (WJM/Stinson)
- late 90s+: Many new constructions (Adams/Edel/Bierbrauer/et al.)
- 2004+: Improved bounds (Schmid/Schürer/Bierbrauer/Barg/Purkayastha/Trinker/Visentin)

► < Ξ ►</p>

What is a (T, M, S)-Net?

Harald Niederrieter

<ロ> (日) (日) (日) (日) (日)

æ

A (T, M, S)-net in base q

What is a (T, M, S)-Net?

Harald Niederrieter

æ

∃ ⊳

A (1) > A (1) > A

A (T, M, S)-net in base q is a set \mathcal{N} of q^M points in the half-open S-dimensional Euclidean cube $[0, 1)^S$

What is a (T, M, S)-Net?

Harald Niederrieter

A (T, M, S)-net in base q is a set \mathcal{N} of q^M points in the half-open S-dimensional Euclidean cube $[0, 1)^S$ with the property that every elementary interval

$$\left[rac{a_1}{q^{d_1}},rac{a_1+1}{q^{d_1}}
ight) imes \left[rac{a_2}{q^{d_2}},rac{a_2+1}{q^{d_2}}
ight) imes\cdots imes \left[rac{a_S}{q^{d_S}},rac{a_S+1}{q^{d_S}}
ight)$$

of volume q^{T-M}

What is a (T, M, S)-Net?

Harald Niederrieter

A (T, M, S)-net in base q is a set \mathcal{N} of q^M points in the half-open S-dimensional Euclidean cube $[0, 1)^S$ with the property that every elementary interval

$$\left[\frac{a_1}{q^{d_1}},\frac{a_1+1}{q^{d_1}}\right)\times \left[\frac{a_2}{q^{d_2}},\frac{a_2+1}{q^{d_2}}\right)\times \cdots \times \left[\frac{a_S}{q^{d_S}},\frac{a_S+1}{q^{d_S}}\right)$$

of volume q^{T-M} (i.e., with $d_1 + d_2 + \cdots + d_S = M - T$)

What is a (T, M, S)-Net?

Harald Niederrieter

A (T, M, S)-net in base q is a set \mathcal{N} of q^M points in the half-open S-dimensional Euclidean cube $[0, 1)^S$ with the property that every elementary interval

$$\left[\frac{a_1}{q^{d_1}},\frac{a_1+1}{q^{d_1}}\right)\times \left[\frac{a_2}{q^{d_2}},\frac{a_2+1}{q^{d_2}}\right)\times\cdots\times \left[\frac{a_5}{q^{d_5}},\frac{a_5+1}{q^{d_5}}\right)$$

of volume q^{T-M} (i.e., with $d_1 + d_2 + \cdots + d_S = M - T$) contains exactly q^T points from \mathcal{N} .

Simple Example of a (T, M, S)-Net

 binary code with minimum distance three • four points in $[0,1)^2$

・ロン ・回と ・ヨン・

Simple Example of a (T, M, S)-Net

- binary code with minimum distance three
- ► C = {000000, 111001, 001110, 110111}

- four points in $[0,1)^2$
- $\ \, \mathcal{N} = \{(0,0), \ (7/8,1/8), \\ (1/8,3/4), \ (3/4,7/8)\}$

Simple Example of a (T, M, S)-Net

- binary code with minimum distance three
- ► C = {000000, 111001, 001110, 110111}
- partition into two groups of three coords, insert decimal points

- four points in $[0,1)^2$
- $\ \, \mathcal{N} = \{(0,0), \ (7/8,1/8), \\ (1/8,3/4), \ (3/4,7/8)\}$

Simple Example of a (T, M, S)-Net

- binary code with minimum distance three
- ► C = {000000, 111001, 001110, 110111}
- partition into two groups of three coords, insert decimal points

	0	0	0	0	0	0
	1	1	1	0	0	1
	0	0	1	1	1	0
	1	1	0	1	1	1

- four points in $[0,1)^2$
- $\ \, \mathcal{N} = \{(0,0), \ (7/8,1/8), \\ (1/8,3/4), \ (3/4,7/8)\}$

< ∃⇒

Simple Example of a (T, M, S)-Net

- binary code with minimum distance three
- ► C = {000000, 111001, 001110, 110111}
- partition into two groups of three coords, insert decimal points

.0	0	0	.0	0	0
.1	1	1	.0	0	1
.0	0	1	.1	1	0
.1	1	0	.1	1	1

- four points in $[0,1)^2$
- $\ \, \mathcal{N} = \{(0,0), \ (7/8,1/8), \\ (1/8,3/4), \ (3/4,7/8)\}$

< ∃⇒

Orthogonal Array Property

• We consider an $m \times n$ array A over \mathbb{F}_q

イロン 不同と 不同と 不同と

Orthogonal Array Property

- We consider an $m \times n$ array A over \mathbb{F}_q
- ► "OA property": for a subset T of the columns, does the projection of A onto these columns contain every |T|-tuple over F_q equally often?

- 4 同 ト 4 臣 ト 4 臣 ト

Orthogonal Array Property

- We consider an $m \times n$ array A over \mathbb{F}_q
- ► "OA property": for a subset T of the columns, does the projection of A onto these columns contain every |T|-tuple over F_q equally often?
- orthogonal array of strength t: A has the OA property with respect to any set T of t or fewer columns

- 4 同 ト 4 ヨ ト 4 ヨ ト

Orthogonal Array Property

- We consider an $m \times n$ array A over \mathbb{F}_q
- ► "OA property": for a subset T of the columns, does the projection of A onto these columns contain every |T|-tuple over F_q equally often?
- orthogonal array of strength t: A has the OA property with respect to any set T of t or fewer columns
- ► ordered orthogonal array: Now assume n = sℓ and columns are labelled {(i, j) : 1 ≤ i ≤ s, 1 ≤ j ≤ ℓ}.

イロト イポト イヨト イヨト

► "OA property" with respect to column set T: projection of A onto these columns contains every |T|-tuple over F_q equally often

→ 同 → → 三 →

æ

- ∢ ≣ ▶

- ► "OA property" with respect to column set T: projection of A onto these columns contains every |T|-tuple over F_q equally often
- ► ordered orthogonal array: Now assume n = sℓ and columns are labelled {(i, j) : 1 ≤ i ≤ s, 1 ≤ j ≤ ℓ}

- ► "OA property" with respect to column set T: projection of A onto these columns contains every |T|-tuple over F_q equally often
- ► ordered orthogonal array: Now assume n = sℓ and columns are labelled {(i, j) : 1 ≤ i ≤ s, 1 ≤ j ≤ ℓ}
- ▶ a set T of columns is "left-justified" if it contains (i, j 1) whenever it contains (i, j) with j > 1

イロト イポト イヨト イヨト

- ► "OA property" with respect to column set T: projection of A onto these columns contains every |T|-tuple over F_q equally often
- ► ordered orthogonal array: Now assume n = sℓ and columns are labelled {(i, j) : 1 ≤ i ≤ s, 1 ≤ j ≤ ℓ}
- ▶ a set T of columns is "left-justified" if it contains (i, j − 1) whenever it contains (i, j) with j > 1
- ordered orthogonal array of strength t: A enjoys the OA property for every left-justified set of t or fewer columns

イロト イポト イヨト イヨト

- ► "OA property" with respect to column set T: projection of A onto these columns contains every |T|-tuple over F_q equally often
- ► ordered orthogonal array: Now assume n = sℓ and columns are labelled {(i, j) : 1 ≤ i ≤ s, 1 ≤ j ≤ ℓ}
- ▶ a set T of columns is "left-justified" if it contains (i, j 1) whenever it contains (i, j) with j > 1
- ordered orthogonal array of strength t: A enjoys the OA property for every left-justified set of t or fewer columns
- ► Lawrence/Mullen/Schmid: $\exists (T, M, S)$ -net in base $q \Leftrightarrow \exists OOA \text{ over } \mathbb{F}_q \text{ with } q^m \text{ rows, } s = S, \ell = t = M T.$

イロト イヨト イヨト イヨト

The Theorem of Mullen & Schmid and (indep.) Lawrence

Theorem (1996): $\exists (T, M, S)$ -net in base $q \Leftrightarrow \exists OOA$ over \mathbb{F}_q with q^m rows, s = S, $\ell = t = M - T$

A (1) > A (1) > A

Idea of Proof

$$\mathcal{N} = \{ \left(\frac{0}{4}, \frac{0}{4} \right), \left(\frac{1}{4}, \frac{3}{4} \right), \left(\frac{2}{4}, \frac{2}{4} \right), \left(\frac{3}{4}, \frac{1}{4} \right) \}$$

 $T = \{(1,1),(1,2)\}$

・ロン ・回 と ・ ヨン ・ ヨン
Idea of Proof

$$\mathcal{N} = \{(.00, .00), (.01, .11), (.10, .10), (.11, .01)\}$$

$T=\{(2,1),(2,2)\}$

Idea of Proof

$$\mathcal{N} = \{(.00, .00), (.01, .11), (.10, .10), (.11, .01)\}$$

$T = \{(1,1), (2,1)\}$

▲口 → ▲圖 → ▲ 国 → ▲ 国 → □

Nets from Many Sources

two mutually orthogonal latin squares of order five (color/height)

< 17 > <

Niederreiter/Xing Construction (Simplified)

• Let $N = \{P_1, \ldots, P_s\}$ be a subset of \mathbb{F}_q of size s, let $k \ge 0$

イロン イヨン イヨン イヨン

Niederreiter/Xing Construction (Simplified)

- Let $N = \{P_1, \ldots, P_s\}$ be a subset of \mathbb{F}_q of size s, let $k \ge 0$
- ► Reed-Solomon code has a codeword for each polynomial f(x) of degree ≤ k:

$$c_f = [f(P_1), f(P_2), \ldots, f(P_s)]$$

イロト イヨト イヨト イヨト

Niederreiter/Xing Construction (Simplified)

- Let $N = \{P_1, \ldots, P_s\}$ be a subset of \mathbb{F}_q of size s, let $k \ge 0$
- ► Reed-Solomon code has a codeword for each polynomial f(x) of degree ≤ k:

$$c_f = [f(P_1), f(P_2), \ldots, f(P_s)]$$

▶ a non-zero polynomial of degree at most k has at most k roots

Niederreiter/Xing Construction (Simplified)

- Let $N = \{P_1, \ldots, P_s\}$ be a subset of \mathbb{F}_q of size s, let $k \ge 0$
- ► Reed-Solomon code has a codeword for each polynomial f(x) of degree ≤ k:

$$c_f = [f(P_1), f(P_2), \ldots, f(P_s)]$$

- ▶ a non-zero polynomial of degree at most k has at most k roots
- ... counting multiplicities!

イロン イヨン イヨン イヨン

Niederreiter/Xing Construction (Simplified)

- Let $N = \{P_1, \ldots, P_s\}$ be a subset of \mathbb{F}_q of size s, let $k \ge 0$
- ► Reed-Solomon code has a codeword for each polynomial f(x) of degree ≤ k:

$$c_f = [f(P_1), f(P_2), \ldots, f(P_s)]$$

- ▶ a non-zero polynomial of degree at most k has at most k roots
- ... counting multiplicities!

• So take *SM*-tuple
$$(M = k + 1)$$

$$\left[f(P_1), f'(P_1), \dots, f^{(k)}(P_1) | \dots | f(P_s), f'(P_s), \dots, f^{(k)}(P_s)\right]$$

to get a powerful (T, M, S)-net

Niederreiter/Xing Construction (Simplified)

- Let $N = \{P_1, \ldots, P_s\}$ be a subset of \mathbb{F}_q of size s, let $k \ge 0$
- ► Reed-Solomon code has a codeword for each polynomial f(x) of degree ≤ k:

$$c_f = [f(P_1), f(P_2), \ldots, f(P_s)]$$

- ▶ a non-zero polynomial of degree at most k has at most k roots
- ... counting multiplicities!
- So take *SM*-tuple (M = k + 1)

$$\left[f(P_1), f'(P_1), \dots, f^{(k)}(P_1)| \dots | f(P_s), f'(P_s), \dots, f^{(k)}(P_s)\right]$$

イロン イ部ン イヨン イヨン 三日

to get a powerful (T, M, S)-net

 They show that the same works over algebraic curves (global function fields)

Codes for the Rosenbloom-Tsfasman Metric

▶ the dual of a linear OA is an error-correcting code

イロト イヨト イヨト イヨト

Codes for the Rosenbloom-Tsfasman Metric

- the dual of a linear OA is an error-correcting code
- the dual of a linear OOA is a code for the Rosenbloom-Tsfasman metric

- ∢ ≣ ▶

Codes for the Rosenbloom-Tsfasman Metric

- the dual of a linear OA is an error-correcting code
- the dual of a linear OOA is a code for the Rosenbloom-Tsfasman metric
- Research Problem: Are there any non-trivial perfect codes in the Rosenbloom-Tsfasman metric?

Part II: Resilient Functions

・ロト ・回ト ・ヨト ・ヨト

Resilient Functions

How can a code be used to bolster randomness?

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Resilient Functions

イロト イヨト イヨト イヨト

Resilient Functions

We have a secret string x. An opponent learns t bits of x, but we don't know which ones.

After applying function f, we guarantee that our opponents knows nothing.

 1985: The bit extraction problem (Chor/Goldreich/Håstad/Friedman/Rudich/Smolensky)

イロン イヨン イヨン イヨン

- 1985: The bit extraction problem (Chor/Goldreich/Håstad/Friedman/Rudich/Smolensky)
- 1988: Privacy amplification by public discussion (Bennett/Brassard/Robert)

イロト イヨト イヨト イヨト

- 1985: The bit extraction problem (Chor/Goldreich/Håstad/Friedman/Rudich/Smolensky)
- 1988: Privacy amplification by public discussion (Bennett/Brassard/Robert)
- ▶ 1993: Equivalent to large set of OA (Stinson)

<ロ> (日) (日) (日) (日) (日)

- 1985: The bit extraction problem (Chor/Goldreich/Håstad/Friedman/Rudich/Smolensky)
- 1988: Privacy amplification by public discussion (Bennett/Brassard/Robert)
- 1993: Equivalent to large set of OA (Stinson)
- ▶ 1995: First non-linear examples (Stinson/Massey)

イロト イヨト イヨト イヨト

- 1985: The bit extraction problem (Chor/Goldreich/Håstad/Friedman/Rudich/Smolensky)
- 1988: Privacy amplification by public discussion (Bennett/Brassard/Robert)
- 1993: Equivalent to large set of OA (Stinson)
- ▶ 1995: First non-linear examples (Stinson/Massey)
- ▶ 1997: All-or-nothing transforms (Rivest)

<ロ> (日) (日) (日) (日) (日)

- 1985: The bit extraction problem (Chor/Goldreich/Håstad/Friedman/Rudich/Smolensky)
- 1988: Privacy amplification by public discussion (Bennett/Brassard/Robert)
- ▶ 1993: Equivalent to large set of OA (Stinson)
- ▶ 1995: First non-linear examples (Stinson/Massey)
- ▶ 1997: All-or-nothing transforms (Rivest)
- 1999+: Applications to fault-tolerant distributed computing, key distribution, quantum cryptography, etc.

イロン イ団 とくほと くほとう

The Linear Case (Chor, et al.)

• Let G be a generator matrix for an $[n, k, d]_q$ -code

・ロン ・回と ・ヨン・

- Let G be a generator matrix for an $[n, k, d]_q$ -code
- Define $f : \mathbb{F}_q^n \to \mathbb{F}_q^k$ via

f(x) = Gx

・ロト ・回ト ・ヨト ・ヨト

- Let G be a generator matrix for an $[n, k, d]_q$ -code
- Define $f : \mathbb{F}_q^n \to \mathbb{F}_q^k$ via

$$f(x) = Gx$$

 If t ≤ d − 1 entries of x are deterministic and the rest are random and fully independent (denote D_{T,A})

イロン イヨン イヨン イヨン

- Let G be a generator matrix for an $[n, k, d]_q$ -code
- Define $f : \mathbb{F}_q^n \to \mathbb{F}_q^k$ via

$$f(x) = Gx$$

- If t ≤ d − 1 entries of x are deterministic and the rest are random and fully independent (denote D_{T,A})
- ... then f(x) is uniformly distributed over \mathbb{F}_q^k

イロン イヨン イヨン イヨン

- Let G be a generator matrix for an $[n, k, d]_q$ -code
- Define $f : \mathbb{F}_q^n \to \mathbb{F}_q^k$ via

$$f(x) = Gx$$

- If t ≤ d − 1 entries of x are deterministic and the rest are random and fully independent (denote D_{T,A})
- ... then f(x) is uniformly distributed over \mathbb{F}_q^k
- Why? Any linear combination of entries of f(x) is a dot product of x with some codeword

イロン イヨン イヨン イヨン

- Let G be a generator matrix for an $[n, k, d]_q$ -code
- Define $f : \mathbb{F}_q^n \to \mathbb{F}_q^k$ via

$$f(x) = Gx$$

- If t ≤ d − 1 entries of x are deterministic and the rest are random and fully independent (denote D_{T,A})
- ... then f(x) is uniformly distributed over \mathbb{F}_q^k
- Why? Any linear combination of entries of f(x) is a dot product of x with some codeword
- So any non-trivial linear function of entries involves at least one random input position

・ロン ・回 と ・ 回 と ・ 回 と

True Random Bit Generators (Sunar/Stinson/WJM)

Random bits are expensive

<ロ> (日) (日) (日) (日) (日)

- Random bits are expensive
- Device must tap some physical source of known behavior

||▲ 同 ト || 三 ト || (三 ト

- Random bits are expensive
- Device must tap some physical source of known behavior
- Even the best sources of randomness have "quiet" periods

A (1) > A (1) > A

- Random bits are expensive
- Device must tap some physical source of known behavior
- Even the best sources of randomness have "quiet" periods
- Assuming 80% of input bits are random samples and 20% are from quiet periods

A (1) > A (1) > A

- Random bits are expensive
- Device must tap some physical source of known behavior
- Even the best sources of randomness have "quiet" periods
- Assuming 80% of input bits are random samples and 20% are from quiet periods
- Resilient function collapses samples to strings one-tenth the size

Random bits are expensive

- Device must tap some physical source of known behavior
- Even the best sources of randomness have "quiet" periods
- Assuming 80% of input bits are random samples and 20% are from quiet periods
- Resilient function collapses samples to strings one-tenth the size
- What if quiet period is longer than expected?

Higher Weights (Generalized Hamming Weights)

Start with a binary linear [n, k, d]-code

・ロン ・回と ・ヨン ・ヨン

Higher Weights (Generalized Hamming Weights)

- Start with a binary linear [n, k, d]-code
- ▶ Define A_h^(ℓ) as number of linear subcodes C', dim C' = ℓ, | supp C'| = h

・ロト ・回ト ・ヨト ・ヨト
(T, M, S)-Nets Resilient Functions Fuzzy Extractors

Higher Weights (Generalized Hamming Weights)

- Start with a binary linear [n, k, d]-code
- Define A_h^(ℓ) as number of linear subcodes C', dim C' = ℓ, | supp C'| = h
- ► E.g. $A_h^{(1)} = A_h$ for h > 0, $A_h^{(\ell)} = 0$ for h < d except $A_0^{(0)} = 1$

(ロ) (同) (E) (E) (E)

Higher Weights (Generalized Hamming Weights)

- ▶ Start with a binary linear [n, k, d]-code
- ▶ Define A_h^(ℓ) as number of linear subcodes C', dim C' = ℓ, | supp C'| = h
- ▶ E.g. $A_h^{(1)} = A_h$ for h > 0, $A_h^{(\ell)} = 0$ for h < d except $A_0^{(0)} = 1$
- The number of *i*-subsets of coordinates that contain the support of exactly 2^r codewords is shown to be

$$B_{i,r} = \sum_{\ell=0}^{k} \sum_{h=0}^{n} (-1)^{\ell-r} 2^{\binom{\ell-r}{2}} \binom{n-h}{i-h} \begin{bmatrix} \ell \\ r \end{bmatrix} A_{h}^{(\ell)}$$

イロト イポト イヨト イヨト

Higher Weights (Generalized Hamming Weights)

- ▶ Start with a binary linear [*n*, *k*, *d*]-code
- ▶ Define A_h^(ℓ) as number of linear subcodes C', dim C' = ℓ, | supp C'| = h
- E.g. $A_h^{(1)} = A_h$ for h > 0, $A_h^{(\ell)} = 0$ for h < d except $A_0^{(0)} = 1$
- The number of *i*-subsets of coordinates that contain the support of exactly 2^r codewords is shown to be

$$B_{i,r} = \sum_{\ell=0}^{k} \sum_{h=0}^{n} (-1)^{\ell-r} 2^{\binom{\ell-r}{2}} \binom{n-h}{i-h} \begin{bmatrix} \ell \\ r \end{bmatrix} A_{h}^{(\ell)}$$

► Lemma (Sunar/WJM): Let X be a random variable taking values in {0,1}ⁿ according to a probability distribution D_{T,A}. Then
Dest[U] = 0 (n)⁻¹

$$Prob[H_{out} = k - r \mid |T| = i] = B_{i,r} \binom{n}{i}$$

・ロン ・回 と ・ ヨ と ・ ヨ と

Higher weight enumerators are known only for very few codes:

MDS codes: partial information only (Dougherty, et al.)

- 4 同 ト 4 臣 ト 4 臣 ト

Higher weight enumerators are known only for very few codes:

- MDS codes: partial information only (Dougherty, et al.)
- Golay codes (Sunar/WJM, probably earlier)

- 4 同 ト 4 臣 ト 4 臣 ト

2

Higher weight enumerators are known only for very few codes:

- MDS codes: partial information only (Dougherty, et al.)
- Golay codes (Sunar/WJM, probably earlier)
- Hamming codes

Can we work out these statistics for the other standard families of codes?

A (1) > A (1) > A

Part III: Fuzzy Extractors

・ロト ・回ト ・ヨト ・ヨト

(T, M, S)-Nets Resilient Functions Fuzzy Extractors

Codes for Biometrics

How can we eliminate noise if we are not permitted to choose our codewords?

William J. Martin Abusing Codes

イロン イヨン イヨン イヨン

▶ **1990s:** Ad-hoc mix of protocols (e.g., quantum oblivious transfer, crypto over noisy channels)

- 4 回 2 - 4 □ 2 - 4 □

- ▶ **1990s:** Ad-hoc mix of protocols (e.g., quantum oblivious transfer, crypto over noisy channels)
- 1987,1994: Patents for iris recognition systems

(4月) (日)

- ∢ ≣ ▶

- ▶ **1990s:** Ad-hoc mix of protocols (e.g., quantum oblivious transfer, crypto over noisy channels)
- ▶ 1987,1994: Patents for iris recognition systems
- 2008: definition of "fuzzy extractor" (Dodis/Ostrovsky/Reyzin/Smith)

(本間) (本語) (本語)

- ▶ **1990s:** Ad-hoc mix of protocols (e.g., quantum oblivious transfer, crypto over noisy channels)
- 1987,1994: Patents for iris recognition systems
- 2008: definition of "fuzzy extractor" (Dodis/Ostrovsky/Reyzin/Smith)
- 2009: CD fingerprinting (Hammouri/Dana/Sunar)

- 4 同 ト 4 臣 ト 4 臣 ト

- ▶ **1990s:** Ad-hoc mix of protocols (e.g., quantum oblivious transfer, crypto over noisy channels)
- 1987,1994: Patents for iris recognition systems
- 2008: definition of "fuzzy extractor" (Dodis/Ostrovsky/Reyzin/Smith)
- 2009: CD fingerprinting (Hammouri/Dana/Sunar)
- > 2009: physically unclonable functions (WPI team)

Fuzzy Extractors

▲口 → ▲圖 → ▲ 国 → ▲ 国 → □

Fuzzy Extractors

Metric space \mathcal{M} and function $f : \mathcal{M} \times \{0,1\}^* \to \{0,1\}^*$ such that f(w',x) = f(w,x) provided x valid for w and $d(w',w) < \epsilon$.

イロト イポト イヨト イヨト

(T, M, S)-Nets Resilient Functions Fuzzy Extractors

Fuzzy Extractor: Toy Example

・ロン ・回 と ・ ヨン ・ ヨン

(T, M, S)-Nets Resilient Functions Fuzzy Extractors

Fuzzy Extractor: Toy Example

Baseline reading w = 3 is obtained from temporal reading w' = 2and hint x = D.

But w is not recoverable from either w' or x alone.

・ロト ・回ト ・ヨト ・ヨト

3

Fuzzy extractor for Hamming metric:

Start with a binary [n, k, d]-code with generator matrix G

- 4 同 ト 4 臣 ト 4 臣 ト

Fuzzy extractor for Hamming metric:

- Start with a binary [n, k, d]-code with generator matrix G
- ▶ For each user, generate a random *k*-bit string *m*

- 4 同 ト 4 ヨ ト 4 ヨ ト

Fuzzy extractor for Hamming metric:

- Start with a binary [n, k, d]-code with generator matrix G
- ▶ For each user, generate a random *k*-bit string *m*
- For baseline reading w, helper data is x = w + mG

A (1) > A (1) > A

Fuzzy extractor for Hamming metric:

- Start with a binary [n, k, d]-code with generator matrix G
- ▶ For each user, generate a random *k*-bit string *m*
- For baseline reading w, helper data is x = w + mG
- ▶ New reading w' is assumed to be within distance d/2 of w in large Hamming space

Fuzzy extractor for Hamming metric:

- Start with a binary [n, k, d]-code with generator matrix G
- ▶ For each user, generate a random *k*-bit string *m*
- For baseline reading w, helper data is x = w + mG
- ▶ New reading w' is assumed to be within distance d/2 of w in large Hamming space
- ► To recover *m* from *x* and *w*', decode w' + x = mG + (w w')

Fuzzy extractor for Hamming metric:

- Start with a binary [n, k, d]-code with generator matrix G
- ▶ For each user, generate a random *k*-bit string *m*
- For baseline reading w, helper data is x = w + mG
- ▶ New reading w' is assumed to be within distance d/2 of w in large Hamming space
- ▶ To recover *m* from *x* and *w*', decode w' + x = mG + (w w')
- Provided k and d are both linear in n, recovery of m from just x or w' is hard

イロト イポト イヨト イヨト

Fuzzy extractors are known for several metrics:

Hamming

・ロン ・雪 ・ ・ ヨ ・ ・ ヨ ・ ・

Fuzzy extractors are known for several metrics:

- Hamming
- Set difference (fuzzy vault scheme of Juels/Sudan)

- 4 回 2 - 4 回 2 - 4 回 2 - 4

Fuzzy extractors are known for several metrics:

- Hamming
- Set difference (fuzzy vault scheme of Juels/Sudan)
- Edit distance

イロト イヨト イヨト イヨト

Fuzzy extractors are known for several metrics:

- Hamming
- Set difference (fuzzy vault scheme of Juels/Sudan)
- Edit distance

Can we build efficient fuzzy extractors for the Euclidean metric?

- 4 同 6 4 日 6 4 日 6

(T, M, S)-Nets Resilient Functions Fuzzy Extractors

The End

Thank you all!

æ

・ロン ・四と ・ヨン ・ヨン