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Abstract

In these notes, we address bounds for error-correcting codes. Our approach
is from the viewpoint of algebraic graph theory. We therefore begin with a
review of the algebraic structure of the Hamming graph, focusing on the bi-
nary case. We then derive Delsarte’s linear programming bound and explore
some applications of it.

In the second part of the notes, we introduce Terwilliger’s subconstituent
algebra and explore its connection to the semidefinite programming approach
of Schrijver. Throughout, our focus is on the binary case. The three steps
presented here are a summary of the structure of the Terwilliger algebra as
presented by Go, a surprising connection to the biweight enumerator of a
binary code, and a full characterization of the positive semidefinite cone of
the algebra, given by Visentin and Martin.
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Chapter 1

Introduction and Overview

The theory of error-correcting codes is a gem of twentieth-century mathe-
matics. Motivated by the pressing need for efficient digital communications,
mathematicians and engineers developed a body of tools, examples and tech-
niques that was at once elegant and practical. Seemingly archaic facts from
mathematics such as the theory of finite fields and invariant theory were
dusted off, rejuvinated in their crucial roles in this important new field. Con-
nections to finite group actions, the statistical design of experiments and the
theory of lattices enriched the field and facilitated various sorts of “technology
transfer”. Meanwhile, the applications were often ahead of the theory, first
with spacecraft communications, then the compact disc technology, packet
networks, and even hard drive storage schemes. New applications continue
to emerge, from quantum computing, to cellphone technology to crypto-
graphic protocols. Indeed, mathematicians have identified a fundamental
phenomenon in science revolving around the fundamental concept of distin-
guishability among selected elements in a metric space and the dual concept
of approximating a space by a well-chosen representative subset. Now these
concepts are extended well beyond their original context (q-ary strings of
fixed length n) to include all sorts of spaces, both finite and infinite, with or
without a metric, but typically enjoying a rich group action.

From the very beginning of the development, researchers were concerned
with efficiency. The codes of Golay and Hamming found in the 1940s were
“perfect” but were they “efficient”? By the 1960s, algebraic coding theorists
had arrived at the “main question of algebraic coding theory” [31, p222]:
What is the maximum size A(n, d) of a binary code C of given length n and
given minimum distance 0 < d < n? Early bounds for this quantity were

3



CHAPTER 1. INTRODUCTION 4

found to be quite weak. The 1973 thesis of Philippe Delsarte (summarizing
several papers, some published as early as 1968) introduced his famous linear
programming (LP) bound for q-ary error-correcting codes. In the words of
McEliece, this “deceptively powerful” result unified several known bounds
and became part of a framework for many future results and extensions.
(While Delsarte’s bound applies to many other problems and to all commu-
tative association schemes, our discussion will consider only the Hamming
graphs.)

Further developments include the famous MRRW bound (or “bound of
the four Americans” as the Russians once called it), powerful and elegant
extensions to bounds for spherical codes and designs, powerful bounds of
Vladimir Levenshtein, and asymptotic versions of some of the most important
bounds.

1.1 Samorodnitsky’s Theorem

As we said, the linear programming bound can be to obtain bounds on vertex
subsets in any commutative association scheme. Yet certainly the most stud-
ied case is that of the Hamming graphs. In addition to substantial concrete
data, the study of the linear programming technique has led to a number of
less obvious results. Substantial work has been completed on the asymptotic
analysis of dual-feasible solutions to these linear programs. See [33, 25, 8].

To delve a bit further into this issue, let us focus on the binary case. We
will use the binary entropy function

H2(x) = −x log2 x− (1− x) log2(1− x).

The rate of a binary code C of length n is R := 1
n

log2 |C|. Cleverly applying
the LP bound in 1977, McEliece et al. proved [31, p222] that any binary
code C satisfies the “MRRW bound”:

R ≤ H2

(
1

2
−

√
d

n

(
1− d

n

))

where d denotes the minimum distance of C. This gives rise to an asymptotic
upper bound on the rate of a binary code. On the other hand, Gilbert [15]
and Varshamov [43] proved that, for any 0 ≤ δ < 1

2
, there exists a sequence

of binary linear codes each with d
n
≥ δ and rate R ≥ 1−H2( d

n
).
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Coding theorists have been investigating the gap between the MRRW
bound and the Gilbert-Varshamov bound for two decades now. Could it be
that codes exist with asymptotic rate close to the MRRW bound? Or is it true
that the optimal rates are instead closer to the GV bound?1 A recent result of
Samorodnitsky establishes that the linear programming bound cannot resolve
this issue. Specifically, he proves in [35] that the optimum of Delsarte’s linear
program is at least the average of these two bounds. (See also Barg and Jaffe
[7].) Many interpret this as evidence that much more efficient codes exist
than currently known. But I feel that the true answer may be much closer to
the GV bound and that the linear programming bound is simply not strong
enough to provide the necessary non-existence results.

Substantial improvements to the LP bound appear in [19], where Jaffe
describes software for automating the linear programming bound in an intel-
ligent manner. For instance, if one learns that a desired code C of length n
must contain a word of weight k, then one may assume a given support for
this codeword and split the original LP into two pieces — one LP for a code
of length k containing the all-ones vector and one LP for a code of length
n − k. This promising line of investigation has answered a number of open
questions regarding specific codes [20] but may not be powerful enough to
provide asymptotic improvements beyond the known bounds.

The linear programming technique has also been applied to bound the
probability of undetected error [1], and to bound quantum error-correcting
codes [23, 34], among other problems in coding theory. The linear program-
ming bound for the Johnson scheme was used by Frankl and Wilson in [13]
to obtain an extension of the Erdös-Ko-Rado Theorem for intersecting set
systems to the setting of vector spaces. This wide applicability motivates us
to seek out improvements to the bound.

1.2 The Terwilliger algebra as an extension

of the Bose-Mesner algebra

The Bose-Mesner algebra of a d-class association scheme has dimension d+1
and the corresponding linear program (LP) has d + 1 variables and con-
straints. We suggest that one way to obtain stronger bounding techniques is

1For non-binary alphabets, the story may be different. In [41], Tsfasman et al. show
that for square-order fields, Fq, q ≥ 49, codes exceeding the GV bound do indeed exist.
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to first identify useful super-algebras of the Bose-Mesner algebra A. Suppose
U is a semi-simple matrix algebra containing A. Suppose U admits two bases

{Bi : i ∈ I} and {Fj : j ∈ J }.

For a vector u in the standard module (for example, the characteristic vector
of a subset C of X), we consider the two ordered sets of statistics

[u∗Biu : i ∈ I]

and
[u∗Fju : j ∈ J ] .

In analogy with the linear programming bound of Delsarte, we seek bases
{Bi} and {Fj} with the properties that each complex number u∗Biu has
combinatorial interpretation (say, when u is assumed to be a 01-vector) and
the numbers u∗Fju satisfy some simple algebraic conditions. If one hopes to
have u∗Fju ≥ 0, one approach is to rather choose each Fj to be the projection
of the standard module onto the sum of all irreducible U -modules of a given
isomorphism type; i.e., a central idempotent.

One candidate algebra which has received considerable attention in the
recent literature is the subconstituent algebra of Terwilliger [37, 38, 39] (this
is now often called the Terwilliger algebra). While the full structure of
this algebra is currently unclear for P - and Q-polynomial schemes in general,
the cases of most practical interest — namely, the Hamming and Johnson
schemes — have Terwilliger algebras which are quite well understood.

Let C be a binary code of length n. For a four-tuple α = (α0, α1, α2, α3)
of non-negative integers summing to n, let

`α = |{(c, c′) ∈ C × C :

wt(c) = α2 + α3, dist(c, c′) = α1 + α3,wt(c′) = α1 + α2}| .

We consider the biweight enumerator

WC(y0, y1, y2, y3) =
∑

α=(α0,α1,α2,α3)

`α y
α0
0 yα1

1 yα2
2 yα3

3 .

For binary linear codes, MacWilliams identities for this enumerator were
given by MacWilliams, et al. in 1972 [30]. We give a new proof of these
identities using the Terwilliger algebra of the n-cube. Further, we consider
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some families of non-linear codes whose dual biweight enumerators necssarily
have non-negative coefficients. For unrestricted codes, a characterization
of the positive semidefinite cone of the Terwilliger algebra is given which
leads to new inequalities for the coefficients of the biweight enumerator of
an unrestricted code. Each extremal ray of the positive semidefinite cone
corresponds to a projection onto some irreducible module of the Sn action
on the free real vector space over the binary n-tuples. It remains to find
computationally useful formulae for these inequalities.

1.3 Notation

In these notes, I try to use certain symbols in restricted ways, but I’m sure
that some of the rules I am about to lay out are violated repeatedly.

I try to use bold font lower case letters for vectors in Rn or Cn and
upper case roman letters for matrices. Indices are usually chosen from
{g, h, i, j, k, `}. Lower case letters are used for codewords and n-tuples over
finite alphabets, with a preference for a, b, c over x, y, z which are used as
indeterminates.

I use dist for Hamming distance (whereas Christine Bachoc uses d). I use
〈·, ·〉 for the standard Hermitean inner product on Cn (or Rn) but I use a · b
for the dot product of two vectors over a finite field or ring.

When indexing relations and eigenspaces of an association scheme (such
as the n-cube), I try to use h, i for relations (distances) and j, k for eigenspaces,
but only when both types of object appear in the same expression.



Chapter 2

The Bose-Mesner Algebra

In this chapter, we consider the Hamming association schemes and their
Bose-Mesner algebras. We begin with a fundamental motivating problem in
coding theory; this leads naturally to the definition of the Hamming metric
and the Hamming graphs. We then work out two fundamental bases for the
adjacency algebra (or “Bose-Mesner algebra”) of the Hamming graph and
the change-of-basis matrices from one of these bases to the other.

2.1 Block codes

Suppose Q is an alphabet of size q and we wish to communicate messages
over a noisy channel by sending sequences of symbols from Q. In these notes,
we will assume that all messages are broken into blocks of a fixed length n.
So we are choosing messages from the set Qn. We assume that, with small
probability, any of the symbols in a given message x ∈ Qn may be distorted
by noise in the channel, resulting in a somewhat different message r ∈ Qn
being read at the receiving end.

The nature of this noise depends on the application (e.g., fingerprints or
manufacturing defects in the case of the CD, crosstalk or electromagnetic
interference in the case of cellular communications), but we model this using
the q-ary symmetric channel. We assume that symbols within the message
are independently subject to error and that, for some small ε > 0, a symbol
α ∈ Q is received error-free with probability 1−ε and is replaced with another
symbol β with probability ε/(q − 1) for each β 6= α in Q1.

1A more realistic channel model, in the binary case, is one in which the probability of a
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CHAPTER 2. BOSE-MESNER ALGEBRA 9

Under this model2, a message x ∈ Qn sent over the channel is most likely
received as x, but second-most likely received as some q-ary n-tuple that
agrees with x in n − 1 coordinate positions. By the same reasoning, we see
that, upon transmission of a fixed n-tuple x, the probability that some other
n-tuple y is received depends only on the number of coordinate positions in
which x and y agree.

Now for fixed n and q, we define the Hamming metric on Qn. For

x = (x1, x2, . . . , xn), y = (y1, y2, . . . , yn),

we define the Hamming distance from x to y as the number of coordinate
positions in which they differ:

dist(x, y) = |{i : 1 ≤ i ≤ n, xi 6= yi}| .

We usually assume that our alphabetQ contains a zero element and we define
the Hamming weight of x as the distance from x to the all-zero vector:

wt(x) = |{i : 1 ≤ i ≤ n, xi 6= 0}| .

Exercises:

1. dist is a metric on Qn:

(a) dist(x, y) = dist(y, x) for all x and y in Qn;

(b) dist(x, y) ≥ 0 for all x and y in Qn;

(c) dist(x, y) = 0 if and only if x = y;

(d) dist(x, y) ≤ dist(x, z) + dist(z, y) for all x, y and z in Qn.

2. For any x ∈ Qn, there are exactly
(
n
i

)
(q−1)i elements of Qn at distance

i from x.

3. If Q is an abelian group, then dist(x, y) = wt(x− y) for all x, y ∈ Qn.

one getting replaced by a zero is much higher than the probability that a zero is replaced
by a one. This applies when bit positions containing ones are represented by higher-energy
signals than those containing zeros.

2Technically, this is true only for ε small and n small. As an exercise, the reader may
wish to compute that value n = n(ε) at which the sent codeword is received error-free
with less than 50% probability.
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2.2 The Hypercube

Before considering general Hamming graphs, we take a look at the simplest
case, which happens to be the most important case for several applications.

Let n > 0 be fixed and consider X = Zn
2 . We do not necessarily need the

structure of an abelian group for the graph theory or (combinatorial) coding
theory that we will be doing, but this group structure will play a fundamental
role in the spectral analysis we develop here.

The n-cube is the simple undirected graph Qn = (X,R1) having vertex
set X and adjacency relation

R1 = {(x, y) ∈ X ×X : dist(x, y) = 1} .

Note that we are saying that the vertex set is the set of zero-one strings of
length n, not simply that the vertices are labelled by this set.
Exercise: Now draw the n-cube for 1 ≤ n ≤ 4 and be sure to include the
names of the vertices.

Assuming that X = Zn
2 , it is easy to see that Qn is a vertex transitive

graph: for any two vertices a and b, there is an automorphism of Qn (i.e.,
a permutation of the vertices which maps adjacent pairs to adjacent pairs)
which maps a to b. For given a, b ∈ Zn

2 , the required automorphism is simply
translation inside the group X by the element b ⊕ a (exercise). (Note that
X forms an abelian group under coordinatewise sum ⊕ modulo two.)

The n-cube is a bipartite distance-regular graph. It has diameter n: the
maximum distance between any two vertices is n. For example, the (binary)
all-ones vector is the unique vertex at distance n from the (binary) zero vector
of length n. In fact, there are exactly

(
n
i

)
vertices of Qn at distance i from

any given x ∈ X. Next, consider vertices x, y ∈ X which are distance i apart
in Qn. The reader may verify that, among the n neighbors of y, i of these
are at distance i−1 from x and the other n− i neighbors are at distance i+1
from x. This implies that Qn is a distance-regular graph3. More generally, if
dist(x, y) = k, then one checks (exercise!) that the number of elements of X
simultaneously at distance i from x and distance j from y is

pkij =

(
k

`

)(
n− k
i− `

)
(` := (i+ k − j)/2). (2.1)

3A regular graph Γ of diameter n is distance-regular if there exist integers ai, bi and ci
(0 ≤ i ≤ n) such that, for any two vertices x and y, there are ci (resp., ai, bi) neighbors
of y at distance i− 1 (resp., i, i+ 1) from x where i = dist(x, y) in Γ.
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(To prove this, appeal to the vertex transitivity of Qn so that you may assume
x is the zero vector.)

We will consider not only the n-cube Qn, but also the distance-i graph
of this graph for each 0 ≤ i ≤ n. The adjacency matrix of the distance-i
graph is the 01-matrix Ai of order 2n with rows and columns indexed by X
and a one in row a column b when dist(a, b) = i and a zero in this position
otherwise. The n+1 matrices A0, A1, . . . , An form a basis for a vector space A
of symmetric matrices called the Bose-Mesner algebra of the n-cube. Indeed,
what we showed in the previous paragraph implies that

AiAj =
n∑
k=0

pkijAk (2.2)

for 0 ≤ i, j ≤ n.

Exercises:

1. We find generators for the automorphism group of the n-cube Qn:

(a) Prove that, for any c ∈ Zn
2 , the permutation φc : X → X which

sends a to a + c preserves adjacency (i.e., for any a, b ∈ X, a is
adjacent to b if and only a+ c is adjacent to b+ c;

(b) Prove that, for any τ ∈ Sn (the symmetric group on n letters),
the permutation τ̂ : X → X which sends a = (a1, . . . , an) to
(aτ(1), . . . , aτ(n) preserves adjacency.

2. Prove Equation (2.1).

3. Prove Equation (2.2).

4. Show that A0 is the identity matrix.

5. Show that A0 + A1 + · · ·+ An = J , the all-ones matrix.

6. Show that Ai has constant row sum
(
n
i

)
.

7. Prove that A1Ai = (n− i+ 1)Ai−1 + (i+ 1)Ai+1 and use this, together
with a simple induction argument, to prove that Ai is expressible as a
polynomial of degree i in A1.
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8. Prove that the vector space A is closed under entrywise multiplication
of matrices: if M = [mij] and N = [nij], then M ◦N is the matrix with
(i, j)-entry mijnij.

9. Prove that each Ai and the sum of any subset of {A0, . . . , An} is an
idempotent under ◦.

Let G be a finite group with identity element e and let S ⊆ G − {e} be
an inverse-closed subset of G: for all g ∈ G, g ∈ S if and only if g−1 ∈ S.
The Cayley graph Γ(G;S) is the simple undirected graph having vertex set
G and having a adjacent to b precisely when ba−1 ∈ S. Cayley graphs are
obviously vertex transitive graphs and there is a strong connection between
their eigenvectors and the characters of the group G. In particular, when G
is abelian, every irreducible character of G is an eigenvector for Γ(G;S) and
these form a basis for CG. What we work out in the next paragraph is a very
special case of this general phenomenon.

A linear character of a group X is a homomorphism χ : X → C∗ from
X to the multiplicative group of non-zero complex numbers. For example,
if X = Z2, then the maps χ0 : b 7→ 1 and χ1 : b 7→ (−1)b are the only two
such homomorphisms. If X = Zn

2 , then there are 2n linear characters, one
for each a ∈ X. Define χa : X → C∗ by

χa(b) = (−1)a·b

for b ∈ X. In fact, these characters form a group isomorphic to X under
multiplication of functions

(χaχc)(b) = (−1)a·b(−1)c·b = (−1)(a⊕c)·b;

so we have χaχc = χa⊕c and this group, which we call X† is isomorphic to
X.

Henceforth, we view each character χa as a vector in CX . It is not hard
to show that, for any a ∈ X with Hamming weight j and for any 0 ≤ i ≤ n,

Aiχa = Pjiχa

where

Pji =
i∑

`=0

(−1)`
(
j

`

)(
n− j
i− `

)
. (2.3)
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(Exercise: Please try to prove this by summing χa(b) over the n-tuples b at
distance i from a fixed c ∈ X and using the fact that each such b is uniquely
expressible in the form b = c⊕ e for some e ∈ X of Hamming weight i.)

We now let Sj denote the 2n×
(
n
j

)
matrix with columns χa as a ranges over

the binary n-tuples of Hamming weight j. With appropriate orderings on
rows and columns, Sj has (b, a)-entry χa(b) = (−1)a·b. It is straightforward
to check that each column of any Sj has norm

√
2n, but it is also true that

all these column vectors are pairwise orthogonal. Indeed, if a 6= c then there
is some coordinate h where ah 6= ch. So we have

〈χa, χc〉 =
∑
b∈X

χa(b)χc(b)

=
∑
b∈X

(−1)(a⊕c)·b

=
∑
b∈X

(−1)
Pn
i=1(ai+ci)bi

=
n∏
i=1

[
(−1)(ai+ci)0 + (−1)(ai+ci)1

]
=

n∏
i=1

[
1 + (−1)ai+ci

]
= 0

since the h term in the product, where ai + ci = 1, is equal to zero. So
S>j Sj = 2nI and S>j Sk = 0 when j 6= k for 0 ≤ j, k ≤ n.

Now consider the matrix

Ej =
1

2n
SjS

>
j .

Since MN and NM have the same eigenvalues (excepting some possible
extra zero eigenvalues for the larger one) when they are square matrices, we
immediately see that Ej has

(
n
j

)
eigenvalues equal to one and 2n −

(
n
j

)
zero

eigenvalues. Moreover, Ej is positive semidefinite since, for any vector v in
RX ,

v>Ejv =
1

2n
(
S>j v

)> (
S>j v

)
≥ 0.

So Ej is a matrix representing orthogonal projection onto the column space
of Sj, which we denote by Vj.
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Since each column of Sj is an eigenvector of Ai with eigenvalue Pji, we
see that AiSj = PjiSj and AiEj = PjiEj as well. This shows that each Sj is
a common eigenspace for the matrices Ai, 0 ≤ i ≤ n.

Now we compute all of the entries of Ej and show that it belongs to the
Bose-Mesner algebra A. (This also follows from the spectral decomposition
of A1.) If dist(a, c) = i, then

(Ej)a,c =
1

2n

∑
wt(b)=j

χb(a)χb(c)

=
1

2n

∑
wt(b)=j

(−1)b·a(−1)b·c

=
1

2n

∑
wt(b)=j

(−1)b·(a⊕c)

Now if S is an i-subset of [n] = {1, . . . , n}, then there are
(
i
`

)(
n−i
j−`

)
j-subsets

T of [n] satisfying |S ∩ T | = `. With S representing the support of a⊕ c and
T representing the support of b, we then find

(Ej)a,c =
1

2n

∑
wt(b)=j

(−1)b·(a⊕c)

=
1

2n

∑
`=0i

(−1)`
(
i

`

)(
n− i
j − `

)
which depends only on i and j and not on the choice of a and c themselves.
This proves that

Ej =
1

2n

n∑
i=0

PijAi

where Pij is defined in Equation (2.3) above. In particular, each Ej lies in
the Bose-Mesner algebra of Qn.

Since S>j Sk = 0 for j 6= k, we find

EjEk = δj,kEj (0 ≤ j, k ≤ n)

and these n+1 matrices are therefore linearly independent inside A and hence
form a basis. The interplay between the two bases {Ai}ni=0 and {Ej}nj=0 will
play a fundamental role in our study.
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In the more general setting of an n-class commutative association scheme
on a vertex set X, we assume the existence of two such bases {Ai}ni=0 and
{Ej}nj=0 and define the (n + 1) × (n + 1) change-of-basis matrices P and Q
(often called the first and second eigenmatrices of the association scheme,
respectively) defined by

Ai =
n∑
j=0

PjiEj, Ej =
1

|X|

n∑
j=0

QijAi. (2.4)

In the case of the n-cube we have shown that

Pij = Qij =
i∑

`=0

(−1)`
(
j

`

)(
n− j
i− `

)
.

The fact that P = Q for the n-cube is rather special. An association scheme
is called formally self-dual when its two eigenmatrices are equal. But in this
case, we have an actually duality coming from the group X† of characters.
In short, these characters also determine an association scheme in a natural
way and in the case of the n-cube (and the Hamming graphs in general)
the two association schemes are in fact isomorphic. So the n-cube is a truly
“self-dual” association scheme.

2.3 Hamming Graphs

In this section, we show that everything we said about the n-cube applies
more generally to the Hamming graph H(n, q) defined on the n-tuples over
any finite alphabet Q of size q ≥ 2.

2.4 Eigenspaces and Algebra Bases

Let ω denote a primitive complex qth root of unity. Assume that Q = Zq =
{0, 1, . . . , q − 1} and let us use the inner product

a · b = a1b1 + a2b2 + · · ·+ anbn (mod q)

with the occasional abuse of notation where we consider a ·b to be an integer.
If ⊕ denotes addition modulo q of n-tuples in Qn, then we observe that

a · (b⊕ c) = a · b+ a · c
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in Z.
Throughout, we will work with the abelian group X := Qn.
For a ∈ X, consider the qn-tuple of complex numbers χa with entries

χa(b) = ωa·b

for b ∈ X. Viewed as a function onX = Qn, each χa is an irreducible complex
character and every character for this abelian group is a non-negative integer
linear combination of these fundamental ones. But viewed as a function on
vertices, each χa is an eigenvector of the Hamming graph H(n, q) and these
qn eigenvectors span CX , allowing us to diagonalize the Bose-Mesner algebra
of the Hamming scheme.

Recall that Ai is the qn×qn matrix with a one in row b, column c precisely
when dist(b, c) = i and a zero in that position otherwise. We compute the
b-entry of the vector Aiχa. Suppose wt(a) = j. Then

(Aiχa)b =
∑

dist(b,c)=i

ωa·c

=
∑

wt(e)=i

ωa·(b⊕e)

=
∑

wt(e)=i

ωa·b+a·e

= ωa·b
∑

wt(e)=i

ωa·e.

In order to simplify this last expression, we consider those coordinates in the
support of e that lie within the support of a and those which do not. If the
supports of a and e have ` coordinates in common, then we may fix values
for e outside these coordinates (there are (q − 1)i−` such choices) and sum
over all possible nonzero values within those ` coordinates to find that these
tuples e together contribute (−1)` to the overall sum. There are

(
j
`

)
ways to

choose the ` coordinates within the support of a and
(
n−j
i−`

)
ways to choose

the remaining coordinates of e. Sorting all this out, one finds

(Aiχa)b = ωa·b
i∑

`=0

(−1)`(q − 1)i−`
(
j

`

)(
n− j
i− `

)
.
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It turns out that the change-of-basis coefficients Qij satisfying

Ej =
1

qn

n∑
i=0

QijAi

are exactly the same as the ones which express the Ai in terms of the matrices
Ej:

Qij = Pij (0 ≤ i, j ≤ n).

This means that the Hamming graph H(n, q) is a formally self-dual asso-
ciation scheme: it satisfies P = Q. But what’s more is that there is an
explicit duality here. The characters X† = {χa : a ∈ X} also for an associa-
tion scheme: for 0 ≤ h ≤ n, join χa to χb in relation Rh if and only if χaχ−b
lies in eigenspace Vh. It is not hard to show that this happens precisely when
wt(a 	 b) = h. Obviously, this is isomorphic to the Hamming scheme, but
it is defined on a vertex set which is an eigenbasis for the Hamming graph.
So the duality map ψ which maps a ∈ Zn

2 to the character χa in the “dual
group” (Zn

2 )† is an isomorphism. When such an explicit isomorphism exists,
we say that the association scheme is self-dual. (It is quite possible to have
a dual scheme on X† which is not isomorphic to the one one X.)

Before we leave this section, let me just point out a curious graph theoretic
property of the n-cube which will arise later. If (X,R) is a simple graph and
a, b, c ∈ X, we say a vertex e ∈ X is an apex for a, b, c if e lies simultaneously
on some shortest path in the graph from a to b, some shortest path from b
to c and some shortest path from c to a. A graph is an “apex graph” if, for
every three vertices of it, these vertices have an apex.

Exercises:

1. In any graph (X,R), if one of a, b, c lies on a shortest path joining the
other two, then a, b, c have an apex.

2. Every apex graph is triangle free.

3. The n-cube is an apex graph. For a = 0n, b, c ∈ Zn
2 , explicitly find the

apex for a, b, c and prove that it is unique.



Chapter 3

The Linear Programming
Bound of Delsarte

Philippe Delsarte was a coding theorist at Philips MBLE Labs in Brussels
in the late 1960s. He was authoring papers as early as 1968 and his 1973
dissertation, under the supervision of Vladimir Belevitch, summarized several
of these papers and ushered in a new era in algebraic coding theory. In
addition to the celebrated linear programming bound that we will discuss
here, Delsarte’s dissertation established a broad framework for coding theory
and design theory, the theory of association schemes. In particular, it was
Delsarte who initiated the study of P - andQ-polynomial association schemes.

3.1 Some Simple Codes

We will be deriving bounds on the sizes of various codes. In order to make
sense of these bounds, it will help to have a few small examples of codes to
work with.

For us, a code is simply any subset C of Qn. The tuples in C are called
“codewords”. To avoid trivialities, we assume 1 < |C| < qn. The minimum
distance of C is

δ(C) = min {d(x, y) : x, y ∈ C, x 6= y} .

It is not hard to see that, using a code with minimum distance δ, one can
correct up to e := b δ

2
c errors per transmitted codeword. We define the

18
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packing radius e(C) of C as b δ
2
c. If C is a q-ary code of length n and size M

whose minimum distance is d, then we say C is an (n,M, d)q-code.
It is useful in coding theory to know how far the received vector is from

the code (in the Hamming metric). We define

d(r, C) = min{d(r, c) : c ∈ C}.

The covering radius of C is the maximum of this value over all possible r:

ρ(C) = max{d(r, C) : r ∈ Qn}.

Exercises:

1. Show that 2e ≤ δ.

2. Show that e ≤ ρ.

3. What can you say about the structure of a code in which e = ρ?

For any n and q, the q-ary repetition code of length n is the code

C = {000 · · · 0, 1111 · · · 1, 222 · · · 2, . . .}

of size q which contains one codeword of length n for each symbol α ∈ Q.
This code has minimum distance n; that is, any two distinct codewords differ
in all coordinates. So we have ρ(C) = bn

2
c and e(C) = bn−1

2
c.

For q = 2, we obtain the binary repetition code, a code of size two. For
example, when n = 5, the repetition code is C = {00000, 11111}.

When we treat Q as a finite field, we can view X = Qn as a vector space
over Q and subspaces of this vector space sometimes form particularly useful
error-correcting codes. A subspace C of Qn of dimension k in which every
non-zero codeword has Hamming weight at least d is denoted an [n, k, d]q-
code, the square brackets indicated that C is a subspace, a q-ary linear code
of length n, dimension k and minimum distance d. (Exercise: Show that a
linear code C has minimum distance d or larger if and only if the minimum
Hamming weight of any non-zero codeword in C is d or larger.) If C is a
(linear) [n, k, d]q-code, then its dual code

C⊥ = {y ∈ X : ∀x ∈ C(x · y = 0)}
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is an [n, n− k, d]q-code. The relationship between these two codes — which
can be generalized to any subgroup C of Qn when Q takes on the structure
of an abelian group — is a fundamental paradigm for our study of the linear
programming bound, which applies even when C has no group structure at
all.

The dual of the binary repetition code is the linear code consisting of all
binary words having even Hamming weight. This code has dimension n− 1,
minimum distance two and covering radius one.

A “single-error-correcting code” is a code with minimum distance three
or larger. (We typically use this term only when the minimum distance is
either three or four.) If we seek a binary single-error-correcting code of length
five, the best we can do is to choose a code of size four1:

C = {00000, 11100, 00111, 11011} .

A perfect code of packing radius e (or “perfect e-code”) is a q-ary code
of length n with minimum distance 2e+ 1 and covering radius e. For such a
code, every vector r in X is at distance e or less from exactly one codeword.
In the binary case, there is a unique linear perfect 1-code of length n for
each length of the form n = 2m − 1 (i.e., the binary Hamming code) and no
such perfect 1-code for other lengths n. Strangely, there are a large number
of unruly non-linear (2m − 1, 22m−m−1, 3)2-codes which seem to be beyond
classification. Other than these, there is only one other non-trivial binary
perfect code, the Golay code. There is also a perfect ternary Golay code, a
[11, 6, 5]3-code as well as q-ary Hamming codes of length n = (qm−1)/(q−1)
for each prime power q and each m ≥ 2. We’ll next briefly review these.

Let Fq denote the unique finite field of order q. For m ≥ 2, let N be
the m × qm − 1 matrix having each non-zero vector in Fmq as one of its
columns. When q > 2, this matrix has many pairs of linearly dependent
columns. If we define an equivalence relation on the columns of N by u ≈ v
if and only if u = αv for some αinFq, then we retain one representative
from each equivalence class and obtain the submatrix H, an m × n matrix
(n = (qm − 1)/(q − 1)) of rank m in which no two columns are linearly
independent. Therefore the null space C of H is an [n, n − m, 3]q-code, a
perfect code. To see this, note that the number of tuples in X at distance

1While we are not emphasizing applications here, it may be useful to know that this
code enables us to encode two information bits in a codeword of length five, thereby
attaining an information rate of 2/5 = 0.4.
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one from C is n(q − 1)|C| and since

|C| = qq
m−m−1 = qnq−(m+1) =

qn

1 + n(q − 1)
,

we see that C has covering radius one and is therefore perfect.
One way to construct the perfect binary Golay code is to first use the

icosahedron to construct the extended binary Golay code. If A is the 12×12
adjacency matrix of the icosahedron and J is the 12 × 12 all-ones matrix,
then G24 is the binary row space of the matrix G = [I12|J − A]. We obtain
the famous perfect code G23 by choosing any column of G and deleting it
before computing the row space. This is a perfect [23, 12, 7]2-code.

The perfect ternary Golay code is a linear [11, 6, 5]3-code and can be
constructed as the mod-3 row space of the matrix

G =


2 0 1 2 1 1 0 0 0 0 0

0 2 0 1 2 1 1 0 0 0 0

0 0 2 0 1 2 1 1 0 0 0

0 0 0 2 0 1 2 1 1 0 0

0 0 0 0 2 0 1 2 1 1 0

0 0 0 0 0 2 0 1 2 1 1

 .

I have nothing more to say about this code at this point.

3.2 Weight enumerators and inner distribu-

tion

If C is a q-ary linear code of length n, then we define Ai to be the number of
codewords of Hamming weight i for 0 ≤ i ≤ n. While it is not the focus of
the present notes, the weight enumerator is a generating function that neatly
encodes this information in a polynomial. We define

WC(x, y) =
∑
c∈C

xwt(c)yn−wt(c) =
n∑
i=0

Aix
iyn−i.

Clearly the Ai are non-negative integers which sum to |C|. Since C is linear,
each codeword is at distance i from exactly Ai codewords. So, for example,
A0 = 1 and Ai = 0 for 1 ≤ i < δ(C).
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In her 1962 doctoral dissertation at Harvard, the British mathematician
F. Jessie MacWilliams2 proved that the weight enumerator of a linear code
C and that of its dual code C⊥ are related by a beautiful equation. Indeed,

WC⊥(x, y) =
1

|C|
WC (x+ (q − 1)y, x− y) .

For example, the dual of a perfect Hamming code has a very simple weight
enumerator:

W (x, y) = yn + nx
n+1

2 yn−12.

This allows us to obtain a quite compact form for the weight enumerator of a
Hamming code, even though almost all of the Ai are non-zero for this code.

Exercises:

1. Use the above technique to find the weight enumerator for the binary
Hamming code of length seven. Check this by generating all sixteen
codewords by hand.

2. True or False?: for q > 2, a q-ary Hamming code has Ai > 0 for all
i > 2.

3. Use MacWilliams’s identity to show that, if C has Ai codewords of
weight i for each i and C⊥ has A′i codewords of weight i for each i,
then

A′j =
1

|C|

n∑
i=0

i∑
`=0

(−1)`(q − 1)i−`
(
j

`

)(
n− j
i− `

)
Ai.

This result of MacWilliams had substantial impact on coding theory,
only one aspect of which we shall consider here. Suppose one is searching
for a linear code with given weight distribution {Ai}ni=0. Then one may,
without knowing the code — or even whether or not it exists —, compute
the weight enumerator of its purported dual. If the resulting polynomial has
any negative or non-integral coefficients, this is an automatic proof that the
sought-after code does not exist. (In the case where all of the A′j are non-
negative integers, one still obtains quite useful information which may help
in locating or ruling out the code.) This powerful non-existence result for

2It is useful to know that MacWilliams had already been work in computer program-
ming and coding theory at Bell Labs in the 1950s.
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linear codes was known to Delsarte as he began his work and there was even
some evidence that inequalities similar to A′j ≥ 0 could be used to study
non-linear codes as well (e.g., the mysterious formal duality between binary
Kerdock and Preparata codes).

This brings us to the linear programming bound. Let n and q be fixed
and set X = Qn without any assumption about its algebraic structure. For
an “unrestricted” (i.e., not necessarily linear or additive) code C ⊆ X and
an integer 0 ≤ i ≤ n, define

ai =
|C × C ∩Ri|

|C|
=

1

|C|
|{(x, y) ∈ C × C : dist(x, y) = i}| ,

which is the average number of codewords at distance i from a randomly
chosen codeword in C. Note that, when C is additive, we have ai = Ai.

Returning to the adjacency algebra of the Hamming graph, we see that,
if x is the characteristic vector of C as a subset of the vertex set X, we have

ai =
1

|C|
x>Aix.

One easily checks the following properties

1. ai ≥ 0 for all i;

2. a0 + a1 + · · ·+ an = |C|;

3. a0 = 1 and ai = 0 for 1 ≤ i < δ(C).

These will all be part of the linear programming bound that we derive. The
(n+ 1)-tuple a = [a0, a1, . . . , an] is called the inner distribution of code C.

Next define, for 0 ≤ j ≤ n,

bj =
|C|
|X|

x>Ejx.

Then, since the projection matrix Ej is positive semidefinite, we have bj ≥ 0
for all j and bj = 0 if and only if Ejx = 0. These are the main inequalities
of Delsarte’s LP. The (n + 1)-tuple b = [b0, b1, . . . , bn] is called the dual
distribution of code C.

The last piece of the puzzle comes from Equation (2.4) above. Since we
have

Ej =
1

|X|

n∑
i=0

QijAi
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where

Qij =

j∑
`=0

(−1)`(q − 1)j−`
(
i

`

)(
n− i
j − `

)
,

we obtain the crucial equations

bj =
n∑
i=0

Qijai (0 ≤ j ≤ n).

Now we put this all together. Suppose we are given n, q and d and we wish
to maximize the size of a q-ary code C of length n and minimum distance d.
Any such code gives us an inner distribution a satisfying all of the following
conditions:

• a0 = 1

• ai = 0 for 1 ≤ i < d

• ai ≥ 0 for d ≤ i ≤ n

•
∑n

i=0 aiQij ≥ 0 for 1 ≤ j ≤ n.

Moreover, the sum
∑n

i=0 ai gives the size of C. In other words, for any such
code C, its inner distribution is a feasible solution to the linear programming
problem (LP)

max
∑n

i=0 ai
subject to∑n

i=0 aiQij ≥ 0 (1 ≤ j ≤ n)
a0 = 1, ai = 0 (1 ≤ i ≤ d− 1)

ai ≥ 0 (d ≤ i ≤ n)

It therefore follows that the optimal objective value of this LP is a valid
upper bound on the size of any q-ary code C having length n and minimum
distance d or larger.

3.3 LP bounds for general codes and designs

in association schemes

From here to the end of the chapter are notes converted from a talk given at
a recent Fields Institute workshop in Waterloo, Canada. The presentation
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is very general, but the reader should assume that X = Qn and Ai is the ith

adjacency matrix of the Hamming graph and Ej is the matrix representing
orthogonal projection onto the jth eigenspace of this graph as above.

3.3.1 Deriving the Bounds

Let I = {1, . . . , n} be the index set for the non-zero distances in the Ham-
ming graph H(n, q) and let J = {1, . . . , n} denote the index set for its
nontrivial eigenspaces. (In a more general setting, it may be natural to take
I and J as different sets.)

Suppose we have some subset C ⊆ X in which we are interested. We
define the following statistics for C:

ai =
1

|C|
x>CAixC (0 ≤ i ≤ n)

and
bj =

v

|C|
x>CEjxC (0 ≤ j ≤ n).

The vector a = [a0, a1, . . . , an] is called the inner distribution of C. If C
is a linear code, then ai is the number of codewords in C of Hamming weight
i. For any non-empty subset C of X, the following basic properties are easily
verified:

• ai ≥ 0 for all i

• a0 = 1

•
∑

i ai = |C|

• ai = 0 iff no edge of graph (X,Ri) has both ends in C

Now the dual distribution of C is the vector b = [b0, b1, . . . , bn] where

bj =
v

|C|
x>CEjxC (0 ≤ j ≤ n).

Observe

• bj ≥ 0 for all j

• b0 = |C|

•
∑

j bj = |X| (= v)

• bj = 0 iff xC⊥Vj (the jth eigenspace, col Ej)
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3.3.2 The LP bound for Codes

For A ⊆ I = {1, 2, . . . , n}, C ⊆ X is an “A-code” provided (C×C)∩Ri = ∅
for i ∈ A.

The size of C is bounded above by the optimal objective value to:

max
∑n

i=0 ai
subject to∑n

i=0 aiQij ≥ 0 (1 ≤ j ≤ n)
a0 = 1, ai = 0 (i ∈ A)

ai ≥ 0 (1 ≤ i ≤ n)

This is a linear programming problem (“LP”): we are maximizing (or mini-
mizing) some linear function subject to a finite set of linear constraints, each
of which may be an equation or an inequality. In an LP, some variables may
be restricted to be non-negative or non-positive, while others may be “free”
to take on any real values.

Every linear programming problem has a dual problem. Optimizing one is
equivalent to optimizing the other (although one or the other may be easier
to solve in practice). But there is a reason in our case to prefer the dual LP:
note that every A-code gives us a feasible solution to the above LP but only
the optimal solution gives us a true upper bound.

What if we don’t want to (i.e., can’t) solve to optimality?
I will assume for now that the reader has some familiarity with LP duality.

For simplicity, I’m going to transform this LP into standard form and take
its dual. Here is how duality works for general linear programming problems.
The dual of the LP

max c>x, subject to Ax ≤ b, x ≥ 0

is
min y>b, subject to y>A ≥ c>, y ≥ 0

So in order to apply this to our LP formulation for A-codes, we need to
write the same LP as above in standard form. We use the following facts to
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do this: a0 = 1, Q0j = mj (0 ≤ j ≤ n). We obtain

1 + max
∑
i 6∈A

ai

subject to∑
i 6∈A

(−Qij)ai ≤ mj (1 ≤ j ≤ n)

ai ≥ 0 (i > 0, i 6∈ A)

So we now have the dual LP for A-codes:

1 + min
n∑
j=1

mjyj

subject to
n∑
j=1

(−Qij)yj ≥ 1 (i 6∈ A)

yj ≥ 0 (1 ≤ j ≤ n)

This can now be re-written in a more natural form. We apply routine
trickery, with the following substitutions

bj := mjyj, b0 := 1,
Pji
vi

=
Qij

mj

.

The first one is just a linear change of variables. The invention of a new
variable b0 which is forced to equal one is for notational convenience. The
last identity, where vi = mi =

(
n
i

)
(q−1)i is a standard orthogonality relation

from the basic theory of association schemes.
Using these tricks, we may re-write the dual LP as

min
n∑
j=0

bj

subject to
n∑
j=0

Pjibj ≤ 0 (i 6∈ A)

b0 = 1, bj ≥ 0 (1 ≤ j ≤ n)
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Let us explore an easy special case: bounding the size of a clique (complete
subgraph) in our graph. Suppose A = {2, . . . , n}. Write Pj1 = λj.

min b0 + b1 + · · ·+ bn
subject to

b0λ0 + b1λ1 + · · ·+ bnλn ≤ 0 (one constraint)
b0 = 1, b1, b2, . . . , bn ≥ 0

Since the eigenvalues of the Hamming graph H(n, q) (i.e., the eigenvalues of
A1) are λj = n(q − 1) − qj, we can find the optimal solution to this LP by
inspection:

• b0 = 1, λ0 = n(q − 1)

• bn = −λ0/λn (since λn = −n is smallest)

• |C| ≤ 1− λ0

λn
= 1− n(q−1)

−n = 1 + (q − 1) = q

as perhaps you expected. This special solution to Delsarte’s LP is called
the Delsarte bound (or “Hofffman bound”) for cliques. It applies to any
distance-regular graph and even more generally.

3.3.3 Designs

Let T be a subset of {1, . . . , n}, the index set for all eigenspaces of H(n, q).
A subset D of X is called a T -design if its characteristic vector is orthogonal
to all eigenspaces Vj for j ∈ T . There are many types of T -designs in
different association schemes, but in the Hamming schemes, the obvious ones
to study are orthogonal arrays of strength t: these coincide with T -designs
where T = {1, 2, . . . , t}.

Equivalently, D ⊆ X with characteristic vector xD is a T -design provided
EjxD = 0 for all j ∈ T .

The size of D is bounded below by the optimal objective value to:

min
∑n

i=0 ai
subject to∑n

i=0 aiQij ≥ 0 (j 6∈ T )∑n
i=0 aiQij = 0 (j ∈ T )

a0 = 1, ai ≥ 0 (1 ≤ i ≤ n)
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Using the same techniques as before, we obtain the dual LP for T -designs:

max
n∑
j=0

bj

subject to

n∑
j=0

Pjibj ≥ 0 (1 ≤ i ≤ n)

b0 = 1, bj ≤ 0 (j > 0, j 6∈ T )

(now using bj = −mjyj).
The dual object to a “code” is a “design”. The dual object, in this sense,

to a clique is what I call a “side” of the graph. In the following digression,
let us assume we are working in a Q-polynomial association scheme.

Question: What subsets D satisfy xD ∈ V0 ⊕ V1? (“sides”)
Question: What is the smallest cardinality of D?
Our optimization problem for designs simplifies in this case to

max b0 + b1

subject to
P0ib0 + P1ib1 ≥ 0 (i 6= 0)

b0 = 1 (b1 unrestr.)

and the optimal solution we get is

|D| ≥ v

1− m1

Qd1

where we assume
m1 = Q01 > Q11 > · · · > Qd1.

So we have the following
Ratio Bound:

|D| ≥ v

1− m1

Qd1

where we assume
m1 = Q01 > Q11 > · · · > Qd1

Examples:
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• Hamming scheme: For H(n, q), we get |D| ≥ qn−1 and the optimal
solutions are subgraphs isomorphic to the Hamming graph H(n−1, q),
obtained by fixing any single coordinate.

• Johnson scheme: For J(n, k), we get |D| ≥
(
v−1
k−1

)
and the optimal

solutions are subgraphs isomorphic to J(n − 1, k), obtained by taking
all k-sets containing any fixed symbol.

3.3.4 The Polynomial Case

Let’s focus on the binary Hamming association scheme H(n, 2), with vertex
set X = {0, 1}n. A binary code of length n and minimum distance δ is just
a coclique (independent set) in the graph (X,R1 ∪R2 ∪ . . . ∪Rδ−1)

Recall that each subset C of X gives us a vector a = [a0, a1, . . . , an] of
statistics satisfying Delsarte’s inequalities. If we restrict to codes having
minimum Hamming distance δ or greater, we also have

a1 = a2 = · · · = aδ−1 = 0.

So the size of any such code C is bounded above by the optimum objective
value to the LP

max 1 + aδ + aδ+1 + · · ·+ an

s.t. mj + aδQδ,j + aδ+1Qδ+1,j + · · ·+ anQnj ≥ 0 (1 ≤ j ≤ n)

aδ, aδ+1, . . . , an ≥ 0

We can write this LP in standard form as

1 + max
∑n

i=δ ai

s.t. ∑n
i=δ(−Qij)ai ≤ mj (1 ≤ j ≤ n)

aδ, aδ+1, . . . , an ≥ 0

Now we easily find the dual LP

1 + min
∑n

j=1mjfj

s.t. ∑n
j=1(−Qij)fj ≥ 1 (δ ≤ i ≤ n)

f1, . . . , fn ≥ 0
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We are going to modify this dual LP slightly. Next, we introduce f0 = 1
and flip the inequalities

min
∑n

j=0mjfj

s.t. ∑n
j=0 fjQij ≤ 0 (δ ≤ i ≤ n)

f0 = 1, f1, . . . , fn ≥ 0

Now we use the fact that, for the binary Hamming scheme, the entries of
the matrix Q are given by the Krawtchouk polynomials

Kj(λ) =

j∑
`=0

(−1)`
(
λ

`

)(
n− λ
j − `

)
with initial values

K0(λ) = 1, K1(λ) = n− 2λ.

In general, we have
Qij = Kj(i).

So we can replace all occurences of Qij in our dual LP by evaluations of these
polynomials. In particular,

mj = Q0j = Kj(0).

LP in Polynomial Form
So our strategy now is to optimize over polynomials

F (λ) = f0K0(λ) + f1K1(λ) + · · ·+ fnKn(λ).

The scalars fj are called the Krawtchouk coefficients of F and since there is
one Krawtchouk polynomial of each degree (zero up to n), these coefficients
are uniquely determined by F itself.

Now our optimization problem is

min F (0)

s.t. F (λ) =
n∑
j=0

fjKj(λ)

F (i) ≤ 0 (δ ≤ i ≤ n)

f0 = 1, f1, . . . , fn ≥ 0
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Note that we can obtain a potentially weaker bound which looks simpler
by appealing to the continuity of polynomial F :

min F (0)

s.t. F (λ) =
n∑
j=0

fjKj(λ)

F (α) ≤ 0 ∀α ∈ [δ, n]

f0 = 1, f1, . . . , fn ≥ 0

even though we only need non-positivity at the integer points in that closed
interval [δ, n].

3.3.5 Beyond Q-Polynomial

In this next part, we extend two well-known bounds of Delsarte to the setting
of association schemes with many vanishing Krein parameters.

Originally, these results were proved by Delsarte for cometric association
schemes.

Here, we replace the cometric property with certain vanishing conditions
for Krein parameters with reference to a partial order E on the set J of
eigenspaces of the association scheme.

For E and F , subsets of J , define

E ? F = {k ∈ J :
∑
i∈E

∑
j∈F

qkij > 0}.

Krein conditions imply
k ∈ E ? F

whenever
qkij 6= 0 for some i ∈ E and some j ∈ F .

Example: In a cometric scheme, if we take E = {0, . . . , e} and F =
{0, . . . , f}, then

E ? F ⊆ {0, . . . , e+ f}.
We use this notation to obtain a very general “Fisher-type” inequality.

Theorem 3.3.1 Let T ⊆ J . Assume E ⊆ J satisfies E ? E ⊆ T . Then, for
any Delsarte T -design D ⊆ X, we have

|D| ≥
∑
j∈E

mj.
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Moreover, if equality holds, then, for ` 6= 0 in J ,∑
j∈E

Q`j = 0

whenever D contains a pair of `-related elements.

Proof:
Any matrix M ∈ A can be expanded in the form

M = v
∑
j∈J

βjEj

and also as
M =

∑
i∈I

αiAi

where αi =
∑

j Qijβj for each i ∈ I.
Restrict to non-negative matrices M ∈ A which satisfy the following two

conditions:

(a) βj ≤ 0 for all j 6∈ T ; and

(b) β0 = 1.

WOLOG, assume 0 ∈ T .
Let D ⊆ X be a T -design. Abbreviate xD to x.
Expand x>Mx in two ways:

|D|α0 = α0x
>A0x

≤
∑
I

αix
>Aix = v

∑
J

βjx
>Ejx

= vx>E0x+ v
∑
T −{0}

βjx
>Ejx+ v

∑
j 6∈T

βjx
>Ejx

≤ vx>E0x = |D|2.

This gives us the bound |D| ≥ α0.
Rather than optimize, we content ourselves with an easy-to-find feasible

solution.
Let

F =
∑
j∈E

Ej.
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Then F ◦ F is a non-negative matrix with spectral decomposition

F ◦ F =
∑
k∈J

(
1

v

∑
i∈E

∑
j∈E

qkij

)
Ek. (3.1)

Now, by choice of E , we have qkij = 0 whenever i, j ∈ E and k 6∈ T .
So condition (a) is satisfied by any non-negative multiple of F ◦ F . We

scale by

γ =
v2∑
j∈E mj

to obtain a non-negative matrix M = γ(F ◦F ) which satisfies conditions (a)
and (b),

It is straightforward to check that the diagonal entries of M are all equal
to

α0 =
∑
j∈E

mj.

This proves the following theorem.

Theorem 3.3.2 Let T ⊆ J . Assume E ⊆ J satisfies E ? E ⊆ T . Then, for
any Delsarte T -design D ⊆ X, we have

|D| ≥
∑
j∈E

mj.

In algebraic combinatorics, whenever we prove a bound, we can’t resist
asking “What if Equality Holds?”

Now if |D| = α0, we return to the above string of equations and inequal-
ities to discover that, for each ` 6= 0,

α`
(
x>A`x

)
= 0

must hold.
These are essentially the “Complementary Slackness Conditions” from

the theory of linear programming.
Thus, if D contains a pair of `-related elements, we are forced to have

α` =
∑
k∈J

βkQ`k = 0.
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Now we find
βk =

γ

v

∑
i∈E

∑
j∈E

qkij

so that
α` =

γ

v

∑
i∈E

∑
j∈E

∑
k∈J

qkijQ`k

which gives us

α` = γ

(∑
j∈E

Q`j

)2

= 0 as desired.

Without proof, let me also mention that tight designs (designs D for
which equality holds in the above bound) give subschemes of the ambient
association scheme.

Theorem 3.3.3 Let T ⊆ J and assume E ⊆ J satisfies E ? E ⊆ T .

(a) if D is any Delsarte T -design in our scheme with degree s, then s+ 1 ≥
|E|;

(b) if |E| = s+ 1, then D is a tight design and D is a subscheme;

(c) if |E| = s, then either D is a tight design or D is a subscheme.

3.3.6 Implementation Issues

When we use linear programming to bound the size of codes and designs,
our hope is to do things analytically and, on paper, discover solutions to
infinitely many linear programming problems at once. But often that is not
achievable. And even when it is, it is often a result of substantial computer
experimentation. So we are forced to deal with software packages to do our
linear programming for us. I’d like to give you a brief comparison of the
following three systems that I have used.

• MAPLE

• CPLEX

• Mathematica

Here is what I find:
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• MAPLE

– Easy

– Able to generate coefficients

– SLOW simplex, limited to ∼ 350 variables

• CPLEX (expensive!)

– Numerical (64-bit precision)

– C/C++ library or dumb interactive interface

– incredibly fast, thousands of variables no problem

– rounding errors, large condition numbers

• Mathematica

– I’m just learning it

– Able to generate coefficients

– Exact arithmetic, many more variables than MAPLE

Ratio Bound for Cocliques

Before we leave this chapter, let’s solve one more LP.
A coclique in the Hamming graph H(n, q) is just a code C ⊆ X with

minimum distance at least two. We want the linear programming bound for
cocliques in (X,R1).

Our dual LP becomes

min
n∑
j=0

bj

subject to

n∑
j=0

Pjibj ≤ 0 (i 6= 1)

b0 = 1, bj ≥ 0 (1 ≤ j ≤ n)

We immediately see two easy solutions to consider:
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If we let bj = mj, we get

bP = [v, 0, 0, . . . , 0]

which is feasible but useless.
If we let bj = Q1j, we get

bP = [0, v, 0, 0, . . . , 0]

which is infeasible but has a great objective value! (zero)
The trick is to combine these two easy solutions to obtain a feasible

solution with a reasonable bound.
So we take

bj = smj + tQ1j

and we get
bP = [sv, tv, 0, . . . , 0]

Our goal is to make s is as small as possible subject to the conditions

bj = smj + tQ1j ≥ 0

for all j.
What are the best values for a and t?
We need b0 = 1, so set t = 1− s.
Now we need

bj = smj + (1− s)Q1j ≥ 0

which is the same as

s+ (1− s)Pj1
v1

≥ 0

Pj1 + s (v1 − Pj1) ≥ 0

for all j = 1, . . . , n.
So the smallest eigenvalue will give us the best choice.
The eigenvalues of A1 are P01, . . . , Pn1. Call these

k = λ0 ≥ λ1 ≥ · · · ≥ λn.

In order to have
s ≥ −λj/(k − λj)
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for all j, we can ignore the nonnegative λ and take

s = λn/ (λn − k)

which gives the desired bound

|S| ≤ v

1− k
λn

.

This ratio bound
|S| ≤ v

1− k
λn

for cocliques is a feasible solution, but not always optimal.
If we allow some

∑
j Pjibj < 0, then we may be able to do better. But

then our optimal coclique must contain no i-related pair.



Chapter 4

The Terwilliger Algebra

The Bose-Mesner algebra introduced in Chapter 2 has very beautiful struc-
ture, but one annoying feature: there are two different matrix multiplications
and there are very few rules to govern how these two interact. Each matrix in
the Bose-Mesner algebra is uniquely determined by its first column. (Why?)
So the entrywise product of two matrices M,N in A is entirely determined
by the product of the two diagonal matrices ∆(M) and ∆(N) where ∆(M)
has (a, a)-entry equal to the (a, 1) entry of M and the diagonal matrix ∆(N)
has (a, a)-entry (N)a,1. The linear transformation M 7→ ∆(M) is therefore a
ring homomorphism that maps entrywise multiplication to ordinary matrix
multiplication. The image of the Bose-Mesner algebra A under this map is
called the dual Bose-Mesner algebra and is denoted A∗.

Terwilliger now lets the two types of matrix multiplication interact by
taking the smallest matrix algebra T containing both A and A∗. For the
n-cube, this algebra is generated by just two matrices: the adjacency matrix
A and the diagonal matrix A∗ with (a, a)-entry n− 2wt(a). For n = 1, this
is easily seen to be the full matrix algebra Mat2(C).
Exericse: Write down A and A∗ for n = 2 and locate the primitive idem-
potents for A∗. (More challenging: find a vector space basis for the 10-
dimensional Terwilliger algebra T.)

Terwillger defines this algebra for any graph and the Terwilliger algebra
has been studied for a great variety of association schemes, but most work
in this area has focused on T-algebras of so-called “P - and Q-polynomial
association schemes” in the hope of moving toward a full classification of all
such association scheme with six or more classes.

But our interest here is only in the Terwilliger algebra of the n-cube.

39
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Fortunately for us, there is a paper by J.T. Go exactly on this topic and it
has great tutorial value. So I will simply refer you to Go’s paper [21] and
briefly summarize its results.

The paper of Go gives the complete decomposition of the “standard mod-
ule” CX into irreducible T-modules. (Here, X = {0, 1}n.) Let E∗i denote the
diagonal matrix with (a, a)-entry equal to one if wt(a) = i and zero other-
wise. Fixing n and considering the Terwilliger algebra of the n-cube, the
raising operator for T is the matrix

n−1∑
i=0

E∗i+1AE
∗
i

and the lowering operator is the matrix

n∑
i=1

E∗i−1AE
∗
i .

Observe that the adjacency matrix is A = L + R. Terwilliger observed that
these matrices have very nice Lie brackets1:

LR−RL = A∗, RA∗ − A∗R = 2R, LA∗ − A∗L = −2L.

This leads to a natural action of the universal enveloping algebra of the Lie
algebra sl2(C) on the standard module and therefore on every irreducible
T-module of it. This is the beginning of a very long story. Terwilliger, Ito,
Nomura and others continue to search for a sort of “universal cover”, a Lie
algebra with the property that every irreducible module of every Terwilliger
algebra of every P - and Q-polynomial association scheme admits such an
action from this algebra. They think they are close to an answer, but this is
ongoing research, and very exciting.

Let me trust that you will pick up Go’s very nice paper and at least
browse it. For my part, I want to begin with two explicit vector space bases
for the Terwilliger algebra of the n-cube and find the change-of-basis matrices
between them.

Any three (not necessarily distinct) tuples a, b, c from X give rise to a
triple of non-negative integers (i, j, k) via the equations

dist(b, c) = i, dist(a, c) = j, dist(a, b) = k.

1The “bracket product” of matrices M and N is [M,N ] = MN −NM , which is zero
iff M and N commute.
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Not every triple (i, j, k) of non-negative integers occurs in this way; the tri-
angle inequality must hold, none of i, j, k may exceed n, their sum must not
exceed 2n, and i+ j+k must be even. For n fixed, there is a simple bijection
between the set of all such triples (i, j, k) and the set of all ordered quadru-
ples α = (α0, α1, α2, α3) of non-negative integers summing to n: it is given
by the system

α0 + α1 + α2 + α3 = n,

α2 + α3 = i,

α1 + α3 = j,

α1 + α2 = k.

(In fact, for any three vertices v1, v2, v3 in the n-cube whose pairwise dis-
tances are as above, there exists a unique vertex u ∈ X (the “apex”) with
dist(u, a) = α1, dist(u, b) = α2 and dist(u, c) = α3.) Henceforth, we will use
ϑ(i, j, k) = α to indicate that the triple (i, j, k) is related to the quadruple
(α0, α1, α2, α3) via these equations. By a slight abuse of terminology, we will
refer to α as a composition of n (into four parts).

4.1 Two bases for the algebra T
We consider the binary Hamming graph Qn with vertex set X and adjacency
matrices A0, . . . , An. The primitive idempotents for the Bose-Mesner algebra
A will be denoted E0, . . . , En. We have

Ej =
1

2n

n∑
i=0

Qi,jAi

where
Qi,j = [zj](1 + z)n−i(1− z)i. (4.1)

Here, as below, we use this notation to describe the coefficient of zj in the
expansion of the (finite) power series (1 + z)n−i(1− z)i.

In order to construct the dual Bose-Mesner algebra A∗, we first select a
base point: here we choose the tuple 0. We define A∗i to be the diagonal
matrix with (x, x)-entry equal to |X|(Ei)x,0 and we define E∗j to be the
diagonal matrix with (x, x)-entry equal to (Aj)x,0. These give us two bases
for A∗. The subconstituent algebra (or, Terwilliger algebra) of the n-cube is
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then the algebra generated by A and A∗. We denote this non-commutative
algebra by T.

For a composition α of n, we define matrices

Lα = E∗iAjE
∗
k

and
Mα = EiA

∗
jEk

where ϑ(i, j, k) = α. It is easy to see that Lα 6= 0 if and only if the intersection
number pki,j > 0 and it is well-known Mα 6= 0 if and only if the Krein
parameter qki,j is non-zero. Our goal in this section is to describe the change-
of-basis matrix from the basis

A =
{
Lα = E∗iAjE

∗
k : pki,j > 0, ϑ(i, j, k) = α

}
to the basis

B =
{
Mβ = ErA

∗
sEt : qtr,s > 0, ϑ(r, s, t) = β

}
.

We freely use basic facts about this algebra (see [37, 38, 39, 21] for a full
treatment).

It is now easy to compute the dimension of T. From the previous section,
we know that the triples (i, j, k) for which pki,j > 0 are in one-to-one corre-

spondence with compositions α of n into four parts. There are
(
n+3

3

)
such

compositions. So the dimension of T is
(
n+3

3

)
.

4.1.1 Change-of-basis coefficients

From above, we know that there are unique rational numbers tβα which satisfy
the following system of equations

ErA
∗
sEt =

1

2n

∑
α

tβαE
∗
iAjE

∗
k

where ϑ(i, j, k) = α and ϑ(r, s, t) = β. We wish to learn more about these
coefficients tβα.

Note that the dimension of the Terwilliger algebra T is also the dimension
of the vector space Homn(y0, y1, y2, y3) of homogeneous polynomials of degree
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n in four variables. In fact, we have a natural isomorphism of vector spaces
ϕ : T→ Homn(y0, y1, y2, y3) given by

ϕ : E∗iAjE
∗
k 7→ yα0

0 yα1
1 yα2

2 yα3
3 (ϑ(i, j, k) = α).

This vector space isomorphism can be exploited to solve our problem in
an elegant way. For the n-cube, it so happens that the Terwilliger algebra Tn

is coherent. That is, we have a coherent configuration2 (X,R) with relations
corresponding to the zero-one basis{

Lα = E∗iAjE
∗
k : pki,j > 0

}
. (4.2)

These matrices can be extracted from a generating function as follows. Let
Z0, Z1, Z2, Z3 be four commuting indeterminates and consider the 2n × 2n

matrix

Φn =

[
Z0 Z1

Z3 Z2

]⊗n
(4.3)

=

(
Z0

[
1 0
0 0

]
+ Z1

[
0 1
0 0

]
+ Z2

[
0 0
0 1

]
+ Z3

[
0 0
1 0

])⊗n
.(4.4)

If ϑ(i, j, k) = α (with n pre-specified), we have

E∗iAjE
∗
k = [Zα0

0 Zα1
1 Zα2

2 Zα3
3 ] Φn. (4.5)

In particular, the standard basis is our basis of Schur idempotents for T1.
Our second distinguished basis for T1 is

{E0A
∗
0E0, E0A

∗
1E1, E1A

∗
0E1, E1A

∗
1E0} , (4.6)

explicitly{
1

2

[
1 1
1 1

]
,
1

2

[
1 −1
1 −1

]
,
1

2

[
1 −1
−1 1

]
,
1

2

[
1 1
−1 −1

]}
. (4.7)

2A coherent configuration is a generalization of an association scheme. Rather than
define it here, let me just give a theorem of D. Higman which says that a coherent algebra
(the analogue of a Bose-Mesner algebra) is precisely a non-trivial vector space of n × n
complex matrices which is closed under matrix multiplication, Schur multiplication, and
conjugate transposition. The Schur idempotents are then 01-matrices which partition the
complete graph on n vertices into a nicely behaved set of directed graphs.
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The change-of-basis matrix for T1 from the standard basis (5.2) to the basis
(5.7) is given by

H =
1

2


1 1 1 1
1 −1 −1 1
1 −1 1 −1
1 1 −1 −1

 . (4.8)

This allows us to recover the coefficients tβα. If we define

Ψn = (Z0(E0A
∗
0E0) + Z1(E0A

∗
1E1) + Z2(E1A

∗
0E1) + Z3(E1A

∗
1E0))⊗n , (4.9)

then
Mβ = ErA

∗
sEt = [Zβ0

0 Zβ1

1 Zβ2

2 Zβ3

3 ] Ψn (4.10)

where ϑ(r, s, t) = β. Using (5.8), we may write

Ψn =
1

2n
((Z0 + Z1 + Z2 + Z3)(E∗0A0E

∗
0)+

(Z0 − Z1 − Z2 + Z3)(E∗1A1E
∗
0) +

(Z0 − Z1 + Z2 − Z3)(E∗1A0E
∗
1) +

(Z0 + Z1 − Z2 − Z3)(E∗0A1E
∗
1))⊗n . (4.11)

Thus, using (5.5) and (5.10), we have the following theorem:

Theorem 4.1.1 The connection coefficients tβα satisfying

Mβ =
1

2n

∑
α

tβαLα

are given by

tβα = [Zα0
0 Zα1

1 Zα2
2 Zα3

3 ] (Z0 + Z1 + Z2 + Z3)β0 (Z0 − Z1 − Z2 + Z3)β1 ·
(Z0 − Z1 + Z2 − Z3)β2 (Z0 + Z1 − Z2 − Z3)β3 . (4.12)

Proof: We use the duality of the algebra to fill in the gaps above. Let

S = 2−n/2
[

1 1
1 −1

]⊗n
. Then S diagonalizes the Bose-Mesner algebra. So

STAiS = A∗i , STEjS = E∗j .

Since S is symmetric, we also have

STA∗iS = Ai, STE∗jS = Ej

so that STLαS = Mα and vice versa. Since this holds for n = 1, we find
STΦnS = Ψn and STΨnS = Φn for all n. Now the calculation follows. �



Chapter 5

The Biweight Enumerator

In this chapter, we introduce the biweight enumerator of a binary error-
correcting code and show how this enumerator is naturally associated to the
Terwilliger algebra of the n-cube. Using this connection and the relationship
between the eigenspaces of the n-cube and the characters of Zn

2 , we give a
combinatorial proof of the MacWilliams identities for this enumerator. We
finish with an exploration of some simple (but not very strong) inequalities
for codes which can be derived from these observations. This material was
presented at the Workshop on Asymptotic and Computational Aspects of
Coding Theory at the Institute for Advanced Study (Princeton) in March
20011.

5.1 The biweight enumerator

Let n be a positive integer and let X = {0, 1}n. The Hamming weight of
u ∈ X, denoted as wt(u), is the number of non-zero coordinates in the tuple
u. For u, v ∈ X, the Hamming distance, dist(u, v), is defined as the number
of coordinates h (1 ≤ h ≤ n) with uh 6= vh. By a (binary) code C of length
n, we simply mean any non-trivial subset of X. In this paper, we will always
assume that C contains the zero tuple 0 = 000 · · · 0.

Any three (not necessarily distinct) tuples v1, v2, v3 from X give rise to
a triple of non-negative integers (i, j, k) via the equations

dist(v2, v3) = i, dist(v1, v3) = j, dist(v1, v2) = k.

1A bit of information about this workshop can still be found at
http://www.math.ias.edu/∼huguenin/codingconf.html
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Not every triple (i, j, k) of non-negative integers occurs in this way; the tri-
angle inequality must hold, none of i, j, k may exceed n, their sum must not
exceed 2n, and i+ j+k must be even. For n fixed, there is a simple bijection
between the set of all such triples (i, j, k) and the set of all ordered quadru-
ples α = (α0, α1, α2, α3) of non-negative integers summing to n: it is given
by the system

α0 + α1 + α2 + α3 = n,

α2 + α3 = i,

α1 + α3 = j,

α1 + α2 = k.

(In fact, for any three vertices v1, v2, v3 in the n-cube whose pairwise distances
are as above, there exists a unique vertex u ∈ X with dist(u, vi) = αi for
i = 1, 2, 3.) Henceforth, we will use ϑ(i, j, k) = α to indicate that the triple
(i, j, k) is related to the quadruple (α0, α1, α2, α3) via these equations. By
a slight abuse of terminology, we will refer to α as a composition of n (into
four parts).

Let C be a binary code of length n. For each composition α = (α0, α1, α2,
α3) of n into four parts, let

`α = |{(c, c′) ∈ C × C : wt(c) = i, dist(c, c′) = j, wt(c′) = k}|

where (i, j, k) = ϑ−1(α). Consider the enumerator

W(y0, y1, y2, y3) =
∑
α

`αy
α0
0 yα1

1 yα2
2 yα3

3 .

Below, we will establish a connection between this enumerator for a linear
code and the enumerator for its dual. Moreover, we will examine a linear
programming approach based on this enumerator. First, we will need to
compute a change-of-basis matrix for an important matrix algebra related to
our problem.

5.2 Two bases for the algebra T
We consider the binary Hamming graph Qn with vertex set X and adjacency
matrices A0, . . . , An. The primitive idempotents for the Bose-Mesner algebra
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A will be denoted E0, . . . , En. We have

Ej =
1

2n

n∑
i=0

Qi,jAi

where
Qi,j = [zj](1 + z)n−i(1− z)i. (5.1)

Here, as below, we use this notation to describe the coefficient of zj in the
expansion of the (finite) power series (1 + z)n−i(1− z)i.

In order to construct the dual Bose-Mesner algebra A∗, we first select a
base point: here we choose the tuple 0. We define A∗i to be the diagonal
matrix with (x, x)-entry equal to |X|(Ei)x,0 and we define E∗j to be the
diagonal matrix with (x, x)-entry equal to (Aj)x,0. These give us two bases for
A∗. The subconstituent algebra (or, Terwilliger algebra) of the n-cube is then
the algebra generated by A and A∗. We denote this non-commutative algebra
by T. Terwilliger algebras can be defined for any association scheme and
these algebras have been proposed in the analysis of Q-polynomial distance
regular graphs and more broadly. But the Terwilliger algebras of the n-cubes
are particularly well-behaved and are the focus of several articles.

For a composition α of n, we define matrices

Lα = E∗iAjE
∗
k

and
Mα = EiA

∗
jEk

where ϑ(i, j, k) = α. It is easy to see that Lα 6= 0 if and only if the intersection
number pki,j > 0 and it is well-known Mα 6= 0 if and only if the Krein
parameter qki,j is non-zero. Our goal in this section is to describe the change-
of-basis matrix from the basis

A =
{
Lα = E∗iAjE

∗
k : pki,j > 0, ϑ(i, j, k) = α

}
to the basis

B =
{
Mβ = ErA

∗
sEt : qtr,s > 0, ϑ(r, s, t) = β

}
.

We freely use basic facts about this algebra (see [37, 38, 39, 21] for a full
treatment).

It is now easy to compute the dimension of T. From the previous section,
we know that the triples (i, j, k) for which pki,j > 0 are in one-to-one corre-

spondence with compositions α of n into four parts. There are
(
n+3

3

)
such

compositions. So the dimension of T is
(
n+3

3

)
.
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5.2.1 Change-of-basis coefficients

From above, we know that there are unique rational numbers tβα which satisfy
the following system of equations

ErA
∗
sEt =

1

2n

∑
α

tβαE
∗
iAjE

∗
k

where ϑ(i, j, k) = α and ϑ(r, s, t) = β. We wish to learn more about these
coefficients tβα.

Note that the dimension of the Terwilliger algebra T is also the dimension
of the vector space Homn(y0, y1, y2, y3) of homogeneous polynomials of degree
n in four variables. In fact, we have a natural isomorphism of vector spaces
ϕ : T→ Homn(y0, y1, y2, y3) given by

ϕ : E∗iAjE
∗
k 7→ yα0

0 yα1
1 yα2

2 yα3
3 (ϑ(i, j, k) = α).

This vector space isomorphism can be exploited to solve our problem in
an elegant way. For the n-cube, it so happens that the Terwilliger algebra Tn

is coherent. That is, we have a coherent configuration (X,R) with relations
corresponding to the zero-one basis{

Lα = E∗iAjE
∗
k : pki,j > 0

}
. (5.2)

These matrices can be extracted from a generating function as follows. Let
Z0, Z1, Z2, Z3 be four commuting indeterminates and consider the 2n × 2n

matrix

Φn =

[
Z0 Z1

Z3 Z2

]⊗n
(5.3)

=

(
Z0

[
1 0
0 0

]
+ Z1

[
0 1
0 0

]
+ Z2

[
0 0
0 1

]
+ Z3

[
0 0
1 0

])⊗n
.(5.4)

If ϑ(i, j, k) = α (with n pre-specified), we have

E∗iAjE
∗
k = [Zα0

0 Zα1
1 Zα2

2 Zα3
3 ] Φn. (5.5)

In particular, the standard basis is our basis of Schur idempotents for T1.
Our second distinguished basis for T1 is

{E0A
∗
0E0, E0A

∗
1E1, E1A

∗
0E1, E1A

∗
1E0} , (5.6)
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explicitly{
1

2

[
1 1
1 1

]
,
1

2

[
1 −1
1 −1

]
,
1

2

[
1 −1
−1 1

]
,
1

2

[
1 1
−1 −1

]}
. (5.7)

The change-of-basis matrix for T1 from the standard basis (5.2) to the basis
(5.7) is given by

H =
1

2


1 1 1 1
1 −1 −1 1
1 −1 1 −1
1 1 −1 −1

 . (5.8)

This allows us to recover the coefficients tβα. If we define

Ψn = (Z0(E0A
∗
0E0) + Z1(E0A

∗
1E1) + Z2(E1A

∗
0E1) + Z3(E1A

∗
1E0))⊗n , (5.9)

then
Mβ = ErA

∗
sEt = [Zβ0

0 Zβ1

1 Zβ2

2 Zβ3

3 ] Ψn (5.10)

where ϑ(r, s, t) = β. Using (5.8), we may write

Ψn =
1

2n
((Z0 + Z1 + Z2 + Z3)(E∗0A0E

∗
0)+

(Z0 − Z1 − Z2 + Z3)(E∗1A1E
∗
0) +

(Z0 − Z1 + Z2 − Z3)(E∗1A0E
∗
1) +

(Z0 + Z1 − Z2 − Z3)(E∗0A1E
∗
1))⊗n . (5.11)

Thus, using (5.5) and (5.10), we have the following theorem:

Theorem 5.2.1 The connection coefficients tβα satisfying

Mβ =
1

2n

∑
α

tβαLα

are given by

tβα = [Zα0
0 Zα1

1 Zα2
2 Zα3

3 ] (Z0 + Z1 + Z2 + Z3)β0 (Z0 − Z1 − Z2 + Z3)β1 ·
(Z0 − Z1 + Z2 − Z3)β2 (Z0 + Z1 − Z2 − Z3)β3 . (5.12)
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Proof: We use the duality of the algebra to fill in the gaps above. Let

S = 2−n/2
[

1 1
1 −1

]⊗n
. Then S diagonalizes the Bose-Mesner algebra. So

STAiS = A∗i , STEjS = E∗j .

Since S is symmetric, we also have

STA∗iS = Ai, STE∗jS = Ej

so that STLαS = Mα and vice versa. Since this holds for n = 1, we find
STΦnS = Ψn and STΨnS = Φn for all n. Now the calculation follows. �

5.3 Linear Programming

Let us briefly review Delsarte’s linear programming bound for codes. We seek
an upper bound on the size of a code C ⊆ X which has minimum distance
at least d. We find that |C| is bounded above by

maximize
n∑
i=0

ai

subject to
n∑
i=0

Qi,jai ≥ 0 (0 ≤ j ≤ n)

ai = 0 (1 ≤ i < d)

a0 = 1

ai ≥ 0 (d ≤ i ≤ n).

This is derived as follows. Given a non-empty code C with minimum distance
at least d and characteristic vector χ, define

ai =
1

|C|
χTAiχ, (0 ≤ i ≤ n).

Then, clearly, a0 = 1, each ai ≥ 0 and
∑

i ai = |C|. Now define

bj =
|X|
|C|

χTEjχ, (0 ≤ j ≤ n).
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Since each Ej is symmetric and positive semi-definite, we know that each
bj ≥ 0. Moreover, since

Ej =
1

|X|

n∑
i=0

Qi,jAi,

we have bj =
∑

iQi,jai.
We now extend this approach to the Terwilliger algebra of the n-cube.

Throughout, we assume that our code contains the zero word.
For each triple (i, j, k) such that pji,k > 0, let α = ϑ(i, j, k) and define

`α = χTE∗iAjE
∗
kχ.

Then

`α = |{(y, z) ∈ C × C : wt(y) = i, wt(z) = k, dist(y, z) = j}| .

Thus `α is a non-negative integer. As well, the sum of all such `α is equal to
|C|2. These quantities seem deserving of further study. Similarly, for each
triple (r, s, t) such that qsr,t > 0, we set β = ϑ(r, s, t) and introduce

mβ = |X| · χTErA∗sEtχ.

Since

Mβ =
1

2n

∑
α

tβαLα,

we have
mβ =

∑
α

tβα`α.

It remains to present an efficient strategy for bounding (or interpreting)
the parameters mβ of a code. We will first deal with the case of linear codes.

5.3.1 MacWilliams identities

Assume C is a binary linear code. Let C⊥j denote the set of dual codewords
of C having weight j. A matrix diagonalizing the Bose-Mesner algebra is
2−n/2S where

S =

[
1 1
1 −1

]⊗n
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has (x, y)-entry (−1)x·y (here · denotes the binary dot product). Let Sj
denote the submatrix of S obtained by restricting to columns indexed by
tuples of weight j. Then

Ej =
1

2n
SjS

T
j

for 0 ≤ j ≤ d. For x ∈ X, we use sx to denote the column of S indexed by
x.

We use the following standard fact:

∑
x∈C

(−1)y·x =

{
|C|, if y ∈ C⊥;

0, otherwise.

So

uj(C) := Ejχ =
1

2n
SjS

T
j χ =

|C|
2n

∑
y∈C⊥j

sy,

and if C is an [n, k, d]-code, this gives

uj(C) := 2k−n
∑
y∈C⊥j

sy.

Now if β = ϑ(i, j, k),

mβ = 2nui(C)TA∗juk(C) = 4n〈ui(C), uj(0) ◦ uk(C)〉
= 4n〈uj(0), ui(C) ◦ uk(C)〉

where uj(0) denotes the column of Ej indexed by 0. Clearly

uj(0) =
1

2n

∑
wt(w)=j

sw.

We need to examine the Schur product of ui(C) with uk(C). We have

ui(C) ◦ uk(C) = 4k−n
∑
y∈C⊥i

∑
z∈C⊥k

sy ◦ sz = 4k−n
∑
y∈C⊥i

∑
z∈C⊥k

sy⊕z

where ⊕ denotes vector addition over GF (2).
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Now we have

mβ = 2nχTEiA
∗
jEkχ

= 4n〈uj(0), ui(C) ◦ uk(C)〉
= 4k

∑
y∈C⊥i

∑
z∈C⊥k

〈uj(0), sy⊕z〉

= 22k−n
∑
y∈C⊥i

∑
z∈C⊥k

∑
wt(w)=j

〈sw, sy⊕z〉.

Now the columns of S are pairwise orthogonal; in fact, STS = 2nI. So

mβ = 2nχTEiA
∗
jEkχ = 4k

∣∣{(y, z) ∈ C⊥i × C⊥k : wt(y ⊕ z) = j
}∣∣ .

Written a bit differently, this is

mβ = 22k
∣∣{(y, z) ∈ C⊥ × C⊥ : wt(y) = i, dist(y, z) = j, wt(z) = k

}∣∣ .
Now, using the results of Section 5.2.1, mβ is the coefficient of yβ0

0 y
β1

1 y
β2

2 y
β3

3

in the expansion of WC(Hy) where H is as above and y = [y0, y1, y2, y3]T .
Thus we have a new proof of

Theorem 5.3.1 (MacWilliams’ identities for biweight enumerator [30])

WC⊥(y0, y1, y2, y3) =
1

|C|2
· WC(y0 + y1 + y2 + y3, (5.13)

y0 − y1 − y2 + y3, y0 − y1 + y2 − y3, y0 + y1 − y2 − y3)

Of course, such a theorem always gives us a linear programming bound
as a by-product.

Corollary 5.3.2 If C is a linear code, then, for each triple (i, j, k) with
qki,j > 0,

mβ ≥ 0.
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5.3.2 Krein conditions

We note that the inequalities mβ ≥ 0 do not hold for general codes. For
example, for the code C = {000, 001, 011} in Q3, we have mβ = −2

3
for

β = ϑ(0, 1, 3) and for β = ϑ(1, 2, 3).
Let us assume that code C is distance-invariant: there exist integers

a0, a1,. . . , an such that, for any c ∈ C,

|{c′ ∈ C : dist(c, c′) = i}| = ai.

Suppose β = ϑ(i, j, k). We know that

mβ = 2nui(C)TA∗juk(C) = 4n〈uj(0), ui(C) ◦ uk(C)〉.

Since C is distance-invariant and uj(C) =
∑

c∈C uj(c), we have

mβ =
2n

|C|
〈uj(C), ui(C) ◦ uk(C)〉.

Definition: Let C be a q-ary code of length n with characteristic vector
χ and let Ej denote the jth primitive idempotent of the Hamming scheme
H(n, q). The Krein parameters q̄ki,j(C) of code C are given by

q̄ki,j(C) = ‖Ekχ‖ · 〈Ekχ, (Eiχ) ◦ (Ejχ)〉.

We say C satisfies the Krein conditions provided all of its Krein parameters
are non-negative.

For instance, from above, we see that every binary linear code satisfies
the Krein conditions. Some completely regular codes fail. An easy example is
any completely regular code of covering radius one with |C| > 1

2
qn. However,

if there is a completely regular partition [9, p351] of H(n, q) with all cells
having the same parameters of C, then we have a generalized coset graph
and the Krein conditions for C follow from those of this graph, which is
guaranteed to be distance-regular.

Theorem 5.3.3 If C is a binary code of length n which is distance-invariant
and satisfies the Krein conditions, then mβ ≥ 0 for all compositions β of n.
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5.3.3 Nonlinear codes

Can we say anything more about the “dual” biweight enumerator of a non-
linear binary code C? Assuming C is distance-invariant, we still have some
control on the values mβ as the following proposition shows.

Proposition 5.3.4 For any non-trivial code C with biweight enumerator

W(y0, y1, y2, y3) =
∑
α

`α y
α0
0 yα1

1 yα2
2 yα3

3 ,

the transform W(Hy) =
∑

βmβy
β0

0 y
β1

1 y
β2

2 y
β3

3 satisfies

n∑
i=0

mϑ(i,j,k) ≥ 0

and
n∑
j=0

mϑ(i,j,k) ≥ 0.

Note: Since each composition β corresponds to a unique triple (i, j, k), we
are summing over all triples (i, j, k) with fixed values of j and k in the first
instance and with fixed values of i and k in the second. By symmetry, there
is also such an inequality for the sum of mβ where i and j are fixed and k
varies.
Proof: Suppose β = ϑ(i, j, k). Then, we have

mβ = 2nχTEiA
∗
jEkχ. (5.14)

Thus we find ∑
β2+β3=i
β1+β2=k

mβ =
n∑
j=0

2nχTEiA
∗
jEkχ = 4nχTEiE

∗
0Ekχ

which can be written

4n〈ui(C), e0 ◦ uk(C)〉 = 4n〈e0, ui(C) ◦ uk(C)〉.
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Now if we assume C is distance-invariant, then for v ∈ C the v-entry of
uh(C) is independent of v. Moreover, since

〈χ, uh(C)〉 =
n∑
i=0

〈ui(C), uh(C)〉 = 〈uh(C), uh(C)〉,

this value (uh(C))v is never negative. We are assuming 0 ∈ C, so∑
β2+β3=i
β1+β2=k

mβ = (ui(C))0 · (uk(C))0 ≥ 0

with equality if and only if either ui(C) = 0 or uk(C) = 0.

Similarly, ∑
β1+β3=j
β1+β2=k

mβ ≥ 0

since ∑
β

mβ =
n∑
i=0

2nχTEiA
∗
jEkχ = 2nχTA∗jEkχ.

But

χTA∗jEkχ = 〈χ, uj(0) ◦ uk(C)〉 = 〈uj(0), χ ◦ uk(C)〉 = η〈uj(0), χ〉

for some η ≥ 0 since C is assumed to be distance-invariant. Finally, we
observe that this last expression simplifies to

η〈uj(0), uj(C)〉

which is non-negative since 0 ∈ C by hypothesis. �



Chapter 6

The Positive Semidefinite Cone

In this final chapter, I give a summary of work done jointly with Terry
Visentin of the University of Winnipeg. This material was written after
the publication of A. Schrijver’s landmark paper [36]. Schrijver used the
representation theory of C∗-algebras to formulate a semidefinite program-
ming problem which extends Delsarte’s linear programming bound for binary
codes. This was later extended to a method that applies to q-ary codes by
Schrijver together with Giswijt and Tanaka in [17]. In this chapter, our ap-
proach is again quite näıve, finding all valid inequalities for codes that arise
from the positive semidefinite cone of the Terwilliger algebra.

6.1 Positive semidefinite matrices in the Ter-

williger algbra

The Terwilliger algebra Tn can be described as follows. Of course

Mat2(R)⊗n ∼= Mat2n(R)

and we treat these as the same algebra. The symmetric group Sn acts on
tensor products via

(A1 ⊗ · · · ⊗ An)σ = Aσ(1) ⊗ · · · ⊗ Aσ(n).

This extends linearly to Mat2(R)⊗n. We may take Tn to be the subalgebra
consisting of those matrices fixed by each σ in Sn.

57
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It is easy to see that a basis matrix Lα with α = ϑ(i, j, k) is symmetric
if and only if i = k, i.e., if α1 = α3. The number of such α is clearly equal
to the number of triples (γ0, γ1, γ2) of non-negative integers summing to n in
which γ1 is even. This, in turn, is the same as the number of pairs from an
(n+ 2)-element set whose smaller member is odd. This is given by

rn := (n+ 1) + (n− 1) + (n− 3) + · · · = (bn
2
c+ 1)(bn+ 1

2
c+ 1),

or

rn =

{
(n+2)2

4
, if n even;

(n+1)(n+3)
4

, if n odd.

So the subspace of symmetric matrices in Tn has dimension

1

2
·
[(
n+ 3

3

)
+ rn

]
=

{
(n+2)(n+4)(2n+3)

24
, if n even;

(n+1)(n+3)(2n+7)
24

, if n odd.

It is clear that the positive semidefinite matrices in Tn form a cone within
this subspace of symmetric matrices. For if E and F are positive semidefinite
and c, d ≥ 0, then for any vector x we have xTEx ≥ 0 and xTFx ≥ 0 giving

xT (cE + dF )x = cxTEx+ dxTFx ≥ 0.

Henceforth denote this cone by CT .
Our next goal is to describe the positive semidefinite cone CT of the alge-

bra Tn.

6.2 A symmetrized torus

Before looking at the extreme rays of this cone, we explore an interesting
subcone with elementary structure.

We can find samples of p.s.d. matrices as follows. Let u1, . . . , un be unit
vectors in R2. Let Gi = uiu

T
i . Then each Gi is a rank one projection onto

the span of ui and
G = G1 ⊗ · · · ⊗Gn

is a rank one projection onto the span of the vector

u1 ⊗ · · · ⊗ un.
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Now sum all the matrices in the Sn orbit of G to obtain a positive semidefinite
matrix in Tn. Denote the cone generated by these matrices by C0.

The rank one projections in Mat2(R) are naturally topologized as projec-
tive one-space, this being homeomorphic to the unit circle. The foregoing
discussion leads us to seek out the topological structure of the space

(S1 × · · · × S1)/Sn.

This is described as follows. We consider the torus ×n1S1 with its product
topology (or, equivalently, the topology induced from the usual topology on
R2n). We have a natural equivalence relation under the coordinatewise action
of the symmetric group Sn. We would like to describe the quotient space.

Problem: Determine the homotopy type (or, at least, the homology) of
the symmetrized cartesian product (×n1S1)/Sn.

One can easily answer this question in the case n = 2. We wish to take a
quotient of the ordinary torus S1× S1 over the two element group acting on
the coordinates. With a few cut-and-paste diagrams, we convince ourselves
that this space is homeomorphic to a Möbius strip. So this subset of the
positive semidefinite cone of T2 is somehow a pointed cone over a Möbius
strip embedded in R8. But this is only C0; is this the structure of CT ?

It seems possible to describe the topology of this set of matrices ×n1S1/Sn
as a CW-complex. There is a single n-cell which can be viewed as the set

Cn = {(θ1, . . . , θn) : 0 < θ1 < · · · < θn < π}.

The various faces are obtained by replacing any subset of the strict inequali-
ties “<” with weak inequalities “≤”. The gluing together of these cells seems
complicated.

By way of comparison, the positive semidefinite cone of Matk(R) has each
extreme ray generated by a rank one projection operator. These are in one-
to-one correspondence with lines through the origin in Rk. So the boundary
of the positive semidefinite cone is a pointed cone over projective (k−1)-space
Pk−1.

6.3 Ranks

If G1 = u1u
T
1 and G2 = u2u

T
2 , then

G = (G1 ⊗G2) + (G2 ⊗G1)
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has eigenvalues
0, 0, 1 + 〈u1, u2〉2, 〈u1, v〉2

where v is a unit vector orthogonal to u2. So the matrixG has rank two except
when u1 = ±u2, in which case rank (G) = 1. In terms of our topological
description, the matrices in the interior of the Möbius strip have rank two
and those on the boundary have rank one.

If G1 = G2 =

[
1 0
0 0

]
and G3 =

[
x2 xy
xy y2

]
with x2 + y2 = 1, then G

has eigenvalues
0, 0, 0, 0, 0, 4x2 + 2, 2y2, 2y2.

If G1 =

[
1 0
0 0

]
, G2 =

[
0 0
0 1

]
, and G3 =

[
x2 xy
xy y2

]
with x2 +y2 = 1,

then G has eigenvalues

0, 0, 0, 2, 1 + γ, 1− γ

(with each of the latter two eigenvalues appearing with multiplicity two)
where γ = |x2 − y2|.

If, in the above special case, we replace G2 by 1
2

[
1 1
1 1

]
, then we obtain

an 8× 8 matrix G with eigenvalues

0, 0, 0, 2x2 + (x+ y)2 + 1,
1

2
(x2 − xy + 2y2 +

√
γ),

1

2
(x2 − xy + 2y2 −√γ)

where
γ = 1− 2xy|x2 − y2|.

If G1 = uuT , G2 = vvT and G3 = wwT where

u =

[
1
0

]
, v =

[
x1

y1

]
, w =

[
x2

y2

]
with x2

1 + y2
1 = x2

2 + y2
2 = 1, then G has eigenvalues

0, 0, 0, 2 + 4〈u, v〉〈u,w〉〈v, w〉,

2− 〈u, v〉〈u,w〉〈v, w〉 ± Γ

(with each of the latter two eigenvalues appearing with multiplicity two)
where Γ2 = x4

1y
4
2+y4

1x
4
2+y4

1y
4
2+ 4x1y

3
1x2y

3
2−2x3

1y1x2y
3
2− 2x1y

3
1x

3
2y2+3x2

1y
2
1x

2
2y

2
2−

x2
1y

2
1y

4
2 − y4

1x
2
2y

2
2.
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Of course, when n = 3, G has trace equal to six.
In general, G has eigenvalue zero with multiplicity at least three, inde-

pendent of the three vectors u1 = [x1, y1], u2 = [x2, y2] and u3 = [x3, y3]. One
of the three remaining eigenvalues is

θ = 2x2
1y

2
2x

2
3 + 6y2

1y
2
2y

2
3 + 2y2

1y
2
2x

2
3 + 4y2

1x2y2x3y3

+2y2
1x

2
2y

2
3 + 6x2

1x
2
2x

2
3 + 2x2

1x
2
2y

2
3 + 2x2

1y
2
2y

2
3

+4x2
1x2y2x3y3 + 4x1y1x

2
2x3y3 + 4x1y1x2y2x

2
3

+4x1y1x2y2y
2
3 + 4x1y1y

2
2x3y3 + 2y2

1x
2
2x

2
3.

The other two, each having multiplicity two, have less pleasant expressions.
The rank is always at most five since we are summing the projections onto
six one-dimensional spaces spanned by

u1⊗u2⊗u3, u1⊗u3⊗u2, u2⊗u1⊗u3, u2⊗u3⊗u1, u3⊗u1⊗u2, u3⊗u2⊗u1

which always satisfy the relation

u1⊗u2⊗u3−u1⊗u3⊗u2−u2⊗u1⊗u3+u2⊗u3⊗u1+u3⊗u1⊗u2−u3⊗u2⊗u1 = 0.

Let x1, . . . , xn be chosen from the interval [−1, 1] and let yi = ±
√

1− x2
i .

Let Gi =

[
x2
i xiyi

xiyi y2
i

]
and let

G =
∑
σ∈Sn

Gσ(1) ⊗ · · · ⊗Gσ(n).

It should be possible to determine the entries of G and the eigenvalues
of G as symmetric functions in the xi. It would also be interesting to
determine the rank of G in terms of the relative position of the vectors{[

xi
yi

]
: 1 ≤ i ≤ n

}
. In general, the symmetrized matrix G ∈ Tn has trace

n! since it is the sum of n! matrices each having trace one.
We now give a partial result regarding the rank of G.

Lemma 6.3.1 For integers k and n, consider the collection of n-fold tensor
products

{vi := ui ⊗ · · · ⊗ ui : 1 ≤ i ≤ k}
where u1, . . . , uk are projectively distinct unit vectors in R2. The vectors vi
are linearly independent in R2n if and only if k ≤ n+ 1.
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Proof: A vector of the form u⊗ · · · ⊗ u has at most n+ 1 distinct entries,
the duplications being independent of the entries of u. So the vectors {vi : i}
all lie in a space of dimension n+ 1. Now assume k ≤ n+ 1 and suppose

c1v1 + · · ·+ ckvk = 0

in R2n . If ui = [xi, yi], then we have n+ 1 equations of the form

c1x
j
1y
n−j
1 + · · ·+ ckx

j
ky

n−j
k = 0.

Applying an orthogonal transformation if necessary, we may assume that
each yi 6= 0. Then the above equations can be written

(c1y
n
1 )

(
x1

y1

)j
+ · · ·+ (cky

n
k )

(
xk
yk

)j
= 0.

We recognize this as a Vandermonde system. Since the unit vectors ui are
projectively distinct, the ratios xi/yi are distinct real numbers so the only
solution to this system is ciy

n
i = 0 for all i. �

This allows us to obtain an upper bound on the rank of G. Suppose for
the moment that the ui are distinct. Let wi be a unit vector orthogonal to
ui. Then for any permutation σ ∈ Sn,

〈wi ⊗ · · · ⊗ wi, uσ(1) ⊗ · · · ⊗ uσ(n)〉 = 〈wi, uσ(1)〉 · · · 〈wi, uσ(n)〉 = 0

since 〈wi, ui〉 = 0. Using the above lemma, this gives us n linearly indepen-
dent vectors in the null space of G in the case where the ui are projectively
distinct. In the case where the ui are not distinct, the rank of G will be
smaller.

6.4 Inequalities for codes from cone C0

In order to obtain inequalities for unrestricted codes from the psd matrices
studied in the previous section, we need only express each matrix G as a
linear combination of the basis elements Lα.

Let’s first look at n = 3. Let

u1 =

[
x1

y1

]
, u2 =

[
x2

y2

]
, u3 =

[
x3

y3

]
,
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let
G1 = u1u

T
1 , G2 = u2u

T
2 , G3 = u3u

T
3 ,

and let
G = G1 ⊗G2 ⊗G3 + · · ·+G3 ⊗G2 ⊗G1

(six terms). Then

G =
∑
α

sαLα

where sα is a polynomial in x1, x2, x3, y1, y2, y3. It is easy to check that
degxi sα + degyi sα = 2 for any i.

We now give the formula for sα for arbitrary n. For a triple µ = (µ0, µ1, µ2)
of nonnegative integers summing to n, let fµ denote the monomial symmet-
ric function of shape 1µ12µ2 in variables z1, . . . , zn; e.g., for µ = (1, 0, 2) and
n = 3,

fµ = z2
1z

2
2 + z2

1z
2
3 + z2

2z
2
3 .

Then, with µ2 = α2 and µ1 = α1 + α3,

sα = µ0!µ1!µ2! ·
n∏
i=1

x2
i fµ

(
y1

x1

, . . . ,
yn
xn

)
.

The monomial symmetric function in variables X1, . . . , Xn with shape
λ = (λ1, . . . , λk) is the polynomial

mλ(X) =
∑
i1,...,ik

Xλ1
i1
· · ·Xλk

ik

where the sum is over all injections {1, . . . , k} → {1, . . . , n} where j is
mapped to ij. By the notation [2k1`], we refer to the partition of m = 2k+ `
having k parts equal to two and ` parts equal to one. Now define

mα(x1, . . . , xn, y1, . . . , yn) = y2
1 · · · y2

n · m[2α01α1+α3 ]

(
x1

y1

, . . . ,
xn
yn

)
.

Then
sα = mα.

Theorem 6.4.1 For any real numbers θ1, . . . , θn, we have∑
α

sα`α ≥ 0

where xi = cos(θi) and yi = sin(θi).
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Proof: For these values of xi and yi, the matrix

M =
∑
α

sαLα

is a positive semidefinite matrix in Tn. �

6.5 A family of commutative subalgebras

Observe that the (infinite) set of inequalities given by the theorem includes
Delsarte’s inequalities. For if we take u1 = · · · = uj = 2−1/2[1,−1]T and
uj+1 = · · · = un = 2−1/2[1, 1]T , then the symmetrized tensor product G is
equal to the jth primitive idempotent, Ej.

Likewise, if we choose ui = [0, 1]T for j values of i and ui = [1, 0]T

for the remaining values, it is easy to see that G = E∗j . So the primitive
idempotents of A∗ are also in the cone C0. In fact, there are an infinite
number of commutative subalgebras of Tn, each isomorphic to A, all of whose
primitive idempotents belong to C0.

We consider matrices G coming from the above construction from unit
vectors u1, . . . , un in R2 where the ui take on at most two fixed distinct values.
That is, for unit vectors v, w ∈ R2, consider the symmetrized tensor products

Fk =
∑
σ∈Sn

uσ(1) ⊗ · · · ⊗ uσ(n)

where each ui = v for n − k values of i and ui = w for k values of i. Let
U2(v, w) denote the subspace of Tn generated by these matrices.

Proposition 6.5.1 Given the above definitions,

• if v = ±w, then U2(v, w) is a 1-dimensional subalgebra of Tn;

• if v⊥w, then U2(v, w) is an (n+1)-dimensional commutative subalgebra
of Tn isomorphic to the Bose-Mesner algbra A;

• If w is neither parallel nor orthogonal to v, then the matrices Fk do not
commute and U2(v, w) is not closed under multiplication.



CHAPTER 6. POSITIVE SEMIDEFINITE CONE 65

Proof: The first case is trivial. Now consider two symmetrized tensor
products

F =
∑
σ

uσ(1) ⊗ · · · ⊗ uσ(n)

and
G =

∑
π

vπ(1) ⊗ · · · ⊗ vπ(n).

We have
FG =

∑
σ

∑
π

(uσ(1)vπ(1))⊗ · · · ⊗ (uσ(n)vπ(1))

and
GF =

∑
π

∑
σ

(vπ(1)uσ(1))⊗ · · · ⊗ (vπ(1)uσ(n)).

Now if ui = w and vj = v then

(wwT )(vvT ) = 〈w, v〉wvT

while
(vvT )(wwT ) = 〈w, v〉vwT .

So F and G commute if and only if v is orthogonal to w or wvT is a symmetric
matrix. But this will happen if and only if v = ±w. �

So, for each pair of orthogonal unit vectors in R2, we obtain a “copy” of
the Bose-Mesner algebra with its primitive idempotents giving new inequal-
ities for the biweight enumerator. This family of subalgebras interpolates
between the Bose-Mesner algebra A and the dual Bose-Mesner algebra A∗.

6.6 Irreducible Sn-modules

We know that every positive semidefinite matrix M inside Tn is diagonaliz-
able. So we have

M =
∑
θ

θEθ

where the sum is over all (non-negative) eigenvalues θ of M . So the extreme
rays of the positive semidefinite cone CT are precisely those generated by
these projection matrices Eθ.

Now since M lies in the commutant algebra of Sn, E = Eθ must be a
projection onto an Sn-invariant subspace. Conversely, any such projection
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operator E lies in the cone CT . For if colspE is Sn-invariant, then nullspE,
its complement, is also Sn-invariant, So Eσ = E for each σ ∈ Sn and E
belongs to Tn. This proves

Lemma 6.6.1 The extreme rays of the positive semidefinite cone are pre-
cisely the spans of all projection operators onto all irreducible Sn-submodules
of R2n. �

Now we know the decomposition of R2n as an Sn module into irreducibles
up to isomorphism. First, the subconstituents imE∗k form an orthogonal
decomposition. Then we observe that, for each k, we have E∗kTE∗k isomorphic
to the Bose-Mesner algebra of the Johnson scheme J(n, k). The action of Sn
on this spaces decomposes into k+ 1 mutually non-isomorphic irreducible Sn
modules, one for each partition λ = (n− j, j) (0 ≤ j ≤ k).

Thus, in the overall decomposition, the irreducible Sn module of isomor-
phism type indexed by the partition λ = (n− j, j) appears with multiplicity
n+1−2j and has dimension

(
n
j

)
−
(
n
j−1

)
. Our interest, however, goes beyond

this statistic. We seek expressions for the projections onto each of these
irreducible Sn modules. For we know that each is expressible as a linear
combination of the basis matrices Lα. To achieve this, we recall a bit of
representation theory.

Schur’s Lemma tells us that an Sn-homomorphism from any irreducible
Sn module to any other irreducible is either an isomorphism or the zero map.
Moreover, the only Sn-isomorphisms from an irreducible Sn module to itself
are the (non-zero) multiples of the identity map. This essentially proves the
following

Lemma 6.6.2 Let the projection operator F be an extremal element of the
positive semidefinite cone. Then F is the projection onto some irreducible
Sn-submodule of V of isomorpism type (n − j, j), say. This operator is
uniquely determined by a set τj, τj+1, . . . , τn−j of non-negative scalars sat-
isfying

∑n−j
h=j

(
n
h

)
τh = 1. Specifically, the hth diagonal block of the projection

E∗hFE
∗
h onto the hth subconstituent is τhF

h
j where F j

h is the jth primitive
idempotent in the standard Q-polynomial ordering for the Johnson scheme
J(n, h). The rank of F is

(
n
j

)
−
(
n
j−1

)
. Conversely, any projection opera-

tor onto any irreducible Sn submodule is an extremal element of the positive
semidefinite cone.

Problem: We have all the entries on the block diagonal for F . Find expres-
sions in terms of Hahn polynomials for the remaining entries.
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6.7 The actual inequalities revealed

Let us fix a shape λ = (n − g, g) denoting the isomorphism type of our
irreducible Sn-submodule. From above, we know that this moduleW projects
trivially onto subcontituents 0, 1, . . . , g − 1 and n− g + 1, . . . , n. Let U be a
matrix whose columns form an orthonormal basis for W and write

U> =
[
0| · · · |0|U>g | · · · |U>n−g|0| · · · |0

]
,

where Uk is the submatrix of U whose rows are indexed by tuples of Hamming
weight k. Note that U (and, hence, each Uk) has µg :=

(
n
g

)
−
(
n
g−1

)
columns.

Initially, let us assume that the projection E∗gW is non-zero. By Schur’s
Lemma, it is then an Sn-isomorphism from W to the th eigenspace of the
Johnson scheme J(n, g) on the gth subconstituent. So the columns of Ug
form a basis for this eigenspace. If we reverse this process and begin with Ug
so that U>g Ug = Iµg and UgU

>
g = E

(g)
g , the gth primitive idempotent in the

standard Q-polynomial ordering for the Johnson scheme J(n, g).
Now if R is the raising operator for the n-cube, it has natural block

decomposition according to Hamming weight and, in this decomposition, the
(j+1, j) block of R is the transpose of the incidence matrix Wj,j+1 of j-subsets
versus (j + 1)-subsets of an n-set (with appropriate choice of labels). Since
R commutes with each element of Sn, we see that both ϕ : W 7→ E∗j+1W and
ψ : W 7→ E∗j+1RW are Sn-homomorphisms of modules. If neither is the zero
map, then both are isomorphisms and hence so is the composition ϕ◦ψ−1. It
follows that Ug+h is a scalar multiple of W>

g,g+hUg for each h = 0, 1, . . . , n−2g.

(Note that the (g + h, g) block of Rh is a scalar multiple of W>
g,g+h.)

It now follows that, if we fix Ug as above to have columns forming an
orthonormal basis for the gth eigenspace of J(n, g), then we can take

U> =
[
0| · · · |0|τgU>g |τg+1W

>
g,g+1Ug| · · · |τn−gW>

g,n−gUg|0| · · · |0
]

where τg, τg+1, . . . , τn−g are real scalars satisfying a single overall constraint

n−g∑
k=g

(
n− 2g

k − g

)
τ 2
k = 1.

This requires some proof, but that will appear elsewhere.
This is all part of ongoing work with Terry Visentin at the University of

Winnipeg. The project started with my observations about the Terwilliger
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algebra and the biweight enumerator in 2000-2001, but the material here
is influenced by A. Schrijver’s now-famous paper. Here is my attempt to
summarize our results.

1. The Terwilliger algebra T = Tn is the commutant algebra of the Sn
action on the standard module V = CX

2. Define Tsym to be the subspace of symmetric matrices in T. Note that
this is not a subalgebra

3. If E is a positive semidefinite matrix in Tsym with spectral decomposi-
tion E =

∑
θ θFθ, then each θ ≥ 0 and each corresponding projection

matrix Fθ lies in Tsym

4. If F is a matrix representing orthogonal projection onto the real sub-
space W then F ∈ Tsym if and only if W is Sn-invariant

5. If W = W1 ⊕W2 is a decompositon of Sn-submodules of V , then the
corresponding orthogonal projection F onto W can be expressed as
F = F1 + F2 where Fi represents orthogonal projection onto the Sn-
submodule Wi

6. Define the positive semidefinite cone CT to be the set of all positive
semidefinite matrices in Tsym. This is closed under addition and under
multiplication by nonnegative scalars

7. THEOREM: Every E in CT is uniquely expressible as a nonnegative lin-
ear combination E =

∑
i θiFi where the eigenvalues θi are not necessar-

ily distinct but each Fi is a matrix representing orthogonal projection
onto some irreducible Sn-submodule of V

8. Let W be an irreducible Sn-submodule with orthonormal basis {u1, . . . ,
ud} (d = dimW ). Then the matrix F ∈ Tsym representing orthogonal
projection onto W is F = UU> where U has ith column ui

9. The submodule E∗kV is isomorphic to the standard module of the John-
son graph J(n, k) and the subalgebra E∗kTE∗k is isomorphic to the Ter-
williger algebra of the Johnson graph, the first and second isomorphisms
being consistent (this can be made precise)
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10. Each eigenspace of J(n, k) is an irreducible Sn-submodule. There is
exactly one submodule of each isomorphism type (n), (n − 1, 1), . . . ,
(n − k, k) for k ≤ n/2. For k > n/2, the types are (n − λ, λ) for
λ = 0, . . . , n − k where, for convenience, we write (n − 0, 0) for the
trivial partition (n)

11. So the submodule E∗kV decomposes uniquely into min(k+ 1, n− k+ 1)
irreducible Sn-submodules, one of each isomorphism type (n−λ, λ) for
each λ = 0, 1, . . . ,min(k, n− k)

12. So the standard module V decomposes into

V =

bn/2c⊕
λ=0

n−λ⊕
h=λ

W
(n−λ,λ)
h

where each W
(n−λ,λ)
h is an irreducible Sn-submodule of isomorphism

type (n− λ, λ) (i.e., this module has multiplicity n+ 1− 2λ)

13. The irreducible Sn module of type (n− λ, λ) appearing in the decom-
position of E∗kV is precisely the λ eigenspace (in the natural or Q-
polynomial ordering) of the Johnson scheme J(n, k) with projector

F =



0
. . .

0

E
(k)
λ

0
. . .

0


where E

(k)
λ is the primitive idempotent of the Bose-Mesner algebra of the

Johnson scheme J(n, k) of index λ in the natural ordering. So, in par-
ticular, dimW =

(
n
λ

)
−
(
n
λ−1

)
for this module. (NOTATION: Symbols

in sans serif font correspond to matrices and parameters for the John-
son schemes J(n, k). These are defined on the various subconstituents
of the n-cube, so we must distinguish them from the corresponding
quantities for Qn)
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14. Now fix λ > 0 and consider an irreducible Sn module W of isomor-
phism type (n − λ, λ). Then W 7→ E∗kW is either the zero map or an
isomorphism of Sn modules by Schur’s Lemma

15. Next consider the raising operator R for the n-cube. If the partial
order of the Boolean lattice is extended to a total order, then this can
be viewed as the lower-triangular portion of the adjacency matrix of
Qn. More formally, we can write

R =
n−1∑
i=0

E∗i+1AE
∗
i

where the (k+1, k) block (in the natural partition of rows and columns

according to Hamming weight) is the incidence matrix W
(n)
k,k+1

>
(or set-

inclusion matrix) of k-subsets versus (k+1)-subsets. Clearly, R belongs
to the Terwilliger algebra

16. Since both W 7→ϕ E∗k+1W and W 7→ψ RE∗kW are zero maps or both
are isomorphisms, in the latter case the composition ψϕ−1 is an iso-
morphism as well

17. First, let us assume that all projections E∗kW are non-zero for k =
λ, . . . , n−λ. (The other cases will fall out as degenerate specializations
of this.) We know that dimW =

(
n
λ

)
−
(
n
λ−1

)
. Let Uλ be an

(
n
λ

)
×dimW

matrix whose columns form an orthonormal basis for E∗λW . We claim

that Uk = W
(n)
λ,k

>
Uλ has columns forming an orthogonal basis for E∗kW

18. Indeed, since U>λ Uλ = I, we have

U>k Uk = U>λ
(
Wλ,kW

>
λ,k

)
Uλ

where we have omitted the superscript (n) on Wλ,k for readability. But
the matrix in the middle lies in the Bose-Mesner algebra of the Johnson
scheme J(n, λ). It is easy to check that

Wλ,kW
>
λ,k =

λ∑
h=0

(
n− λ− h
k − λ− h

)
A

(λ)
h

where A
(λ)
h is the adjacency matrix of the distance-h relation in the

Johnson graph J(n, λ). Moreover, each column of Uλ is an eigenvector

for A
(λ)
h with eigenvalue (−1)h

(
λ
h

)
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19. By the way, let’s write down all the eigenvalues of the Johnson scheme
J(n, λ). We have

A
(λ)
h E

(λ)
j = P

(λ)
j,hE

(λ)
j

where

P
(λ)
j,h =

h∑
`=0

(−1)`
(
j

`

)(
λ− j
h− `

)(
n− λ− j
h− `

)
20. Now back to our proof. We now have

U>k Uk =
λ∑
h=0

(
n− λ− h
k − λ− h

)
U>λ A

(λ)
h Uλ

=
λ∑
h=0

(
n− λ− h
k − λ− h

)
P

(λ)
λ,hU

>
λ Uλ

=

[
λ∑
h=0

(−1)h
(
λ

h

)(
n− λ− h
k − λ− h

)]
I

So the columns of Uk are indeed pairwise orthogonal, but this also
shows that they all have the same norm

21. It now follows that, up to scalar, the columns of Uk form an orthonormal
basis for the λ eigensapce of J(n, k). Hence, by Schur’s Lemma, they
also form an orthonormal basis for E∗kW provided it is non-zero

22. So for each W of this isomorphism type, there exist scalars τk (λ ≤ k ≤
n− λ) such that the matrix U defined by

U> =
[
0| · · · |0|τλU>λ |τλ+1U

>
λ+1| · · · |τn−λU>n−λ|0| · · · |0

]
has columns forming an orthonormal basis for W

23. The normaliztion factor here is
∑n−λ

k=λ

(
n−2λ
k−λ

)
τ 2
k = 1. (This makes the

columns of U orthonormal.) Conversely, for any such scalars τk, the
column space of the matrix U determined above is an irreducible Sn
module of isomorphism type (n− λ, λ)

24. For a shape α = (α0, α1, α2, α3) (with all αi ≥ 0 and summing to n),
define

Lα = E∗iAjE
∗
k
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in T where i = α2 + α3, j = α1 + α3 and k = α1 + α2. It is well-known
that the Lα form a basis for T (and the appropriate pairwise sums form
a basis for Tsym). Our last step is to compute coefficients tα satisfying

F = UU> =
∑
α

tαLα.

Note that we will use, in our optimization problem, `α = x>Lαx where

x =
1

|C|
∑
a∈C

χa+C

and χS denotes the characteristic vector of the subset S ⊂ {0, 1}n. We
now have the inequality x>Fx ≥ 0 when F is positive semidefinite and
we want to translate this into a condition

∑
α tα`α ≥ 0 on the unknowns

`α

25. We return to our fixed projector F with fixed shape (n − λ, λ). If
we view this as a block matrix with (j, `) block being the submatrix
obtained by restricting to rows indexed by words of Hamming weight
j and to columns indexed by words of Hamming weight `, then the
(j, `)-block of F is zero if either j < λ, ` < λ, j > n− λ or ` > n− λ.
In all other cases, the (j, `)-block of F is given by

UjU
>
` = W>

λ,jUλU
>
λ Wλ,` = W>

λ,jE
(λ)
λ Wλ,`

26. If wt(x) = j and wt(y) = ` and the (j, `)-block is not zero, then

Fxy =
∑

wt(z1)=λ
supp(z1)⊆supp(x)

∑
wt(z2)=λ

supp(z2)⊆supp(y)

(
E

(λ)
λ

)
z1,z2

.

If we also know that dist(x, y) = k, then we have (with a = 1
2
(j+k−`))

Fxy = ωj,k,` :=

n− 2λ+ 1

n− λ+ 1

λ∑
r=0

[
r∑
s=0

(
j − a
λ− r

)(
j − a− λ+ r

s

)(
a

r − s

)(
`− λ+ r − s

r

)]
·

P
(λ)
λ,r

(
λ

r

)−1(
n− λ
r

)−1
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since, for distJ(n,λ)(z1, z2) = r (distance in the Johnson graph),(
E

(λ)
λ

)
z1,z2

= P
(λ)
λ,r

(
n
λ

)
−
(
n
λ−1

)(
n
λ

)(
λ
r

)(
n−λ
r

)
27. Now F is a symmetric matrix and L>α = Lβ for some β, namely β =

(α0, α3, α2, α1), so these two matrices have the same coefficient in the
expansion of F : tα = tβ

28. I think we now have all the ingredients to prove that, for each λ, 0 <
λ ≤ n

2
, and for each choice of scalars τλ, . . . , τn−λ satisfying

n−λ∑
k=λ

(
n− 2λ

k − λ

)
τ 2
k = 1

we have a valid inequality∑
α

τα2+α3 · τα1+α2 · ωα · `α ≥ 0

for the parameters `α of any code C where

ωα =
n− 2λ+ 1

n− λ+ 1

λ∑
r=0

r∑
s=0

(−1)r
(

α2

λ− r

)
·

(
α2 − λ+ r

s

)(
α3

r − s

)(
α1 + α2 − λ+ r − s

r

)(
n− λ
r

)−1

since P
(λ)
λ,r = (−1)r

(
λ
r

)
and a = 1

2
(j + k − `) = α3

29. The idea now is to iteratively optimize, beginning with Delsarte’s linear
program and using Lagrange multipliers at each stage to choose the best
direction {τk}n−λk=λ for each isomorpism type (n− λ, λ) and include the
corresponding bn/2c − 1 inequalities into our system and re-solve.

This ends my terse summary of our approach to bounds for the “biweight
distribution” {`α}. We never planned to use semidefinite programming; we
simply iterate through larger and larger linear programming problems allow-
ing the Lagrange multipliers to tell us which new inequalities to bring in to
our finite set at each stage.



Chapter 7

Semidefinite Programming

This chapter is extracted from a recent survey paper [32] co-authored with
Hajime Tanaka.

7.1 The semidefinite programming bound

Throughout this section, suppose that (X,R) is the binary Hamming scheme
H(n, 2) = (S2 o Sn)/Sn, so that X = Qn where Q = {0, 1}. Let x =
(0, 0, . . . , 0) be the zero vector and write T = T(x), E∗i = E∗i (x) (0 ≤ i ≤ n).
Recall that T coincides with the centralizer algebra of K = Sn acting on X.

Let Y ⊆ X be a code. We consider two subsets Π1,Π2 of G = S2 o Sn
defined by Π1 = {g ∈ G : x ∈ gY }, Π2 = {g ∈ G : x 6∈ gY }. For i ∈ {1, 2},
let

M i
SDP =

1

|Y |n!

∑
g∈Πi

χgY (χgY )T ∈ CX×X

where χgY ∈ CX denotes the (column) characteristic vector of gY . Since
Π1,Π2 are unions of right cosets of G by K, it follows that M1

SDP,M
2
SDP ∈ T.

Moreover, since the χgY (χgY )T are nonnegative and positive semidefinite, so
are M1

SDP,M
2
SDP. By computing the inner products with the 01-matrices

E∗iAjE
∗
k , we readily obtain

M1
SDP =

∑
i,j,k

λijkE
∗
iAjE

∗
k , M2

SDP =
∑
i,j,k

(λ0jj − λijk)E∗iAjE∗k ,

where

λijk =
|X|
|Y |
· |{(y, y

′, y′′) ∈ Y 3 : (y, y′, y′′) satisfies (*)}|
|{(y, y′, y′′) ∈ X3 : (y, y′, y′′) satisfies (*)}|

,
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and condition (*) is defined by

(y, y′) ∈ Ri, (y′, y′′) ∈ Rj, (y′′, y) ∈ Rk. (*)

By viewing the λijk as variables we get the following semidefinite program-
ming (or SDP) bound established by A. Schrijver:

Theorem 7.1.1 ([36]) Set

`SDP = `SDP(n, δ) = max
n∑
i=0

(
n

i

)
λ0ii

subject to (i) λ000 = 1; (ii) 0 ≤ λijk ≤ λ0jj; (iii) λijk = λi′j′k′ if (i′, j′, k′)
is a permutation of (i, j, k); (iv)

∑
i,j,k λijkE

∗
iAjE

∗
k < 0; (v)

∑
i,j,k(λ0jj −

λijk)E
∗
iAjE

∗
k < 0; (vi) λijk = 0 if {i, j, k} ∩ {1, 2, . . . , δ − 1} 6= ∅ (where <

means positive semidefinite). Then A2(n, δ) ≤ `SDP.

It is known that semidefinite programs can be approximated in polyno-
mial time within any specified accuracy by interior-point methods; see [40].
See also [16, §7.2] for a discussion on how to ensure that computational so-
lutions do give valid upper bounds on A2(n, δ). While Delsarte’s LP bound
is a close variant of Lovász’s ϑ-bound, Schrijver’s SDP bound can be viewed
as a variant of an extension of the ϑ-bound based on “matrix cuts” [29]; see
also [16, Chapter 6]. In fact, if we define a = (a0, a1, . . . , an) by ai = λ0ii

(
n
i

)
(0 ≤ i ≤ n), then the condition that aQ is nonnegative is equivalent to the
positive semidefiniteness of the matrix

MLP =
n∑
i=0

λ0iiAi,

but this is in turn a consequence of the positive semidefiniteness of M1
SDP

and M2
SDP. A hierarchy of upper bounds based on semidefinite programming

was later proposed in [24]:

`
(1)
+ ≥ `

(2)
+ ≥ · · · ≥ `

(k)
+ ≥ · · · ≥ A2(n, δ).

It turns out that `LP = `
(1)
+ ≥ `SDP ≥ `

(2)
+ . Each of the `

(k)
+ can be computed in

time polynomial in n, but the program defining `
(2)
+ already contains O(n7)

variables. Two strengthenings of `SDP with the same complexity are also
given in [24].
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The SDP bound was also applied to the problem of finding the stability
number of the graph (X,Rn/2) for even n (known as the orthogonality graph)
in [22], where it is shown (among other results) that for n = 16 the SDP
bound gives the exact value 2304, whereas the LP bound only gives much
weaker upper bound 4096. This problem arises in connection with quantum
information theory [14]; see also [18].

As M1
SDP,M

2
SDP are 2n × 2n matrices, it is in fact absolutely necessary to

simplify the program by explicitly describing the Wedderburn decomposition
of the semisimple algebra T. The decomposition of T (as a centralizer alge-
bra) was worked out in [12] in the study of addition theorems for Krawtchouk
polynomials, but our discussion below emphasizes the use of T, based on [21].

Let W ⊆ CX be an irreducible T-module with endpoint r. Then W has
dual endpoint r, and there is a basis {wi}n−ri=r for W such that

wi ∈ E∗iW, A1wi = (i− r + 1)wi+1 + (n− r − i+ 1)wi−1 (r ≤ i ≤ n− r)

where wr−1 = wn−r+1 = 0. Thus, the isomorphism class of W is determined
by r. Moreover, it follows that

〈wi, wj〉 = δij

(
n− 2r

i− r

)
||wr||2 (r ≤ i, j ≤ n− r).

See [21] for the details. The actions of the Ai on W may be described from
the above information as the Ai are Krawtchouk polynomials in A1, but our
argument goes as follows. For integers i, k, t such that 0 ≤ k ≤ i ≤ n and
0 ≤ t ≤ min{k, n− i}, we recall the following normalization of the dual Hahn
polynomials found in [10]:(

i

k

)
Qi,k
t (λk(z)) =

(
i

k − t

)(
n− i
t

)
3F2

(
−t,−z, z − n− 1

i− n,−k

∣∣∣∣ 1

)
,

where λk(z) = k(n− k)− z(n+ 1− z). If i+ j + k is odd then E∗iAjE
∗
k = 0

since H(n, 2) is bipartite, so suppose that i + j + k is even. Then it follows
that

E∗iAjE
∗
kA2E

∗
k = βi,kj+2E

∗
iAj+2E

∗
k + αi,kj E

∗
iAjE

∗
k + γi,kj−2E

∗
iAj−2E

∗
k ,

where βi,kj+2 = (t+ 1)(i+ 1− k+ t), αi,kj = (k− t)(i− k+ t) + t(n− i− t) and

γi,kj−2 = (k+ 1− t)(n+ 1− i− t), with t = (j+ k− i)/2. Using 2A2 = A2
1−nI
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we find E∗kA2wk = λk(r)wk (r ≤ k ≤ n− r). Combining these facts with the
three-term recurrence relation for the Qi,k

t [10, Theorem 3.1], we obtain

E∗iAjwk = Qi,k
t (λk(r))E∗iAi−kwk = Qi,k

t (λk(r))

(
i− r
i− k

)
wi

for r ≤ k ≤ i ≤ n − r, 0 ≤ j ≤ n such that i + j + k is even, where
t = (j + k − i)/2. (The Qi,k

t for t > min{k, n − i} are formally defined by
the recurrence relation [10, Theorem 3.1].) Hence, after orthonormalization
of the wi, we get the following algebra isomorphism which preserves the
positive-semidefinite cones:

ϕ : T→
bn/2c⊕
r=0

C(n−2r+1)×(n−2r+1)

where the rth block of ϕ(Aj) is the symmetric matrix (aj,ri,k)
n−r
i,k=r given by

aj,ri,k = aj,rk,i =

{
Qi,k

(j+k−i)/2(λk(r))
(
i−r
i−k

)(
n−2r
i−r

)1/2(n−2r
k−r

)−1/2
if i+ j + k even,

0 if i+ j + k odd,

for r ≤ k ≤ i ≤ n− r, 0 ≤ j ≤ n. See also [36, 42].
The SDP bound has also been formulated for binary constant weight

codes (i.e., codes in J(v, n)) in [36] and for nonbinary codes in [17, 16].
The description of the irreducible T-modules becomes more complicated in
this case, but this method turns out to improve the LP bound for many
parameters. It seems to be an important problem to decide whether it is
possible or not to establish a suitable SDP bound for t-designs in J(v, n)
or H(n, q). The SDP bound for spherical codes was formulated in [4]; it
provides a new proof of k(3) = 12 and k(4) = 24. See also [6].
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Appendix A

Selected Background from
Linear Algebra and Graph
Theory

This small appendix has been added as a place to put background material
that may or may not be known to the reader and is not central to the topic
of discussion.

A.1 Linear Algebra and Matrix Theory

Here, we briefly review a few facts from linear algebra.
The transpose of matrix A = [aij] with entry aij in row i, column j is the

matrix A> with aij in row j column i. A matrix A is symmetric if it is equal
to its transpose: A> = A. The real n× n matrices

SRn×n =
{
A ∈ Matn(R) : A> = A

}
form a vector space of dimension

(
n+1

2

)
. The product of two symmetric

matrices is symmetric if and only if they commute (exercise).
If A is an n× n matrix over the complex numbers C and v is a non-zero

vector in Cn, then v is an eigenvector for A if there is some scalar λ ∈ C
satisfying Av = λv. When a non-zero vector v satisfying this equation exists,
we call λ an eigenvalue of A.

Let 〈·, ·〉 denote the standard Hermitean inner product on Cn: 〈u,v〉 =
u>v̄ where> denotes the transpose and v̄ is the entrywise conjugate of vector

82
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v.
The eigenvalues of a real symmetric matrix are all real1. Consider a real

symmetric n × n matrix A and an eigenvalue λ ∈ C for A. Then there is
some non-zero complex vector v of length n satisfying Av = λv. We have

λ〈v,v〉 = (λv)>v̄ = (Av)>v̄ = v>Av̄ = v>Āv = v>λ̄v = λ̄v>v̄ = λ̄〈v,v〉.

Since v 6= 0, this shows that λ is equal to its complex conjugate.
If A is a real symmetric matrix, then eigenvectors of A belonging to

distinct eigenvalues are orthogonal. To wit, if Au = θu and Av = τv, then

θu>v̄ = (Au)>v̄ = u>Āv = u>τ̄v = τu>v̄

forcing u⊥v when θ 6= τ .
So a real symmetric n× n matrix A has the property that Rn admits an

orthonormal basis
B = {u1, . . . ,un}

consisting entirely of eigenvectors for A. Ignoring the possibility of multiple
eigenvalues for now, let us write Aui = θiui (where the θi are not necessarily
distinct). Letting Ei = uiu

>
i (a rank one matrix for each i), we have AEi =

θIEi and
∑

iEi = I (Exercise2). So multiplying both sides of this equation
by A, we obtain the spectral decomposition of A:

A =
n∑
i=1

θiEi.

Another way to express this is to gather the basis vectors according to com-
mon eigenvalues. If matrix A has k distinct eigenvalues λ1, . . . , λk and Fj is
the matrix representing orthogonal projection onto the eigenspace

Vj := {v ∈ Rn | Av = λjv} ,

then each Fj is a sum of those Ei for which θi = λj and we obtain

A =
k∑
j=1

λjFj.

1This also holds for complex Hermitean matrices. An n×n matrix over C is Hermitean
if it is equal to its conjugate transpose.

2HINT: Write an arbitrary vector w ∈ Rn in terms of the basis {ui}ni=1 and show that
both matrices map w to itself.
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This is a very useful decomposition. Since FjF` = δj,`Fj, we find

Ar =
k∑
j=1

λrjFj

for each non-negative integer r and, more generally,

f(A) =
k∑
j=1

f(λj)Fj

for any rational function f(t) which is not zero at any λj. In fact, this extends
to power series as well, such as the matrix exponential eA.

A.1.1 Positive Semidefinite Matrices

An n × n real symmetric matrix M is positive semidefinite (resp., positive
definite) if v>Mv ≥ 0 for all v ∈ Rn (resp., v>Mv > 0 for all nonzero v ∈
Rn). One easily sees that any non-negative multiple of a positive semidefinite
(psd) matrix is also positive semidefinite and that the sum of any number of
positive semidefinite matrices of the same size is also psd (as is their direct
sum). It is a straightforward exercise to see that every eigenvalue of a positive
semidefinite matrix is non-negative and the converse holds as well: If A is a
real symmetric matrix, then A is psd if and only if all of its eigenvalues are
non-negative. Inside Matn(R), the psd matrices form a cone and the same is
true inside any subspace of this vector space.

If X = {x1, . . . , xk} is a non-empty finite subset of Rn, then the Gram
matrix of X is the k × k matrix G with (i, j)-entry 〈xi, xj〉. Every Gram
matrix is positive semidefinite (Proof: It factors as G = SS> where S has
ith row equal to xi) and conversely, every k × k positive semidefinite matrix
M of rank m is the Gram matrix of some set of k vectors in Rm. (Exercise:
Prove this by building the vectors x1, x2, . . . in turn showing in each case that
the square submatrix in the upper left corner of M is the matrix of inner
products of the vectors chosen so far.)

A.2 Graph Theory

A simple undirected graph is just a bunch of dots connected by lines. More
precisely, a graph G = (X,R) is an ordered pair with X a set (|X| finite for
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these notes, but in other applications, X may be infinite), and R a symmetric
irreflexive binary relation on X. The elements of X are called vertices (or
“nodes”) and the pairs in R are called edges of the graph. So any two vertices
a, b ∈ X are either adjacent — i.e., (a, b), (b, a) ∈ R — or not adjacent
— (a, b), (b, a) 6∈ R. A walk from a to b in G is a sequence of vertices
a = c0, c1, c2, . . . , cr = b satisfying (ci−1, ci) ∈ R for 1 ≤ i ≤ r. The length of
a walk is r, one less than the number of vertices in the sequence.
Exercise: Prove that, if A is the adjacency matrix of G and a, b ∈ X, then
the (a, b)-entry of the matrix Ar is equal to the number of walks of length r
from a to b in G. (HINT: Use induction.)

A path from a to b in G is a walk from a to b with no repeated vertices
except possibly the initial vertex and the terminal vertex (in the case a = b).
A cycle (or “circuit”) in G is a path of positive length from a vertex to itself.
A graph G is connected if for any a, b ∈ X, G contains a walk from a to b. A
graph is a forest if it contains no cycles. A connected forest is called a tree.
A graph G is bipartite if it contains no cycles of odd length. (Exercise: Prove
that this is equivalent to the existence of a bipartition, or “coloring” with
two colors, of the vertices such that (a, b) ∈ R only if a and b are of different
colors.

The girth of G is the length of a shortest cycle in G (we can take the
girth to be infinite if G is a forest). The distance from a to b in G, denoted
dist(a, b), is the length of a shortest path from a to b in G (we can take
dist(a, b) = ∞ if no such path exists). When G is connected, the diameter
of G is the largest possible distance that occurs between vertices of G. For a
vertex a and a non-negative integer i, the sphere of radius i about a in G is
the set Si(a) = {b ∈ X | dist(a, b) = i}.

If a, b are vertices of a graph G = (X,R) and (a, b) ∈ R, we say a is
adjacent to b or that a and b are neighbors. A set of mutually adjacent
vertices (a “complete” subgraph) is called a clique and a set of mutually
non-adjacent vertices is called a coclique or “independent set” in G. The
degree (or “valency”) of vertex a is the number of neighbors of a. A graph
G is regular if every vertex in G has the same degree. We often say “G is a
regular graph of valency k” to indicate that every vertex in G has degree k.

Let G = (X,R) be a graph and α : X → X a permutation of its vertices.
We say α is an automorphism of G if α “preserves adjacency”: for all a, b ∈ X,
(a, b) ∈ R if and only if (α(a), α(b)) ∈ R. The identity permutation is always
an automorphism and if α and β are automorphisms of G, then so also are
α−1 and βα, their function composition. So the automorphisms of G form a
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group, the automorphism group of the graph G. The vertices are partitioned
into orbits by this group (or by any subgroup of it). The graph G is vertex
transitive if all vertices are in the same orbit: for any a, b ∈ X, there exists
an automorphism α of G mapping a to b (i.e., b = α(a)). Clearly a vertex
transitive graph must be a regular graph, but the converse is not always true.

A graph G is distance transitive if, for every two ordered pairs of vertices
a, b and a′, b′ in X, if dist(a, b) = dist(a′, b′), then there is some automorphism
α of G satisfying α(a) = a′ and α(b) = b′. Distance transitive graphs are
always vertex transitive (take dist(a, b) = 0). If G is a distance-transitive
graph of diameter d, then there exist parameters

{
pkij
}

0≤i,j,k≤d such that

|Si(a) ∩ Sj(b)| = pkij

whenever dist(a, b) = k in G. Indeed, if dist(a′, b′) = k also, then the au-
tomorphism which maps a to a′ and b to b′ bijectively maps Si(a) ∩ Sj(b)
to Si(a

′) ∩ Sj(b′). One easily checks that all Hamming graphs and Johnson
graphs are distance transitive graphs.

Now let us do the same without the group. A graph G of diameter
is distance-regular provided there exist parameters

{
pkij
}

0≤i,j,k≤d such that

|Si(a) ∩ Sj(b)| = pkij whenever dist(a, b) = k in G. Every distance transitive
graph is distance-regular, but there exist distance-regular graphs with trivial
automorphism group. The linear programming bound derived in these notes
is valid for any distance-regular graph and more generally for any symmetric
association scheme.


