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Background

For graphs, H(G) = A(G).

For oriented graphs, H(D) = iM(D), where M(D) is the skew
symmetric matrix. Skew-symmetric tournament matrices have
been well studied (skew two-graphs).
Skew-symmetric conference matrices have also been well
studied (e.g. Delsarte, Goethals, Seidel 71)
More recently, the singular values of the skew-symmetric
adjacency matrix of oriented graph has been studied (Adiga,
Balakrishnan, and So in 2010; Cavers, Cioabă, et al in 2012;
Hou and Lei in 2011).
This matrix was independently defined by Liu and Li who used
it to study energy of digraphs.
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Why would we want to work with H(X )?

H(X ) is diagonalizable with real eigenvalues λ1 ≥ . . . ≥ λn;
Some graph eigenvalue techniques can be applied in this
setting, so we hope to extend some spectral theorems to
the class of digraphs.
In particular, we may use eigenvalue interlacing.
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Some strange things occur

The largest eigenvalue in absolute value could in fact be
negative;

we can have |λn| > λ1.

There does not appear to be a bound on the diameter of
the digraph in terms of the number of distinct eigenvalues
of the Hermitian adjacency matrix.
In fact, there is an infinite family of weakly connected
digraphs whose number of distinct eigenvalues is constant,
but whose diameter goes to infinity.
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K ′3 K ′4

These graphs have H-spectrum {−2,1,1} and {−3,1,1}, resp.
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Spectral Radius
Interlacing

We consider the spectral radius ρ(X ), which is the maximum
absolute value amongst the H-eigenvalues of X .

Theorem

For every digraph X we have

λ1(X ) ≤ ρ(X ) ≤ 3λ1(X ).

Both inequalities are tight.
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Spectral Radius
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We denote the underlying graph of X by Γ(X ).

Theorem

If X is a digraph, then ρ(X ) ≤ ∆(Γ(X )). When X is weakly
connected, the equality holds if and only if Γ(X ) is a
∆(Γ(X ))-regular graph and there exists a partition of V (X ) into
four parts as in figures below.

V1 V−1

Vi V−i

V1 Vi

V−i V−1
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Spectral Radius
Interlacing

Theorem

A digraph X has σH(X ) ⊆ (−
√

3,
√

3 ) if and only if every
component Y of X has Γ(Y ) isomorphic to a path of length at
most 3 or to C4.

Note: in the latter case we can exactly which digraphs Y is
isomorphic to.
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Eigenvalue interlacing

{µj}n−1
j=1 interlaces {λj}nj=1 if:
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. . .
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λn λn−1 λn−2 λ2 λ1

µn−1 µn−2 µn−3 µ1
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Spectral Radius
Interlacing

More generally, µ1 ≥ · · · ≥ µm interlaces λ1 ≥ · · · ≥ λn if

λj ≥ µj ≥ λn−m+j .

If Y is an induced sub-digraph of X , then the eigenvalues of
H(Y ) interlace those of H(X ).
Interlacing is a powerful tool that is used in the undirected case
to find eigenvalue bounds on many graph properties.
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Spectral Radius
Interlacing

η+(X ) = number of non-negative H-eigenvalues of X
η−(X ) = number of non-positive H-eigenvalues of X .

Theorem

If a digraph X contains a subset of m vertices, no two of which
form a digon, then η+(X ) ≥

⌈m
2

⌉
and η−(X ) ≥

⌈m
2

⌉
.

We can also generalize the Cvetković bound for the largest
independent set to digraphs.

Theorem

If X has an independent set of size α, then η+(X ) ≥ α and
η−(X ) ≥ α.
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Theorem (Gregory, Kirkland, Shader 93)

If X is an oriented graph of order n, then

λ1(H(X )) ≤ cot
( π

2n

)
.

Equality holds if and only if X is switching-equivalent to Tn, the
transitive tournament of order n.

Corollary

If X is a digraph with an induced subdigraph that is switching
equivalent to Tm, then λ1(H(X )) ≥ cot

(
π

2m

)
.
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Open problems

Many problems concerning cospectrality of digraphs.

Bound on dichromatic number.
Other analogues of undirected spectral bounds.
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Thanks!
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