Hermitian adjacency matrix of digraphs

Krystal Guo Bojan Mohar

Systems of Lines: Applications of Algebraic Combinatorics, August 12, 2015

Hermitian adjacency matrix The bad news The good news

K. Guo

Introduction Hermitian adjacency matrix

The bad news The good news

Introduction Hermitian adjacency matrix

Hermitian adjacency matrix

Background

For graphs, H(G) = A(G).

For graphs, H(G) = A(G). For oriented graphs, H(D) = iM(D), where M(D) is the skew symmetric matrix. Skew-symmetric tournament matrices have been well studied (skew two-graphs).

For graphs, H(G) = A(G).

For oriented graphs, H(D) = iM(D), where M(D) is the skew symmetric matrix. Skew-symmetric tournament matrices have been well studied (skew two-graphs).

Skew-symmetric conference matrices have also been well studied (e.g. Delsarte, Goethals, Seidel 71)

For graphs, H(G) = A(G).

For oriented graphs, H(D) = iM(D), where M(D) is the skew symmetric matrix. Skew-symmetric tournament matrices have been well studied (skew two-graphs).

Skew-symmetric conference matrices have also been well studied (e.g. Delsarte, Goethals, Seidel 71)

More recently, the singular values of the skew-symmetric adjacency matrix of oriented graph has been studied (Adiga, Balakrishnan, and So in 2010; Cavers, Cioabă, et al in 2012; Hou and Lei in 2011).

For graphs, H(G) = A(G).

For oriented graphs, H(D) = iM(D), where M(D) is the skew symmetric matrix. Skew-symmetric tournament matrices have been well studied (skew two-graphs).

Skew-symmetric conference matrices have also been well studied (e.g. Delsarte, Goethals, Seidel 71)

More recently, the singular values of the skew-symmetric adjacency matrix of oriented graph has been studied (Adiga, Balakrishnan, and So in 2010; Cavers, Cioabă, et al in 2012; Hou and Lei in 2011).

This matrix was independently defined by Liu and Li who used it to study energy of digraphs.

Why would we want to work with H(X)?

Why would we want to work with H(X)?

■ H(X) is diagonalizable with real eigenvalues $\lambda_1 \geq \ldots \geq \lambda_n$;

Why would we want to work with H(X)?

- H(X) is diagonalizable with real eigenvalues $\lambda_1 \geq \ldots \geq \lambda_n$;
- Some graph eigenvalue techniques can be applied in this setting, so we hope to extend some spectral theorems to the class of digraphs.

Why would we want to work with H(X)?

- H(X) is diagonalizable with real eigenvalues $\lambda_1 \geq \ldots \geq \lambda_n$;
- Some graph eigenvalue techniques can be applied in this setting, so we hope to extend some spectral theorems to the class of digraphs.
- In particular, we may use eigenvalue interlacing.

The largest eigenvalue in absolute value could in fact be negative;

■ The largest eigenvalue in absolute value could in fact be negative; we can have $|\lambda_n| > \lambda_1$.

- The largest eigenvalue in absolute value could in fact be negative; we can have $|\lambda_n| > \lambda_1$.
- There does not appear to be a bound on the diameter of the digraph in terms of the number of distinct eigenvalues of the Hermitian adjacency matrix.

- The largest eigenvalue in absolute value could in fact be negative; we can have $|\lambda_n| > \lambda_1$.
- There does not appear to be a bound on the diameter of the digraph in terms of the number of distinct eigenvalues of the Hermitian adjacency matrix.
- In fact, there is an infinite family of weakly connected digraphs whose number of distinct eigenvalues is constant, but whose diameter goes to infinity.

These graphs have *H*-spectrum $\{-2, 1, 1\}$ and $\{-3, 1, 1\}$, resp.

We consider the spectral radius $\rho(X)$, which is the maximum absolute value amongst the H-eigenvalues of X.

We consider the spectral radius $\rho(X)$, which is the maximum absolute value amongst the H-eigenvalues of X.

Theorem

For every digraph X we have

$$\lambda_1(X) \leq \rho(X) \leq 3\lambda_1(X).$$

Both inequalities are tight.

We denote the underlying graph of X by $\Gamma(X)$.

Theorem

If X is a digraph, then $\rho(X) \leq \Delta(\Gamma(X))$. When X is weakly connected, the equality holds if and only if $\Gamma(X)$ is a $\Delta(\Gamma(X))$ -regular graph and there exists a partition of V(X) into four parts as in figures below.

A digraph X has $\sigma_H(X) \subseteq (-\sqrt{3}, \sqrt{3})$ if and only if every component Y of X has $\Gamma(Y)$ isomorphic to a path of length at most 3 or to C_4 .

A digraph X has $\sigma_H(X) \subseteq (-\sqrt{3}, \sqrt{3})$ if and only if every component Y of X has $\Gamma(Y)$ isomorphic to a path of length at most 3 or to C_4 .

Note: in the latter case we can exactly which digraphs Y is isomorphic to.

Eigenvalue interlacing

$$\{\mu_j\}_{j=1}^{n-1}$$
 interlaces $\{\lambda_j\}_{j=1}^n$ if:

Eigenvalue interlacing

$$\{\mu_j\}_{j=1}^{n-1}$$
 interlaces $\{\lambda_j\}_{j=1}^n$ if:

More generally,
$$\mu_1 \geq \cdots \geq \mu_m$$
 interlaces $\lambda_1 \geq \cdots \geq \lambda_n$ if $\lambda_j \geq \mu_j \geq \lambda_{n-m+j}$.

More generally, $\mu_1 \geq \cdots \geq \mu_m$ interlaces $\lambda_1 \geq \cdots \geq \lambda_n$ if

$$\lambda_j \geq \mu_j \geq \lambda_{n-m+j}$$
.

If Y is an induced sub-digraph of X, then the eigenvalues of H(Y) interlace those of H(X).

More generally, $\mu_1 \geq \cdots \geq \mu_m$ interlaces $\lambda_1 \geq \cdots \geq \lambda_n$ if

$$\lambda_j \geq \mu_j \geq \lambda_{n-m+j}$$
.

If Y is an induced sub-digraph of X, then the eigenvalues of H(Y) interlace those of H(X).

Interlacing is a powerful tool that is used in the undirected case to find eigenvalue bounds on many graph properties.

$$\eta^+(X)$$
 = number of non-negative H -eigenvalues of X $\eta^-(X)$ = number of non-positive H -eigenvalues of X .

$$\eta^+(X)$$
 = number of non-negative H -eigenvalues of X $\eta^-(X)$ = number of non-positive H -eigenvalues of X .

If a digraph X contains a subset of m vertices, no two of which form a digon, then $\eta^+(X) \geq \left\lceil \frac{m}{2} \right\rceil$ and $\eta^-(X) \geq \left\lceil \frac{m}{2} \right\rceil$.

$$\eta^+(X)$$
 = number of non-negative H -eigenvalues of X $\eta^-(X)$ = number of non-positive H -eigenvalues of X .

If a digraph X contains a subset of m vertices, no two of which form a digon, then $\eta^+(X) \geq \left\lceil \frac{m}{2} \right\rceil$ and $\eta^-(X) \geq \left\lceil \frac{m}{2} \right\rceil$.

We can also generalize the Cvetković bound for the largest independent set to digraphs.

$$\eta^+(X)$$
 = number of non-negative H -eigenvalues of X $\eta^-(X)$ = number of non-positive H -eigenvalues of X .

If a digraph X contains a subset of m vertices, no two of which form a digon, then $\eta^+(X) \geq \left\lceil \frac{m}{2} \right\rceil$ and $\eta^-(X) \geq \left\lceil \frac{m}{2} \right\rceil$.

We can also generalize the Cvetković bound for the largest independent set to digraphs.

Theorem

If X has an independent set of size α , then $\eta^+(X) \ge \alpha$ and $\eta^-(X) \ge \alpha$.

Theorem (Gregory, Kirkland, Shader 93)

If X is an oriented graph of order n, then

$$\lambda_1(H(X)) \leq \cot\left(\frac{\pi}{2n}\right).$$

Equality holds if and only if X is switching-equivalent to T_n , the transitive tournament of order n.

Theorem (Gregory, Kirkland, Shader 93)

If X is an oriented graph of order n, then

$$\lambda_1(H(X)) \leq \cot\left(\frac{\pi}{2n}\right).$$

Equality holds if and only if X is switching-equivalent to T_n , the transitive tournament of order n.

Corollary

If X is a digraph with an induced subdigraph that is switching equivalent to T_m , then $\lambda_1(H(X)) \ge \cot\left(\frac{\pi}{2m}\right)$.

Open problems

Many problems concerning cospectrality of digraphs.

Open problems

- Many problems concerning cospectrality of digraphs.
- Bound on dichromatic number.

Open problems

- Many problems concerning cospectrality of digraphs.
- Bound on dichromatic number.
- Other analogues of undirected spectral bounds.

Thanks!

This research is partially supported by NSERC.

