Background

- There are two main types of PFAS: long-chain and short-chain
- Existing adsorbents for PFAS ineffective for short-chain PFAS
- Cyclodextrins have been proposed as a novel solution
- Three main types of cyclodextrin depending on size (α, β, γ)
- Cyclodextrins form a ring; the interior surface is hydrophobic and the exterior surface is hydrophilic
- PFAS thread through cyclodextrin forming hydrophobic interactions with the inner surface and hydrogen bonds with the terminal hydroxyl groups
- H-bonds compensate for weak hydrophobic interactions

Introduction

- Per- and polyfluoroalkyl substances (PFAS) are a serious issue in water sources
- ~71 to 95 million people in the U.S. source their drinking water from PFAS-contaminated groundwater
- PFAS are endocrine disruptors and can increase the risk of certain cancers, and effects are still not fully known
- Further research is needed into the detection and removal of PFAS
- PFAS have a negatively charged hydrophilic (water-loving) head and hydrophobic tail

Methodology

- Acquired 3D structures of α-cyclodextrin, β-cyclodextrin, γ-cyclodextrin from PDBj and developed modifications replacing primary hydroxyls with quaternary nitrogens in Chem3D
 Acquired 3D structures of PFOA, PFOS (long-chain PFAS) and PFBA, PFBS, PFPeA, PFHxA, PFHpA (short-chain PFAS)
- Ran each combination of the six cyclodextrins and seven PFAS through AutoDock Vina to generate a docking score
- Analyzed with PyMOL and Excel

Tools

Computationally Modeling the Ability of Cyclodextrins to Bind Short-Chain PFAS

Lydia Metcalf Advisor: Dr. Kevin Crowthers, Ph.D.

Research Question

How do the type of cyclodextrin and modifications thereof affect the binding of PFAS to a cyclodextrin candidate?

Results Maximum Generated Docking Score by PFAS (kcal/mol) PFBA PFBS PFOA PFOS PFPeA PFHPA PFHXA PFHXA PFHXA Modified Beta-Cyclodextrin Gamma-Cyclodextrin Modified Alpha-Cylodextrin Alpha-Cyclodextrin Alpha-Cyclodextrin

Figure 1: The docking scores for the most favorable pose generated with each cyclodextrin (grouped by PFAS).

Figure 2: The average (by cyclodextrin) of the maximum docking scores for each PFAS in the sample.

Hypothesis

Beta-cyclodextrins and gamma-cyclodextrins with attached positive residues will bind short-chain PFAS better than alphacyclodextrins and unmodified gamma-cyclodextrins and beta-cyclodextrins.

Results

Figure 3: The optimal docking poses for modified β -CD and PFHpA (-6.3 kcal/mol) (left) and unmodified β -CD and PFHpA (-5.5 kcal/mol) (right)

Results

Figure 4: The optimal docking poses for modified β -CD and PFBS (-5.5 kcal/mol) (left) and modified γ -CD and PFBS (-4.9 kcal/mol) (right)

Analysis

- Matched-pairs t-testing used to confirm differences in average docking score between combinations of two cyclodextrins
- M = modified

	β-CD – α-CD	α-CD – γ-CD	β-CD – γ-CD	M-α-CD - α-CD	M-β-CD - β-CD	M-γ-CD - γ-CD	M-β-CD – M-γ-CD
H_A	μ≠μ ₀	$\mu\neq\mu_0$	$\mu\neq\mu_0$	$\mu > \mu_0$	$\mu > \mu_0$	$\mu > \mu_0$	$\mu > \mu_0$
t-score	12.01	-6.606	2.705	1.125	5.499	6.874	6.819
p-value	2.02 × 10 ⁻⁵	5.79 × 10 ⁻⁴	0.035	0.152	7.58×10^{-4}	2.34×10^{-4}	2.44×10^{-4}
reject H ₀	yes at α=0.001	yes at α=0.001	yes at α =0.05, no at α =0.01	no at any α	yes at α=0.001	yes at α=0.001	yes at α=0.001

Table 1: Results of matched-pairs t-testing

Conclusion

- No evidence that modified α -cyclodextrins have higher docking scores than unmodified counterparts
- Convincing evidence that the average docking scores for modified β -cyclodextrins and γ -cyclodextrins are significantly higher than for their unmodified counterparts (***p<0.001), and the average docking score is higher for modified β -cyclodextrins than for modified γ -cyclodextrins (***p<0.001)
- **Modified** β**-cyclodextrins** had the highest generated docking scores for all PFAS tested likely candidate for **further steps**

Future Work

- Creating additional modified cyclodextrins with positive groups
- Further modeling and analyzing the specific intermolecular attractions instead of relying on a scoring function
- Wet bench experiments to confirm results are outside the scope of this project but would be a goal for future research

Acknowledgements

Acknowledgements: Thanks to Dr. Alexander MacKerell, Ph.D. and Dr. Matthew Metcalf, PharmD, Ph.D. for their generous assistance with the research process.

References

Abaie, E., Kumar, M., Kumar, N., Sun, Y., Guelfo, J., Shen, Y., & Reible, D. (2024). Application of β-Cyclodextrin Adsorbents in the Removal of Mixed Per- and Polyfluoroalkyl Substances. *Toxics (Basel)*, 12(4), 264. https://doi.org/10.3390/toxics12040264 Anderson, A., García-Fandiño, R., Piñeiro, Á., & O'Connor, M. S. (2024). Unraveling the molecular dynamics of sugammadex-rocuronium complexation: A blueprint for cyclodextrin drug design. *Carbohydrate Polymers*, 334, 122018.

https://doi.org/https://doi.org/10.1016/j.carbpol.2024.122018

Dickman, R. A., & Aga, D. S. (2022). A review of recent studies on toxicity, sequestration, and degradation of per- and polyfluoroalkyl substances (PFAS). *Journal of Hazardous Materials*, 436, 129120. https://doi.org/https://doi.org/10.1016/j.jhazmat.2022.129120

Eberhardt, J., Santos-Martins, D., Tillack, A. F., & Forli, S. (2021). AutoDock Vina 1.2.0: New Docking Methods, Expanded Force Field, and Python Bindings. *Journal of Chemical Information and Modeling*, 61(8), 3891-3898. https://doi.org/10.1021/acs.jcim.1c00203

Fenton, S. E., Ducatman, A., Boobis, A., DeWitt, J. C., Lau, C., Ng, C., Smith, J. S., & Roberts, S. M. (2021). Per- and Polyfluoroalkyl Substance Toxicity and Human Health Review: Current State of Knowledge and Strategies for Informing Future Research. *Environ*

Toxicol Chem, 40(3), 606-630. https://doi.org/10.1002/etc.4890
Li, F., Duan, J., Tian, S., Ji, H., Zhu, Y., Wei, Z., & Zhao, D. (2020). Short-chain per- and polyfluoroalkyl substances in aquatic systems: Occurrence, impacts and treatment. Chemical Engineering Journal, 380, 122506.

https://doi.org/https://doi.org/10.1016/j.cej.2019.122506
Militao, I. M., Roddick, F., Fan, L., Zepeda, L. C., Parthasarathy, R., & Bergamasco, R. (2023). PFAS removal from water by adsorption with alginate-encapsulated plant albumin and rice straw-derived biochar. *Journal of Water Process Engineering*, 53, 103616. https://doi.org/https://doi.org/10.1016/j.jwpe.2023.103616

toolbox. Journal of Cheminformatics, 3(1), 33. https://doi.org/10.1186/1758-2946-3-33

Tokranov, A. K., Ransom, K. M., Bexfield, L. M., Lindsey, B. D., Watson, E., Dupuy, D. I., Stackelberg, P. E., Fram, M. S., Voss, S. A.,

Kingsbury, J. A., Jurgens, B. C., Smalling, K. L., & Bradley, P. M. (2024). Predictions of groundwater PFAS occurrence at drinking water

O'Boyle, N. M., Banck, M., James, C. A., Morley, C., Vandermeersch, T., & Hutchison, G. R. (2011). Open Babel: An open chemical

supply depths in the United States. *Science*, 386(6723), 748-755. https://doi.org/doi:10.1126/science.ado6638

Trott, O., & Olson, A. J. (2010). <u>AutoDock</u> Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. *Journal of Computational Chemistry*, 31(2), 455-461. https://doi.org/https://doi.org/10.1002/jcc.21334